Description Logics: a Nice Family of Logics - Reasoning in the Lightweight DL \mathcal{EL} -

Uli Sattler¹ Thomas Schneider²

$^1 \mbox{School}$ of Computer Science, University of Manchester, UK

²Department of Computer Science, University of Bremen, Germany

ESSLLI, 9 August 2012

Plan for today

2 Normalisation

3 A simple poly-time reasoning algorithm

And now ...

2 Normalisation

Summary

 \mathcal{EL} is a restriction of \mathcal{ALC} \ldots

- that allows only conjunction and existential restrictions
- that is used to represent, e.g., medical knowledge
- whose standard reasoning problems are tractable

i.e., there is a worst-case poly-time algorithm for deciding subsumption etc.

 \bullet whose extension \mathcal{EL}^{++} with other features, namely:

\perp	domain and range restrictions
disjoint concepts	concept and role assertions
role (chain) inclusions	nominals
transitive roles	concrete domains
reflexive roles	

remains tractable and is a profile of OWL

Syntax and semantics of $\mathcal{E\!L}$

Concepts

For C, D concepts and R a role name:

Constructor	Syntax	Example	Semantics
top	Т		$\Delta^{\mathcal{I}}$
conjunction	$C\sqcap D$	Human □ Male	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
exist. restr.	$\exists r.C$	∃hasChild.Human	$\{x \mid \exists y.(x,y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$

Axioms

- $C \sqsubseteq D$
- $C \equiv D$ as a shortcut for " $C \sqsubseteq D$, $D \sqsubseteq C$ "

Normalisation

What a tiny logic !?

✓ We can say in \mathcal{EL} Hand $\sqsubseteq \exists hasPart.Finger$

X but we can't say

Hand $\sqsubseteq = 5$ hasPart.Finger Finger $\sqsubseteq \exists$ hasPart⁻.Hand

★ We'd like to say, but can't MildFlu \equiv Flu $\sqcap \forall$ symptom.Triv ✓ all we can say (in \mathcal{EL}^{++}) is MildFlu \Box Flu MildFlu \Box ∃symptom.Fever \sqsubseteq \bot Fever \Box Triv \Box \bot

 \mathcal{EL}^{++} is used in some large-scale ontologies

e.g. bio-medical domain, terminologies: SNOMED, GALEN, GO (see References)

$\mathcal{EL}^{(+)}$ is not so tiny – an example ontology

Endocardium	⊑	Tissue □ ∃cont-in.HeartWall □
		$\exists cont-in.HeartValve$
HeartWall	\Box	BodyWall □ ∃part-of.Heart
HeartValve	\Box	$BodyValve \sqcap \exists part-of.Heart$
Endocarditis	\Box	$Inflammation \sqcap \exists has-loc.Endocardium$
Inflammation	\Box	$Disease \sqcap \exists acts-on.Tissue$
Heartdisease □ ∃has-loc.HeartValve		CriticalDisease
Heartdisease	\equiv	Disease □ ∃has-loc.Heart
	_	ment of
part-of o part-of	╘	part-of
\mathcal{EL}^+ part-of	\Box	cont-in
has-loc o cont-in	⊑	has-loc

Taken from [Baader et al. 2006]

Satisfiability and subsumption

$\label{eq:stisfiability} \textbf{Satisfiability} + \textbf{coherence are trivial:} \hspace{0.1 cm} \text{every} \hspace{0.1 cm} \mathcal{EL}\text{-} \textbf{TBox} \hspace{0.1 cm} \text{is coherent} \hspace{0.1 cm}$

because ?

Satisfiability and subsumption

Satisfiability + coherence are trivial: every \mathcal{EL} -TBox is coherent

- \mathcal{I} with $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, for all concept names A and role names r, satisfies every \mathcal{EL} axiom
- (\mathcal{I} with $A^{\mathcal{I}} = r^{\mathcal{I}} = \emptyset$ doesn't why?)

Subsumption ?

Satisfiability and subsumption

Satisfiability + coherence are trivial: every $\mathcal{EL}\text{-}\mathsf{TBox}$ is coherent

• \mathcal{I} with $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, for all concept names A and role names r, satisfies every \mathcal{EL} axiom

• (
$$\mathcal{I}$$
 with $A^{\mathcal{I}} = r^{\mathcal{I}} = \emptyset$ doesn't – why?)

Subsumption isn't:

does the following TBox entail $A \sqsubseteq B$? $A' \sqsubseteq B'$?

$$\exists r.A \sqsubseteq \exists r.B$$
$$A' \equiv \exists r.\exists r.A$$
$$B' \equiv \exists r.\exists r.B$$

(Without negation, they are no longer interreducible.)

Roadmap

Goal: present a decision procedure for subsumption in $\mathcal{E\!L}$

Outline:

- Normalisation procedure
- Decision procedure

(simple, naïve, without optimisations)

And now ...

3 A simple poly-time reasoning algorithm

Normal form

... keeps the reasoning procedure simple

Definition

An $\mathcal{E\!L}$ ontology is in normal form if all axioms have these forms:

$$A_1 \sqcap A_2 \sqsubseteq B$$
$$A \sqsubseteq B$$
$$A \sqsubseteq \exists r.B$$
$$\exists r.A \sqsubseteq B$$

 $A_{(i)}, B$: atomic concepts or \top r: role

The normalisation procedure

- \bullet \ldots applies normalisation rules to axioms in a given TBox ${\cal T}$
- each rule transforms an axiom into one or several shorter ones
- \bullet old axiom is removed from $\mathcal T;$ new axioms are added

В

Α

The normalisation rules

- Input $C \equiv D$ NF1 Output $C \square D \square C$
- $\mathsf{C} \sqsubset \mathsf{D}$ NF2 Input Output $\mathbf{C} \sqsubset A$ $A \sqsubset \mathbf{D}$
- Input $\exists r. \mathbf{C} \sqsubset D$ NF3 Output $\mathbf{C} \sqsubset A \quad \exists r.A \sqsubset D$
- Input $\mathbf{C} \sqcap D \sqsubset E$ NF4 Output $\mathbf{C} \sqsubset A$ $A \sqcap D \sqsubset E$
- Input $B \sqsubseteq \exists r. \mathbf{C}$ NF5 Output $B \sqsubset \exists r.A \quad A \sqsubset \mathbf{C}$
- Input $B \sqsubseteq C \sqcap D$ NF6 Output $B \sqsubset C$ $B \sqsubset D$

- CDE arbitrary concepts CD
 - complex concepts
 - atomic concept
 - fresh atomic concept

The normalisation procedure

Given TBox \mathcal{T} , apply NF1–NF7 axiom-wise until none can be applied

- The result \mathcal{T}' contains new atomic concepts A_1, \ldots, A_k
 - $\bullet\,$ is of size linear in the size of ${\cal T}$

Lemma

• For every model $\mathcal{I} \models \mathcal{T}$, there is a model $\mathcal{J} \models \mathcal{T}'$ such that $X^{\mathcal{J}} = X^{\mathcal{I}}$ for all $X \notin \{A_1, \dots, A_k\}$.

• For every model $\mathcal{I} \models \mathcal{T}'$, it holds that $\mathcal{I} \models \mathcal{T}$.

Consequence: \mathcal{T}' is equivalent to \mathcal{T} w.r.t. subsumption: $\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T}' \models C \sqsubseteq D$ for all C, D that don't use the A_i

Details and Example: see [Suntisrivaraporn 2005, pg. 37-39]

And now ...

3 A simple poly-time reasoning algorithm

Initial assumptions

Input: TBox \mathcal{T} , atomic concepts A, BQuestion: does $\mathcal{T} \models A \sqsubseteq B$ hold?

Assumption of A, B being atomic is no real restriction:

Shorter notation: $A \sqsubseteq_{\mathcal{T}} B$ abbreviates $\mathcal{T} \models A \sqsubseteq B$

Deciding subsumptions via subsumer sets

Subsumer of A: a concept name B (including \top) with A $\sqsubseteq_{\mathcal{T}} B$ **Subsumer set** S(A): set that contains subsumers of A

Representation of subsumer sets: in a labelled graph $G(\mathcal{T})$

- Nodes of $G(\mathcal{T}) = \text{concept names (including } \top)$ in \mathcal{T}
- Label of node A: S(A)

B in label S(A) means $A \sqsubseteq_{\mathcal{T}} B$

• Label of edge (A, B): set R(A, B) of roles $r \in R(A, B)$ means $A \sqsubseteq_{\mathcal{T}} \exists r.B$

Outline of the procedure:

- Set $S(A) = \{A, \top\}$ for every A
- Monotonically build G(T)
 by exhaustively applying completion rules
- Check whether $B \in S(A)$

The completion rules (1)

Completion rule R1 for node X If $A_1 \sqcap A_2 \sqsubseteq B$ in \mathcal{T} and $\{A_1, A_2\} \subseteq S(X)$ and $B \notin S(X)$ then $S(X) := S(X) \cup \{B\}$

Completion rule R2 for node X

If
$$A \sqsubseteq \exists r.B$$
 in \mathcal{T}
and $A \in S(X)$ and $r \notin R(X, B)$

then $R(X,B) := R(X,B) \cup \{r\}$

The completion rules (2)

Completion rule R3 for nodes X, Y

- If $\exists r.A \sqsubseteq B$ in \mathcal{T} and $r \in R(X, Y)$ and $A \in S(Y)$ and $B \notin S(X)$
- then $S(X) := S(X) \cup \{B\}$

The "naïve" subsumption algorithm [Baader et al. 2006]

Algorithm 1

```
Input: \mathcal{EL} ontology \mathcal{T}, atomic classes A, B
Output: yes if A \sqsubseteq_{\mathcal{T}} B, no otherwise
```

```
For each atomic concept A in \mathcal{T} plus \top {
create a node with label \{A, \top\}
}
```

```
while some rule is applicable to some axiom in \mathcal{T} {

    choose axiom \alpha and rule Ri applicable to \alpha

    apply Ri to \alpha

}

if B \in S(A) then output yes
```


else output no

Summary

Algorithm 1 . . .

 \bullet terminates in time polynomial in the size of ${\cal T}$

Corollary

Subsumption in $\mathcal{E\!L}$ can be decided in polynomial time.

- \bullet constructs a canonical model of ${\cal T}$
- is sound and complete: outputs yes iff $A \sqsubseteq_{\mathcal{T}} B$
- works "one-pass": computes all $A \sqsubseteq_{\mathcal{T}} B$ at once
- is still slow for big ontologies:
 crux = search for applicable rules

Extensions

Smarter versions of Algorithm 1 ...

- are goal-oriented: only apply rules that are necessary for (dis)proving A ⊑_T B
- \bullet are implemented in the reasoner CEL for the extension \mathcal{EL}^{++}
- \bullet can be extended even to the Horn fragment of \mathcal{SHIQ}

For details see [Baader et al. 2005, Baader et al. 2006, Kazakov 2009].

Homework

You're cordially invited to apply the normalisation procedure to the TBox

$$\mathcal{T} = \{ A \sqsubseteq B \sqcap \exists r.C, \\ C \sqsubseteq \exists s.D, \\ \exists r.\exists s.\top \sqcap B \sqsubseteq D \} \}$$

and then check whether it entails

 $A \sqsubseteq D.$

That's all for today. Thanks!

Bio-medical ontologies

• SNOMED, the systematized nomenclature of human and veterinary medicine

http://en.wikipedia.org/wiki/SNOMED_CT

- GALEN http://www.opengalen.org
- Go, the Gene Ontology http://www.geneontology.org

References: articles (1)

F. Baader.

Terminological cycles in a description logic with existential restrictions. In *Proc. IJCAI*, pages 325-330, 2003. http://lat.inf.tu-dresden.de/research/papers.html#2003

- F. Baader, S. Brandt, and C. Lutz.
 Pushing the *EL* envelope.
 In *Proc. IJCAI*, pages 364-369, 2005.
 http://www.ijcai.org/papers/0372.pdf

F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning in \mathcal{EL}^+ .

In Description Logics, volume 189 of CEUR Workshop Proc., 2006. http://www.ceur-ws.org/Vol-189/submission_8.pdf

References: articles (2)

S. Brandt.

Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and – what else?

In Proc. ECAI, pages 298-302, 2004. http://www.cs.man.ac.uk/~sbrandt/papers.html

Y. Kazakov:

 $\label{eq:consequence-Driven Reasoning for Horn \mathcal{SHIQ} Ontologies. In $Proc. IJCAI, pages 2040–2045, 2009. $$

B. Suntisrivaraporn.

Optimization and Implementation of Subsumption Algorithms for the Description Logic \mathcal{EL} with Cyclic TBoxes and General Concept Inclusion Axioms.

Masters thesis, Technische Universität Dresden, Germany, 2005. http://lat.inf.tu-dresden.de/research/papers.html#2005

