Description Logics: a Nice Family of Logics — Modularity —

Uli Sattler¹ Thomas Schneider²

¹School of Computer Science, University of Manchester, UK

²Department of Computer Science, University of Bremen, Germany

ESSLLI, 10 August 2012

Plan for today

What is modularity good for?

2 Modules for reuse

Summary and Outlook

And now ...

What is modularity good for?

What can I do with my ontology?

Ontology users and engineers want to use ontologies to

- represent and archive knowledge (M) in a structured way
- compute inferences from archived knowledge (M) e.g., classification, query answering
- explain inferences (M)

justifications = pinpointing, abduction

- reuse (parts of) other ontologies to build their ontology (M) import
- expose the logical structure of the represented knowledge (M) comprehension

Introduction

What can I do with my ontology?

Building and using an ontology often requires

• fast reasoning (M)

 ${\sf expressivity} \, \leftrightarrow \, {\sf complexity}; \quad {\sf optimisations}, \ {\sf incremental} \ {\sf reasoning}$

- collaborative development (M)
- version control (M)
- efficient reuse (M)
- an understanding of the ontology's content and structure (M) comprehension

(M) = modularity helps

A priori vs. a posteriori modularisation

A priori (not covered today)

- At first, a modular structure is decided on.
- Then, the ontology is developed and used according to that structure.

A posteriori

- The ontology is regarded as a monolithic entity.
- At some point, a module is extracted or the ontology is decomposed into several modules.

And now ...

2 Modules for reuse

Comparing two ontologies

Assume that ...

- you want to buy a medical ontology from me
- \bullet I offer two medical ontologies \mathcal{O}_1 and \mathcal{O}_2
- Q: which one do you choose?

Possible A: the one that contains more knowledge.

Q: how do you measure the amount of knowledge in \mathcal{O}_i ?

Possible A: Number of axioms?

- Well, compare $\{A \sqsubseteq B, B \sqsubseteq A\}$ vs. $\{A \equiv B\}$
- or $\{A \sqsubseteq B, B \sqsubseteq A \sqcup \neg A, A \sqcap \neg A \sqsubseteq B\}$ vs. $\{A \equiv B\}$

Possible A: Number of entailments? Number of models?

Ontologies and their entailments

Think of axioms as generating entailments - e.g.:

$$\begin{array}{c} A \sqsubseteq \exists r.B \\ \exists r.\top \sqsubseteq C \sqcap D \end{array} \right\} \hspace{0.2cm} \models \hspace{0.2cm} A \sqsubseteq D \end{array}$$

Q: how many entailments can a TBox have?

A: 0? 1? 2? ... n? ... 2^n ? ... ∞ ?

Ontologies and their entailments

Think of axioms as generating entailments - e.g.:

$$\begin{array}{c} A \sqsubseteq \exists r.B \\ \exists r.\top \sqsubseteq C \sqcap D \end{array} \right\} \hspace{0.2cm} \models \hspace{0.2cm} A \sqsubseteq D \end{array}$$

Q: how many entailments can a TBox have?

A: ∞ $A \sqsubseteq D \quad A \sqsubseteq D \sqcup A \quad A \sqsubseteq D \sqcup (A \sqcap D), \ldots$

Ontologies and their models

Think of axioms as restricting possible models

Axioms "filter out" unwanted models - e.g.:

• Hand $\sqsubseteq \exists hasPart.Finger$

 \rightsquigarrow models cannot have instances of Hand with no hasPart-edge to an instance of Finger

• Hand $\sqsubseteq = 5$ hasPart.Finger

 \rightsquigarrow models cannot have instances of Hand with \neq 5 hasPart-edges to instances of Finger

Q: how many models can a TBox have?

A: 0? 1? 2? ... n? ... 2^n ? ... ∞ ?

Ontologies and their models

Think of axioms as restricting possible models

Axioms "filter out" unwanted models - e.g.:

• Hand $\sqsubseteq \exists hasPart.Finger$

 \rightsquigarrow models cannot have instances of Hand with no hasPart-edge to an instance of Finger

• Hand $\sqsubseteq = 5$ hasPart.Finger

 \rightarrow models cannot have instances of Hand with \neq 5 hasPart-edges to instances of Finger

Q: how many models can a TBox have?

 ∞

Next attempt at "more" entailments/models

We cannot compare numbers of entailments or models

But we can use set inclusion:

" ${\mathcal O}$ knows at most as much as ${\mathcal O}'$ " if

• every entailment of \mathcal{O} is one of \mathcal{O}' :

$$\{\eta \mid \mathcal{O} \models \eta\} \ \subseteq \ \{\eta \mid \mathcal{O'} \models \eta\} \quad \text{or} \quad$$

• every model of
$$\mathcal{O}'$$
 is one of \mathcal{O} :
 $\{\mathcal{I} \mid \mathcal{I} \models \mathcal{O}'\} \subseteq \{\mathcal{I} \mid \mathcal{I} \models \mathcal{O}\}$

Problem:

How do we test these conditions?

Introduction

Modules

Knowledge w.r.t. a signature

Let's reformulate the initial dialogue. Assume that . . .

- you want to buy a subset of a medical ontology ${\cal O}$ from me that covers the subdomain of, say, diseases
- \bullet I offer two subsets \mathcal{M}_1 and \mathcal{M}_2
- Q: which one do you choose?

Possible A: the one that "knows more" about diseases!

Q: which is the best subset I can offer?

Possible A: a module for diseases

• $\mathcal{M}\subseteq \mathcal{O}$ that knows as much as \mathcal{O} about diseases:

 ${\mathcal M}$ indistinguishable from ${\mathcal O}$ w.r.t. all terms relevant for diseases

 $\bullet \ \mathcal{M}$ as small as possible

Inseparability w.r.t. a signature

- ${\mathcal M}$ covers ${\mathcal O}$ for Σ w.r.t. ${\mathcal L}$
- $\bullet~ \mathcal{M} \mbox{ is a module of } \mathcal{O} \mbox{ for } \Sigma \mbox{ w.r.t. } \mathcal{L}$

Choosing the signature Σ

Definition (repeated from previous slide)

$$\mathcal{O}$$
 is a Σ -module of \mathcal{M} w.r.t. \mathcal{L}
if $\mathcal{M} \subseteq \mathcal{O}$ and $\mathcal{M} \equiv_{\Sigma}^{\mathcal{L}} \mathcal{O}$

The signature Σ . . .

- can be seen as a "topic"
- that the module is required to cover
- is difficult to formulate:

Q: how many interesting entailments in $\Sigma = \{ Disease \}$ can \mathcal{O} possibly have?

Choosing the logic ${\cal L}$

Definition (repeated from previous slide)

$$\mathcal{O} \text{ is a } \Sigma \text{-module of } \mathcal{M} \text{ w.r.t. } \mathcal{L}$$

 if $\mathcal{M} \subseteq \mathcal{O} \text{ and } \mathcal{M} \equiv_{\Sigma}^{\mathcal{L}} \mathcal{O}$

Choice of ${\mathcal L}$ depends on your usage of the module:

- for ontology design: subsumptions betw. (complex?) concepts
- for ontology usage: your favourite query language

Modules for reuse

If we want to reuse module \mathcal{M} , we need a stronger guarantee:

$$\mathcal{M} \cup \mathcal{O}' \equiv^{\mathcal{L}}_{\Sigma} \mathcal{O} \cup \mathcal{O}'$$
 for all \mathcal{O}'

Q: is this reasonable to expect? **A**: no! Consider

 $\mathcal{O} = \{ A \sqsubset B, A \sqsubset \exists r. C \} \quad \Sigma = \{ A, r, C \} \quad \mathcal{O}' = \{ B \sqsubset C \}$

Then $\mathcal{M} = \{A \sqsubseteq \exists r. C\} \equiv_{\Sigma}^{\mathcal{ALC}} \mathcal{O},$ $\not\equiv_{\nabla}^{\mathcal{ALC}} \mathcal{O} \cup \mathcal{O}',$ but $\mathcal{M} \cup \mathcal{O'}$ because $\mathcal{O} \cup \mathcal{O'} \models A \sqsubset C$

Modules for reuse

If we want to reuse module \mathcal{M} , we need a stronger guarantee:

$$\mathcal{M} \cup \mathcal{O}' \equiv^{\mathcal{L}}_{\Sigma} \mathcal{O} \cup \mathcal{O}'$$
 for all \mathcal{O}'

Solution:

Lemma [Konev et al. 2009]

If
$$\mathcal{M} \equiv^{\mathcal{L}}_{\Sigma} \mathcal{O}$$
, then $\mathcal{M} \cup \mathcal{O}' \equiv^{\mathcal{L}}_{\Sigma} \mathcal{O} \cup \mathcal{O}'$, for

- every \mathcal{O}' with $sig(\mathcal{O}) \cap sig(\mathcal{O}') \subseteq \Sigma$,
- expressive enough \mathcal{L} , e.g. SROIQ (OWL).

Consequence:

we can safely import ${\mathcal M}$ into any ${\mathcal O}'$ that reuses only terms from Σ

Uli Sattler, Thomas Schneider

(U)

How is a minimal Σ -module extracted?

Simple module extraction algorithm:

- $\mathcal{M} \leftarrow \mathcal{O}$
- While $\mathcal{M} \setminus \{\alpha\} \equiv_{\Sigma}^{\mathcal{L}} \mathcal{O}$, for some $\alpha \in \mathcal{M}$, do $\mathcal{M} \leftarrow \mathcal{M} \setminus \{\alpha\}$

• Output ${\cal M}$

Observation:

Different orders of choosing α can lead to different minimal modules

١			_1						
I	ur	0	a	u	C	u	0	n	

Example

Let $\Sigma = \{Knee, HingeJoint\}$. Suppose *Galen* contains:

Knee ≡ Joint ⊓ ∃hasPart.Patella ⊓	(1)
$\exists hasFunct.Hinge$	
Patella \sqsubseteq Bone \sqcap Sesamoid	(2)
$Ginglymus \equiv Joint \sqcap \exists hasFunct.Hinge$	(3)
$Joint \sqcap \exists hasPart.(Bone \sqcap Sesamoid) \sqsubseteq Ginglymus$	(4)
$Ginglymus\equivHingeJoint$	(5)
$Meniscus \equiv FibroCartilage \sqcap \exists locatedIn.Knee$	(6)

 \subseteq -Minimal module for Σ ?

	n+.		Ы		_	÷.;	~	-	
ļ	nu	U	u	u	C	u	U		

Example

Let $\Sigma = \{Knee, HingeJoint\}$. Suppose *Galen* contains:

 Knee ≡ Joint □ ∃hasPart.Patella □
 (1)

 ∃hasFunct.Hinge
 Patella ⊑ Bone □ Sesamoid
 (2)

 Joint □ ∃hasPart.(Bone□Sesamoid) ⊑ Ginglymus
 (4)

 Ginglymus ≡ HingeJoint
 (5)

 \subseteq -Minimal module for Σ ? $\{(1), (2), (4), (5)\}$

Introd	uction N	lodules	Summary	and Outloo
Ex	ample			
	Let $\Sigma = \{Knee, HingeJoint\}$. Suppose <i>Galen</i> contains:		
	ĸ	nee ≡ Joint ⊓ ∃hasPart.Patella ⊓ ∃hasFunct.Hinge	1	(1)
	Gingly	mus \equiv Joint \sqcap \exists hasFunct.Hinge		(3)
	Gingly	mus \equiv HingeJoint		(5)
	C Minimal madula for 52	[(1) /	2) (F)	

 \subseteq -Minimal module for Σ ?

 $\{(1), (3), (5)\}$

Example

Let $\Sigma = \{Knee, HingeJoint\}$. Suppose *Galen* contains:

Knee ≡ Joint ⊓ ∃hasPart.Patella ⊓	(1)
$\exists hasFunct.Hinge$	
Patella \sqsubseteq Bone \sqcap Sesamoid	(2)
$Ginglymus \equiv Joint \sqcap \exists hasFunct.Hinge$	(3)
Joint □ ∃hasPart.(Bone□Sesamoid) ⊑ Ginglymus	(4)
$Ginglymus\equivHingeJoint$	(5)
Meniscus ≡ FibroCartilage ⊓ ∃locatedIn.Knee	(6)

 \subseteq -Minimal module for Σ ? $\{(1), (2), (4), (5)\}$ and $\{(1), (3), (5)\}$

Note that a module for Σ does not necessarily contain

- $\bullet\,$ all axioms that use terms from $\Sigma\,$
- $\bullet\,$ only axioms that only use terms from $\Sigma\,$

Bad news for expressive ontology languages?

Big, sad theorem [Ghilardi et al. 2006] Let $\mathcal{O}_1, \mathcal{O}_2$ be ontologies in \mathcal{L} and Σ a signature. Determining whether $\mathcal{O}_1 \equiv \frac{\mathcal{L}}{\Sigma} \mathcal{O}_2$ is EXPTIME-complete for $\mathcal{L} = \mathcal{EL}$ 2EXPTIME-complete for $\mathcal{ALC} \leq \mathcal{L} \leq \mathcal{ALCQI}$, and undecidable for $\mathcal{L} \geq \mathcal{ALCQO}$, including OWL (even if \mathcal{O}_1 , \mathcal{O}_2 are in \mathcal{ACC})

(even if $\mathcal{O}_1, \mathcal{O}_2$ are in \mathcal{ALC}).

Consequences for modules of expressive DLs

Extracting modules is highly complex for expressive DLs.

Next: 2 approximations, i.e., sufficient conditions for inseparability

- based on semantic locality
- Ø based on syntactic locality

[Cuenca Grau et al. 2009]

Model-theoretic inseparability

Remember:
$$\mathcal{O}_1 \equiv_{\Sigma}^{\mathcal{L}} \mathcal{O}_2$$
 if:
for all $\eta \in \mathcal{L}$ with sig $(\eta) \subseteq \Sigma$,

$$\mathcal{O}_1 \models \eta$$
 iff $\mathcal{O}_2 \models \eta$

Good news:

$$\{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{O}_1\} = \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{O}_2\}$$

↑

- i.e., \mathcal{O}_1 and \mathcal{O}_2 have the same models modulo Σ $(\mathcal{I}|_{\Sigma}$ is the restriction of \mathcal{I} to Σ)
- shorthand: $\mathcal{O}_1 \equiv_{\Sigma}^{\text{sem}} \mathcal{O}_2$ (model-inseparable)
- \bullet this notion does not depend on ${\cal L}$

Bad news: $\mathcal{O}_1 \equiv_{\Sigma}^{sem} \mathcal{O}_2$ is undecidable already for \mathcal{ALC} !

Semantic locality

We can approximate model-inseparability, exploiting that \mathcal{M} is a subset of \mathcal{O}

every $\mathcal{I} \models \mathcal{M}$ can be extended to $\mathcal{J} \models \mathcal{O}$ with $\mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma}$ \uparrow

every $\mathcal{I} \models \mathcal{M}$ can be extended to $\mathcal{J} \models \mathcal{O}$ with $\mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma}$ and $\forall X \notin \Sigma : X^{\mathcal{J}} = \emptyset$

every $\alpha \in \mathcal{O} \setminus \mathcal{M}$ is semantically local w.r.t. $\Sigma \cup \operatorname{sig}(\mathcal{M})$: α , with all terms not in $\Sigma \cup \operatorname{sig}(\mathcal{M})$ replaced by \bot , is a tautology

 \mathcal{M} O-

From semantic to syntactic locality

- Semantic locality involves tautology check
 - \rightsquigarrow can be tested using a reasoner
 - \rightsquigarrow has the same complexity as standard reasoning
- A syntactic approximation that can be tested in poly-time: syntactic locality

(describes "obviously" sem. local axioms via a grammar)

- Both notions lead to modules that are
 - $(\Sigma \cup sig(\mathcal{M}))$ -inseparable from \mathcal{O}
 - not necessarily minimal

Examples of syntactically (non)-local axioms

$\overline{B} \sqsubseteq A$	form $C \sqsubseteq C^{\emptyset} \rightsquigarrow$ not $\{\overline{B}, \dots\}$ -local
$A \sqsubseteq \overline{B} \sqcap \exists r.\overline{C}$	form $C^{\emptyset} \sqsubseteq C \rightsquigarrow \{\overline{B}, \overline{C}\}$ -local
$X\sqcap A\sqsubseteq Y$	is Σ -local if, e.g., $A \notin \Sigma$
$\overline{B} \sqcap \exists r. \overline{C} \sqsubseteq A$	is $\{\overline{B}, \overline{C}\}$ -local
$\overline{A} \sqsubseteq \overline{A} \sqcup \overline{B}$	is not $\{\overline{A},\overline{B}\}$ -local, yet a tautology!

Module extraction

Module extraction algorithm:

- $\mathcal{M} \leftarrow \emptyset$
- While α not local w.r.t. $\Sigma \cup sig(\mathcal{M})$, do $\mathcal{M} \leftarrow \mathcal{M} \cup \{\alpha\}$

for some $\alpha \in \mathcal{O} \setminus \mathcal{M}$,

 \bullet Output ${\cal M}$

Variations:

- this notion: (semantic/syntactic) \perp -module
- dual notion: (semantic/syntactic) ⊤-module
- smaller modules by nesting $\top\text{-}$ and $\perp\text{-module}$ extraction: $\top\bot^*\text{-modules}$

And now ...

1 What is modularity good for?

Summary

- Inseparability/coverage is a guarantee relevant (not only) for reuse
- Approximation of minimal covering modules via locality
- Modules based on syntactic locality can be extracted efficiently in logics up to \mathcal{SROIQ} (OWL 2)
- Tool support for extracting modules: http://owl.cs.manchester.ac.uk/modularity http://owlapi.sourceforge.net/
- This line of research is rather new for DLs and ontology languages, and many questions are (half)open.

Summary and Outlook

An import/reuse scenario

"Borrow" knowledge from external ontologies

- Provides access to well-established knowledge
- Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.

A collaboration scenario

Collaborative ontology development

- Developers work (edit, classify) locally
- Extra care at re-combination
- Prescriptive/analytic behaviour

This approach is mostly understood, but not implemented yet.

Understanding and/or structuring an ontology

Compute the modular structure of an ontology

Understanding and/or structuring an ontology

Compute the modular structure of an ontology

This is work in progress.

See also ...

... slides from ESSLLI 2011 course "Modularity in Ontologies"
 http://www.informatik.uni-bremen.de/~ts/teaching

... the references at the end of this presentation

Over to Uli for Justifications!

References

B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler. Extracting Modules from Ontologies: a Logic-Based Approach.

In H. Stuckenschmidt et al., eds: *Modular Ontologies*, pages 159–186, vol. 5445 of LNCS, Springer, 2009.

http://www.springerlink.com/content/qq732374182825q0/
http://web.comlab.ox.ac.uk/oucl/work/bernardo.cuenca.grau/
publications/paperJAIR.pdf (previous version)

S. Ghilardi, C. Lutz, F. Wolter.

Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics.

In Proc. KR, pages 187-197, 2006. http://www.csc.liv.ac.uk/~frank/publ/GLWZshort.pdf http://www.csc.liv.ac.uk/~frank/publ/GLWZlong.ps

B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal Properties of Modularisation.

In H. Stuckenschmidt et al., eds: *Modular Ontologies*, pages 25–66, vol. 5445 of LNCS, Springer, 2009.

http://www.csc.liv.ac.uk/~frank/publ/modulebook.pdf