Modularity in Ontologies: Introduction (Part A)

Thomas Schneider¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Center for Advancing Electronics, Technical University of Dresden, Germany

ESSLLI, 12 August 2013

Course Objective

- Ontologies are widely used as means to represent conceptualisations within a domain. In Computer Science, in particular, ontologies mainly provide a reference vocabulary.
- Many ontologies have been developed in several areas broad and diverse such as life sciences, health-care, linguistics, geosciences, etc.
- Examples: SNOMED CT, FMA, GALEN, GO, NCI, etc.
- We regard ontologies as logical theories.
- Challenge: Provide automatic support for sharing and reuse of (large) ontologies as well as their design and maintenance.
- Modularity is a key concept in tackling the challenges.
- We will define the notion of modularity for ontologies and provide an overview on its properties and uses as well as an introduction to related technical results.

(Tentative) Course Outline

- Monday: introduction (Thomas and Dirk)
- Tuesday: module extraction and its formal foundations (Thomas and Dirk)
- Wednesday: module extraction (Thomas and Dirk)
- Thursday: atomic decomposition (Thomas)
- Friday: recent advances/current work (Dirk)

Prerequisites:

- basic understanding of Description Logic *or* related logic formalisms
- basic knowledge of complexity theory

General goal of KR: "develop formalisms for providing high-level descriptions of the world that can be effectively used to build intelligent applications" [Brachman and Nardi, 2003]

Requirements to a KR system:

- well-defined syntax and unambiguous semantics (machine processable)
- appropriate abstraction level (relevant vs. irrelevant aspects)
- reasoning about represented knowledge (esp. drawing of inferences of implicit from explicit knowledge)
- practical reasoning tools

Knowledge Representation (KR)

Early KR approaches:

- Semantic Networks [Quillian, 1967]
- Frame Systems [Minsky, 1981]
- \Rightarrow problem: no formal semantics

Logical formalisms:

- Logics have a formal syntax and semantics.
- Various logics with different expressivity are available.
- There are reasoning algorithms for many decidable logics.
- Optimised reasoning systems are available.

- Logic = formal language L + formal semantics ' \models '
- Logical theory: a set T of L-formulas (theorems) closed under logical consequences

if
$$T \models \varphi$$
, then $\varphi \in T$

• Here we mostly consider finite axiomatisations of a theory and call these ontologies.

Applications of Theories

- propositional logic: constraint satisfaction problems, planning
- first-order logic: specification of graphs, datatypes
- temporal logic: specification of hard- and software systems
- epistemic logic: specification of agents' knowledge and belief
- non-monotonic logic: default reasoning, abductive reasoning, belief revision
- description logic: specification of vocabulary in an ontology (terminology)

Ontologies

In Computer/Information Science, ontologies are "a formal, explicit specification of a shared conceptualisation" [Gruber, 1993]

An ontology:

- covers a domain of interest, e.g., medicine, biology, geography, linguistics, ESSLLI, etc.
- presents a model of the domain
- provides a vocabulary with names for objects, relations and classes and defines relationships between them
- can define names for terms from existing ones
- is presented in a formal language with formal semantics
- is shared among users

Ontologies

Examples of vocabulary classifications (taxonomies):

- astronomy: Secchi classes to classify stars (Secchi, 1877)
- biology: Linnaean taxonomy (Linnaeus, 1735) classifying organisms
- gastronomy: Bordeaux Wine Official Classification of 1855
- libraries: Dewey Decimal Classification (Dewey, 1876)
- medicine: International Statistical Classification of Diseases and Related Health Problems (ICD)
- common sense knowledge: OpenCyc (opencyc.org)
- websites: Open Directory Project (dmoz.org)

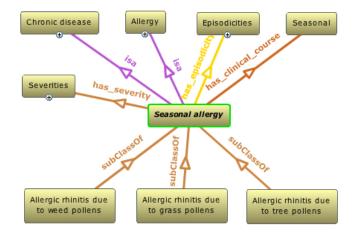
Repositories:

- NCBO BioPortal http://bioportal.bioontology.org
- Oxford Ontology Repository http://www.cs.ox.ac.uk/isg/ontologies/lib/
- TONES Ontology Repository http://owl.cs.manchester.ac.uk/repository/

Examples of ontologies in medicine and biology:

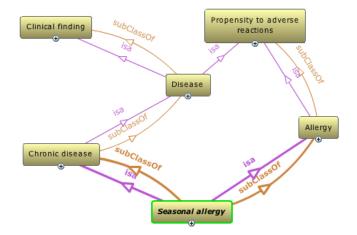
- Gene Ontology (GO) geneontology.org
 - provides vocabularies for the annotation of gene products
 - protein_tag \sqsubseteq molecular_function
- National Cancer Institutes Thesaurus (NCI) ncicb.nci.nih.gov
 - HIV_Budding \sqsubseteq Virus-Cell_Membrane_Interaction

SNOMED CT


 $\label{eq:systematized} \begin{array}{l} \mbox{Systematized Nomenclature of Medicine Clinical Terms} \\ \mbox{ihtsdo.org} \end{array}$

- provides medical terminology
- example:

Seasonal_Allergy ⊑ Chronic_disease ⊓ Allergy □ ∃has_severity.Severities □ ∃has_episodicity.Episodicities □ ∃has_clinical_course.Seasonal


SNOMED CT

 neighbourhood of Seasonal_Allergy (using bioportal.bioontology.org)

Thomas Schneider, Dirk Walther

SNOMED CT

 class hierarchy (taxonomy) from Seasonal_Allergy (using bioportal.bioontology.org)

Thomas Schneider, Dirk Walther

Modularity: Introduction (Part A)

Semantic Web

- "provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries" [W3C, 2010]
- extends World Wide Web with meta data (e.g. annotations) about the pages and how they relate to each other
- goal: machines automatically process information on the web (find, share, combine, act upon, reason with information, etc.)
 ⇒ "intelligent machines"
- name coined by Tim Berners-Lee
- some functionality:
 - answer queries involving background knowledge
 - access information in data repositories
 - use web services
 - delegate tasks to agents

Examples of Ontology languages

• formalism for knowledge representation

- ER- and UML diagrams
- Conceptual Graphs
- Datalog and rule-based languages
- DLs and higher-order logics
- traditional ontology specification languages
 - Ontolingua
 - Operational Conceptual Modeling Language (OCML)
 - Frame Logic
- web standards and W3C recommendations
 - eXtended Markup Language (XML)
 - Resource Description Framework (RDF) and RDF Schema
 - Web Ontology Language (OWL)

Web Ontology Language (OWL)

- ontology language for the Semantic Web with formally defined meaning
- designed to facilitate ontology development and sharing via the Web
- provide classes, properties, individuals, and data values
- a standard for ontologies in applications in the web (also used independently of the web)
- RDF/XML-based syntax
- W3C standards: OWL (2004), OWL 2 (2009) (technical reports available under www.w3.org/TR/)
- profiles (sub-languages) to trade expressive power for performance guarantees of reasoning

Description Logic

- "family of logic-based knowledge representation formalisms"
 ⇒ fulfill requirements to a KR system
- W3C recommends to base OWL languages onto DL
- expressivity vs. computational complexity
- DLs define classes, properties/relations and objects using concepts, roles and individuals
- concept language of DLs:
 - concept names are names for groups of objects
 - role names are names for relations between objects
 - individual names are names for objects
 - constructors relate names for concepts, roles and individuals

Example: a terminology of ESSLLI

- classes (concepts): Person, Course, Lecturer, Attendant, ...
- relations (roles): attends, gives, likes, ...
- objects (individuals): Thomas, x, y, ...
- definitions:
 - Lecturer \equiv Person $\sqcap \exists$ gives.Course
 - Attendant \equiv Person $\sqcap \exists$ attends.Course
 - Registrant \equiv Person \sqcap Registered
- assertions:
 - Lecturer(Thomas), Attendant(x), Attendant(y)
 - gives(Thomas, mod-course), likes(x, mod-course), likes(x, y)
- constraints:
 - Workshop $\sqsubseteq \forall \texttt{attended_by.Registrant}$
 - attended_by \equiv attends⁻¹

DLs and FOL

- DLs can be embedded into FOL
 - concepts correspond to unary predicates
 - roles correspond to binary predicates
 - no more than 2 variables under the scope of a quantifier (exception: transitive roles, number restrictions, etc.)
 - individuals correspond to constants
 - no function symbols
- DLs are usually decidable

The basic Description Logic ALC

- signature: countably infinite supply of concept names *A*, *B*, ..., role names *r*, *s*, ... and individual names *a*, *b*, ...
- syntax:

$$C, D ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists r.C \mid \forall r.D$$

- individual assertions:
 - C(a)
 r(a, b)
- axioms:
 - $C \sqsubseteq D$
 - $C \equiv D$
- ABox: finite set of individual assertions
- TBox: finite set of axioms

ALC Interpretations

• interpretation
$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$

- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all concept names A
- $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all role names r
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for all individual names a

Name	Syntax	Semantics
top concept	Т	$\Delta^{\mathcal{I}}$
bottom concept		Ø
negation	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
conjunction	СпD	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
disjunction	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
existential restriction	∃r.C	$\{x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}}\}$
universal restriction	∀r.C	$\{x \in \Delta^{\mathcal{I}} \mid \forall y \in C^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}}\}$

An interpretation \mathcal{I} satisfies:

- concept inclusion: $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- concept equation: $C \equiv D$ iff $C^{\mathcal{I}} = D^{\mathcal{I}}$
- TBox: T iff \mathcal{I} satisfies all axioms in T (\mathcal{I} is a model of T)
- concept assertion: C(a) iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- role assertion: r(a, b) iff $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$
- ABox: A iff \mathcal{I} satisfies all assertions in A (\mathcal{I} is a model of A)

Common Reasoning Tasks

(1) Subsumption of concepts C, D wrt. TBox T • Does $C^{\mathcal{I}} \subset D^{\mathcal{I}}$ hold in all models of T? (2) Satisfiability of concept C wrt. TBox T• Is there a model \mathcal{I} of T such that $C^{\mathcal{I}} \neq \emptyset$? (3) Consistency of KB K = (T, A)• Is there a common model of T and A? (4) Instance checking of individual a in concept C wrt. KB K = (T, A)• Does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold in all models \mathcal{I} of K? (5) Query answering

> Given a KB K = (T, A), a query q(x) and a tuple a of individual names from A, does I satisfy q(a) for all models I of K?

Light-weight DLs

- provide tractable reasoning
- DL-Lite family [Calvanese et al., 2007]
 - conceptual modelling (capture much of ER- and UML-diagrams)
 - designed to access large amounts of data via high-level conceptual interface (data integration, querying instance data using background theories)
- EL family [Baader, Brandt, Lutz, 2005]
 - captures large biomedical ontologies like SNOMED CT, NCI thesaurus
- common restrictions: no disjunction, no universal restriction

Expressive DL SROIQ

- OWL 2
- provides the ontology developer with any desirable (but reasonable) expressive means for easy and intuitive modelling
- reasoning is 2NExpTime-complete [Kazakov, 2008]
- ALC extended with:
 - nominals
 - qualified number restrictions
 - conditions on roles: (ir)reflexivity, symmetry, transitivity and universality
 - conditions between roles: complex role inclusions and disjointness

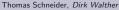
Some DL-Reasoners

• EL+:

• CEL (http://lat.inf.tu-dresden.de/systems/cel)

- SHIQ:
 - KAON2 (http://kaon2.semanticweb.org)
- SROIQ:
 - FaCT++ (http://owl.man.ac.uk/factplusplus/)
 - HermiT (http://hermit-reasoner.com)
 - Pellet (http://clarkparsia.com/pellet/)
 - RacerPro (http://racer-systems.com)

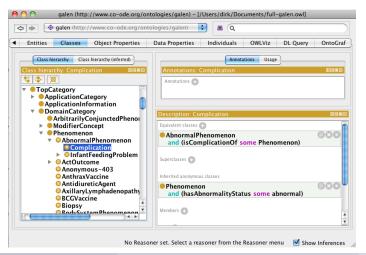
• ...


ORE 2013 - The OWL Reasoner Evaluation Workshop

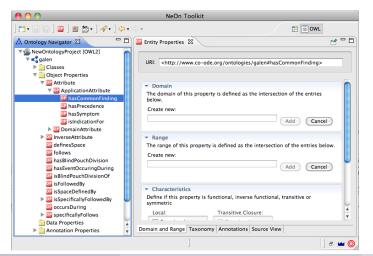
- 2nd edition of OWL reasoner performance competition http://ore2013.cs.manchester.ac.uk
- 14 reasoners: TrOWL, Konclude, TReasoner, HermiT, MORe, FaCT++, Jfact, Chainsaw, WSClassifier, ELK, jcel, SnoRocket, ELepHant, BaseVISor
- input ontologies:
 - ontology repositories
 - user submitted hard ontologies
- reasoning tasks: consistency, classification, satisfiability

More tool support?

- development of ontologies
- editing an OWL ontology with RDF/XML syntax (full-galen.owl in a text editor)


😑 🔿 🔿 📄 full-galen.owl	\Box
xml version="1.0"? ^M	<u></u>
<pre>crdf:RDF^M</pre>	U
xmlns:rss="http://purl.org/rss/1.0/"^M	
xmlns="http://www.co-ode.org/ontologies/galen#"^M	
<pre>xmlns:jms="http://jena.hpl.hp.com/2003/08/jms#"^M</pre>	
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"^M	
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"^M	
xmlns:owl="http://www.w3.org/2002/07/owl#"^M	
xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"^M	
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"^M	
xmlns:dc="http://purl.org/dc/elements/1.1/"	
xml:base="http://www.co-ode.org/ontologies/galen" >^M	
<rdf:description rdf:nodeid="A0">^M</rdf:description>	
<owl:intersectionof rdf:nodeid="A1"></owl:intersectionof> ^M	
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"></rdf:type> ^M	
^M	
<rdf:description rdf:about="#CerebroSpinalFluid">^M</rdf:description>	
<rdfs:subclassof rdf:nodeid="A2"></rdfs:subclassof> ^M	
<rdfs:subclassof rdf:resource="#NAMEDBodySubstance"></rdfs:subclassof> ^M	
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"></rdf:type> ^M	
<rdfs:subclassof rdf:nodeid="A3"></rdfs:subclassof> ^M	
^M	
<rdf:description rdf:nodeid="A4">^M</rdf:description>	
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Restriction"></rdf:type> ^M	
<pre><owl:onproperty rdf:resource="#hasStructuralComponent"></owl:onproperty>^M</pre>	4
<pre><owl:somevaluesfrom rdf:resource="#RadialRecurrentArtery"></owl:somevaluesfrom>^M</pre>	Ŧ

Modularity: Introduction (Part A)


Ontology Editor

• full-galen.owl in Protégé http://protege.stanford.edu

Ontology Editor

 full-galen.owl in NeOn Toolkit http://neon-toolkit.org

Thomas Schneider, Dirk Walther

And now ...

Part B (Thomas): overview on modularity in ontologies

Thomas Schneider, Dirk Walther

Modularity: Introduction (Part A)