
Modularity in Ontologies:
Introduction (Part A)

Thomas Schneider1 Dirk Walther 2

1Department of Computer Science, University of Bremen, Germany

2Center for Advancing Electronics, Technical University of Dresden, Germany

ESSLLI, 12 August 2013

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 1

Course Objective

Ontologies are widely used as means to represent
conceptualisations within a domain. In Computer Science, in
particular, ontologies mainly provide a reference vocabulary.
Many ontologies have been developed in several areas broad
and diverse such as life sciences, health-care, linguistics,
geosciences, etc.
Examples: SNOMED CT, FMA, GALEN, GO, NCI, etc.
We regard ontologies as logical theories.
Challenge: Provide automatic support for sharing and reuse of
(large) ontologies as well as their design and maintenance.
Modularity is a key concept in tackling the challenges.
We will define the notion of modularity for ontologies and
provide an overview on its properties and uses as well as an
introduction to related technical results.

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 2

(Tentative) Course Outline

Monday: introduction (Thomas and Dirk)
Tuesday: module extraction and its formal
foundations (Thomas and Dirk)
Wednesday: module extraction (Thomas and Dirk)
Thursday: atomic decomposition (Thomas)
Friday: recent advances/current work (Dirk)

Prerequisites:
basic understanding of Description Logic or related logic
formalisms
basic knowledge of complexity theory

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 3

Knowledge Representation (KR)

General goal of KR: “develop formalisms for providing high-level
descriptions of the world that can be effectively used to build
intelligent applications” [Brachman and Nardi, 2003]

Requirements to a KR system:
well-defined syntax and unambiguous semantics (machine
processable)
appropriate abstraction level (relevant vs. irrelevant aspects)
reasoning about represented knowledge (esp. drawing of
inferences of implicit from explicit knowledge)
practical reasoning tools

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 4

Knowledge Representation (KR)

Early KR approaches:
Semantic Networks [Quillian, 1967]
Frame Systems [Minsky, 1981]

⇒ problem: no formal semantics

Logical formalisms:
Logics have a formal syntax and semantics.
Various logics with different expressivity are available.
There are reasoning algorithms for many decidable logics.
Optimised reasoning systems are available.

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 5

Logical Theories

Logic = formal language L + formal semantics ‘|=’
Logical theory: a set T of L-formulas (theorems) closed under
logical consequences

if T |= ϕ, then ϕ ∈ T

Here we mostly consider finite axiomatisations of a theory and
call these ontologies.

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 6

Applications of Theories

propositional logic: constraint satisfaction problems, planning
first-order logic: specification of graphs, datatypes
temporal logic: specification of hard- and software systems
epistemic logic: specification of agents’ knowledge and belief
non-monotonic logic: default reasoning, abductive reasoning,
belief revision
description logic: specification of vocabulary in an ontology
(terminology)

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 7

Ontologies

In Computer/Information Science, ontologies are “a formal, explicit
specification of a shared conceptualisation” [Gruber, 1993]

An ontology:
covers a domain of interest, e.g., medicine, biology,
geography, linguistics, ESSLLI, etc.
presents a model of the domain
provides a vocabulary with names for objects, relations and
classes and defines relationships between them
can define names for terms from existing ones
is presented in a formal language with formal semantics
is shared among users

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 8

Ontologies

Examples of vocabulary classifications (taxonomies):
astronomy: Secchi classes to classify stars (Secchi, 1877)
biology: Linnaean taxonomy (Linnaeus, 1735) classifying
organisms
gastronomy: Bordeaux Wine Official Classification of 1855
libraries: Dewey Decimal Classification (Dewey, 1876)
medicine: International Statistical Classification of Diseases
and Related Health Problems (ICD)
common sense knowledge: OpenCyc (opencyc.org)
websites: Open Directory Project (dmoz.org)

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 9

opencyc.org
dmoz.org

Ontologies

Repositories:
NCBO BioPortal
http://bioportal.bioontology.org

Oxford Ontology Repository
http://www.cs.ox.ac.uk/isg/ontologies/lib/

TONES Ontology Repository
http://owl.cs.manchester.ac.uk/repository/

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 10

http://bioportal.bioontology.org
http://www.cs.ox.ac.uk/isg/ontologies/lib/
http://owl.cs.manchester.ac.uk/repository/

Ontologies

Examples of ontologies in medicine and biology:
Gene Ontology (GO)
geneontology.org

provides vocabularies for the annotation of gene products
protein_tag v molecular_function

National Cancer Institutes Thesaurus (NCI)
ncicb.nci.nih.gov

HIV_Budding v Virus-Cell_Membrane_Interaction

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 11

geneontology.org
ncicb.nci.nih.gov

SNOMED CT

Systematized Nomenclature of Medicine Clinical Terms
ihtsdo.org

provides medical terminology
example:

Seasonal_Allergy v Chronic_disease u Allergy

u ∃has_severity.Severities

u ∃has_episodicity.Episodicities

u ∃has_clinical_course.Seasonal

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 12

ihtsdo.org

SNOMED CT

neighbourhood of Seasonal_Allergy
(using bioportal.bioontology.org)

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 13

bioportal.bioontology.org

SNOMED CT

class hierarchy (taxonomy) from Seasonal_Allergy
(using bioportal.bioontology.org)

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 14

bioportal.bioontology.org

Semantic Web

“provides a common framework that allows data to be shared
and reused across application, enterprise, and community
boundaries” [W3C, 2010]
extends World Wide Web with meta data (e.g. annotations)
about the pages and how they relate to each other
goal: machines automatically process information on the web
(find, share, combine, act upon, reason with information, etc.)
⇒ “intelligent machines”
name coined by Tim Berners-Lee
some functionality:

answer queries involving background knowledge
access information in data repositories
use web services
delegate tasks to agents

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 15

Examples of Ontology languages

formalism for knowledge representation
ER- and UML diagrams
Conceptual Graphs
Datalog and rule-based languages
DLs and higher-order logics

traditional ontology specification languages
Ontolingua
Operational Conceptual Modeling Language (OCML)
Frame Logic

web standards and W3C recommendations
eXtended Markup Language (XML)
Resource Description Framework (RDF) and RDF Schema
Web Ontology Language (OWL)

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 16

Web Ontology Language (OWL)

ontology language for the Semantic Web with formally defined
meaning
designed to facilitate ontology development and sharing via
the Web
provide classes, properties, individuals, and data values
a standard for ontologies in applications in the web (also used
independently of the web)
RDF/XML-based syntax
W3C standards: OWL (2004), OWL 2 (2009)
(technical reports available under www.w3.org/TR/)
profiles (sub-languages) to trade expressive power for
performance guarantees of reasoning

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 17

www.w3.org/TR/

Description Logic

“family of logic-based knowledge representation formalisms”
⇒ fulfill requirements to a KR system
W3C recommends to base OWL languages onto DL
expressivity vs. computational complexity
DLs define classes, properties/relations and objects using
concepts, roles and individuals
concept language of DLs:

concept names are names for groups of objects
role names are names for relations between objects
individual names are names for objects
constructors relate names for concepts, roles and individuals

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 18

Example: a terminology of ESSLLI

classes (concepts): Person, Course, Lecturer, Attendant, ...
relations (roles): attends, gives, likes, ...
objects (individuals): Thomas, x, y, ...
definitions:

Lecturer ≡ Person u ∃gives.Course
Attendant ≡ Person u ∃attends.Course
Registrant ≡ Person u Registered

assertions:
Lecturer(Thomas), Attendant(x), Attendant(y)
gives(Thomas, mod-course), likes(x, mod-course),
likes(x, y)

constraints:
Workshop v ∀attended_by.Registrant
attended_by ≡ attends−1

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 19

DLs and FOL

DLs can be embedded into FOL
concepts correspond to unary predicates
roles correspond to binary predicates
no more than 2 variables under the scope of a quantifier
(exception: transitive roles, number restrictions, etc.)
individuals correspond to constants
no function symbols

DLs are usually decidable

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 20

The basic Description Logic ALC

signature: countably infinite supply of concept names A, B, ...,
role names r , s, ... and individual names a, b, ...

syntax:

C , D ::= > | ⊥ | A | ¬C | C u D | C t D | ∃r .C | ∀r .D

individual assertions:
C(a)
r(a, b)

axioms:
C v D
C ≡ D

ABox: finite set of individual assertions
TBox: finite set of axioms

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 21

ALC Interpretations

interpretation I = (∆I , ·I)

AI ⊆ ∆I for all concept names A
rI ⊆ ∆I × ∆I for all role names r
aI ∈ ∆I for all individual names a

Name Syntax Semantics
top concept > ∆I

bottom concept ⊥ ∅
negation ¬C ∆I \ CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

existential restriction ∃r .C {x ∈ ∆I | ∃y ∈ CI : (x , y) ∈ rI}
universal restriction ∀r .C {x ∈ ∆I | ∀y ∈ CI : (x , y) ∈ rI}

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 22

ALC Semantics

An interpretation I satisfies:
concept inclusion: C v D iff CI ⊆ DI

concept equation: C ≡ D iff CI = DI

TBox: T iff I satisfies all axioms in T (I is a model of T)

concept assertion: C(a) iff aI ∈ CI

role assertion: r(a, b) iff (aI , bI) ∈ rI

ABox: A iff I satisfies all assertions in A (I is a model of A)

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 23

Common Reasoning Tasks

(1) Subsumption of concepts C , D wrt. TBox T
Does CI ⊆ DI hold in all models of T?

(2) Satisfiability of concept C wrt. TBox T
Is there a model I of T such that CI 6= ∅?

(3) Consistency of KB K = (T , A)

Is there a common model of T and A?
(4) Instance checking of individual a in concept C wrt. KB

K = (T , A)

Does aI ∈ CI hold in all models I of K?
(5) Query answering

Given a KB K = (T , A), a query q(~x) and a tuple ~a of
individual names from A, does I satisfy q(~a) for all models I
of K?

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 24

Light-weight DLs

provide tractable reasoning
DL-Lite family [Calvanese et al., 2007]

conceptual modelling (capture much of ER- and
UML-diagrams)
designed to access large amounts of data via high-level
conceptual interface (data integration, querying instance data
using background theories)

EL family [Baader, Brandt, Lutz, 2005]
captures large biomedical ontologies like SNOMED CT, NCI
thesaurus

common restrictions: no disjunction, no universal restriction

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 25

Expressive DL SROIQ

OWL 2
provides the ontology developer with any desirable (but
reasonable) expressive means for easy and intuitive modelling
reasoning is 2NExpTime-complete [Kazakov, 2008]
ALC extended with:

nominals
qualified number restrictions
conditions on roles: (ir)reflexivity, symmetry, transitivity and
universality
conditions between roles: complex role inclusions and
disjointness

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 26

Some DL-Reasoners

EL+:
CEL (http://lat.inf.tu-dresden.de/systems/cel)

SHIQ:
KAON2 (http://kaon2.semanticweb.org)

SROIQ:
FaCT++ (http://owl.man.ac.uk/factplusplus/)
HermiT (http://hermit-reasoner.com)
Pellet (http://clarkparsia.com/pellet/)
RacerPro (http://racer-systems.com)

...

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 27

http://lat.inf.tu-dresden.de/systems/cel
http://kaon2.semanticweb.org
http://owl.man.ac.uk/factplusplus/
http://hermit-reasoner.com
http://clarkparsia.com/pellet/
http://racer-systems.com

ORE 2013 - The OWL Reasoner Evaluation Workshop

2nd edition of OWL reasoner performance competition
http://ore2013.cs.manchester.ac.uk

14 reasoners: TrOWL, Konclude, TReasoner, HermiT, MORe,
FaCT++, Jfact, Chainsaw, WSClassifier, ELK, jcel,
SnoRocket, ELepHant, BaseVISor
input ontologies:

ontology repositories
user submitted hard ontologies

reasoning tasks: consistency, classification, satisfiability

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 28

http://ore2013.cs.manchester.ac.uk

More tool support?

development of ontologies
editing an OWL ontology with RDF/XML syntax
(full-galen.owl in a text editor)

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 29

Ontology Editor

full-galen.owl in Protégé
http://protege.stanford.edu

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 30

http://protege.stanford.edu

Ontology Editor

full-galen.owl in NeOn Toolkit
http://neon-toolkit.org

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 31

http://neon-toolkit.org

And now ...

Part B (Thomas): overview on modularity in ontologies

Thomas Schneider, Dirk Walther Modularity: Introduction (Part A) 32

