Modularity in Ontologies: Module extraction and its logical foundations (Part A)

Thomas Schneider¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 13 August 2013

Plan for today

We will discuss logical foundations for modules

- modules and interfaces
- inseparability = same functionality w.r.t. interface
 = same answers to queries
- decidability/complexity results

Then, we'll look a bit closer on how to use these insights to help ontology engineers re-use ontologies

- in a controlled way
- without (unwanted) side-effects

Thanks: partly based on slides by Uli Sattler and Frank Wolter.

Thomas Schneider, Dirk Walther

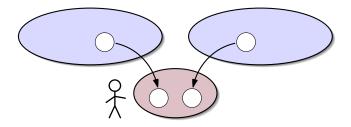
And now ...

1 Motivation: modular reuse of ontologies

(2) Logical foundations of safety and coverage

Remember: an import/reuse scenario

Take and use knowledge from external ontologies



- Provides access to well-established knowledge
- Doesn't require expertise in external disciplines

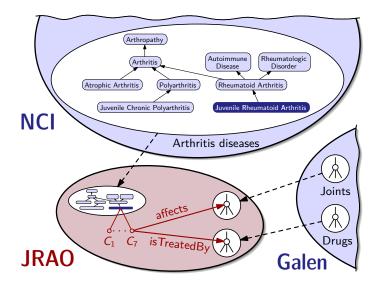
This scenario is well-understood and implemented.

Thomas Schneider, Dirk Walther

A real example: Health-e-child project

- Build an ontology JRAO that describes JRA JRA = Juvenile Rheumatoid Arthritis
- Describe JRA subkinds by
 - Joints affected
 - Occurrence of concomitant symptoms, e.g., fever
 - Treatment with certain drugs
- Re-use information provided by biomedical ontologies
 - NCI: diseases, drugs, proteins etc.
 - Galen: human anatomy

A real example



Why reuse an ontology?

- Saves time and effort
- Provides access to well-established knowledge and terminology
- Doesn't require expertise in drugs, proteins, anatomy etc.

→ A tool supporting reuse should guarantee:

- reusing imported terms doesn't change their meaning Safety
- the order of imports doesn't matter
- all relevant parts of external ont.s are imported **Coverage** in addition, import *only* relevant parts (Economy)

Can we be a bit more specific about

- "doesn't change their meaning"
- "all relevant parts"?

Independence

Guarantees by example

Safety

Concerns the usage of (imported) terms in the importing ontology:

Let JRA, GeneticDisorder be terms of interest from sig(NCI).

$$JRAO \cup NCI \models JRA \sqsubseteq$$
 GeneticDisorder
iff
 $NCI \models JRA \sqsubseteq$ GeneticDisorder

Guarantees by example

Independence

Concerns preservation of safety:

If JRAO is safe for Galen and for NCI, then

- $JRAO \cup NCI$ -module is still safe for Galen and
- JRAO ∪ Galen-module is still safe for NCI.

Guarantees by example

Coverage

Concerns what we would consider a module:

Let JRA, GeneticDisorder be terms of interest from sig(NCI).

$$JRAO \cup NCI \models JRA \sqsubseteq$$
 GeneticDisorder
iff
 $JRAO \cup NCI$ -module $\models JRA \sqsubseteq$ GeneticDisorder

Big, hopeful questions

- I How do we formalise these guarantees?
- How do we define module notions and import methodologies that provide these guarantees?

And now ...

2 Logical foundations of safety and coverage

What is a module?

General definition, e.g., from systems theory

Definition

A module is a part of a system which **functions independently** from the system. The connection between the module and the system is provided by an **interface**.

- an interface enables interoperability between systems
- a system functions through the boundaries of an interface
- what matters is the functionality (we can treat the system itself as black box)

In logical theories

An interface

- \bullet is a tuple (\mathcal{QL},Σ) of a query language \mathcal{QL} and a signature Σ
- provides a view on a theory (set of observables) \rightsquigarrow set of observables is a subset of \mathcal{QL} formulated in Σ
- depends on the application or system

Examples of interfaces

Let \mathcal{T} be a logical theory of arithmetic over the signature $\Sigma = \{+, \times, s, <, 0\}$.

Let
$$n, m, k \in \{0, 1, 2, ...\} = \{0, s(0), s(s(0)), ...\}.$$

Interfaces (\mathcal{QL}, Σ):

Primary school: $\mathcal{QL} = \{n + m = k, n \times m = k\} \qquad \Sigma = \{0, s, +, \times\}$ • Undergraduate: QL = linear equations $\Sigma = \{0, s, +, \times\}$ Mathematician: $\Sigma = \{0, s, +, \times\}$ QL = Diophantine equations• Logician: $\mathcal{OL} = SO$ $\Sigma = \{0, s, f_1, f_2, \dots, +, \times\} \bigcup \mathbb{N}$

Interfaces of medical ontologies

Let \mathcal{T} be a TBox defining terms of some medical domain.

Interfaces (\mathcal{QL}, Σ) :

• Hospital clerk:

QL = all inclusions $A \sqsubseteq B$, where A, B are concept names

- $\boldsymbol{\Sigma}$ = predicates relevant to hospital administration
- Researcher (oncologist):

 $\mathcal{QL} =$ all inclusions $A \sqsubseteq B$, where A, B are concept names

 $\boldsymbol{\Sigma}$ = predicates relevant to cancer research

• Terminologist (expert in anatomy):

 $\mathcal{QL} =$ all inclusions $C \sqsubseteq D$, where C, D are \mathcal{ALC} -concepts

 Σ = predicates relevant to anatomy

• Someone who can ask all relevant questions:

$$Q\mathcal{L} =$$
second-order logic (SO)

 $\Sigma=$ all predicates in ${\cal T}$

Interface for querying instance data

Let \mathcal{T} be a TBox defining geopolitical notions. \mathcal{T} provides a background theory when querying instance data.

Query language \mathcal{QL} :

 $\mathcal{A} \rightarrow q$, where \mathcal{A} represents instance data and q is a query.

Example:

- \bullet Instance data ${\cal A}$
 - { Country(France), Country(Columbia), . . . , LocatedinEurope(France), . . .
- Query: q = EuropeanCountry(France)
- Then

$$\mathcal{T} \models \mathcal{A} \rightarrow q$$

 $\mathsf{if} \ \mathcal{T} \models \mathsf{Country} \sqcap \mathsf{LocatedinEurope} \sqsubseteq \mathsf{EuropeanCountry}$

Functionality and modules of logical theories

Functionality of an ontology \mathcal{O} w.r.t. an interface (\mathcal{QL}, Σ) :

• the set of \mathcal{QL} -formulas φ formulated in Σ that follow from \mathcal{O} .

Formally:
$$\operatorname{Th}_{\Sigma}^{\mathcal{QL}}(\mathcal{O}) = \{ \varphi \in \mathcal{QL} \mid \mathcal{O} \models \varphi, \operatorname{sig}(\varphi) \subseteq \Sigma \}$$

• \mathcal{O} is considered as a black box: we're only interested in its functionality $\operatorname{Th}_{\Sigma}^{\mathcal{QL}}(\mathcal{O})$

Question:

When can \mathcal{O} be equivalently replaced by a module $\mathcal{M} \subseteq \mathcal{O}$?

Answer:

Whenever \mathcal{M} has the same functionality as \mathcal{O} (w.r.t. interface (\mathcal{QL}, Σ))

$$\mathcal{M}$$
 is a module of \mathcal{O} if $\mathcal{M} \subseteq \mathcal{O}$ and $\mathsf{Th}_{\Sigma}^{\mathcal{QL}}(\mathcal{M}) = \mathsf{Th}_{\Sigma}^{\mathcal{QL}}(\mathcal{O})$

Inseparability

Definition

Let $\mathcal{T}_1, \mathcal{T}_2$ be finite sets of sentences,¹ \mathcal{QL} a query language,¹ and Σ a signature.

 \mathcal{T}_1 and \mathcal{T}_2 are $\Sigma\text{-inseparable w.r.t. }\mathcal{QL}\text{, in symbols}$

$$\mathcal{T}_1 \equiv_{\Sigma}^{\mathcal{QL}} \mathcal{T}_2,$$

if for all $\varphi \in \mathcal{QL}$ with sig $(\varphi) \subseteq \Sigma$:

$$\mathcal{T}_1 \models \varphi \iff \mathcal{T}_2 \models \varphi.$$

Example: Let $\mathcal{T}_1 = \{A \sqsubseteq \exists r.B', \exists r.B' \sqsubseteq B\}, \mathcal{T}_2 = \{A \sqsubseteq B\}, \Sigma = \{A, B\}$. Then $\mathcal{T}_1 \equiv_{\Sigma}^{\mathcal{EL}} \mathcal{T}_2$ but $\mathcal{T}_1 \not\equiv_{\Sigma \cup \{r\}}^{\mathcal{EL}} \mathcal{T}_2$. Example: Let $\mathcal{T}_1 = \{A \sqsubseteq \neg B\}, \mathcal{T}_2 = \emptyset, \Sigma = \{A, B\}$. Then $\mathcal{T}_1 \equiv_{\Sigma}^{\mathcal{EL}} \mathcal{T}_2$ but $\mathcal{T}_1 \not\equiv_{\Sigma}^{\mathcal{ALC}} \mathcal{T}_2$. $\sim \mathcal{T}_1 \equiv_{\Sigma}^{\mathcal{QL}} \mathcal{T}_2 \Leftrightarrow \mathcal{T}_1, \mathcal{T}_2$ have same functionality w.r.t. (\mathcal{QL}, \bigvee)

Inseparability w.r.t. second-order logic (SO)

Theorem ([Konev, Lutz, Walther, Wolter, 2009])

Let \mathcal{T}_1 and \mathcal{T}_2 be finite sets of SO-sentences and Σ a signature. Then the following are equivalent:

- The last condition means: The restrictions to Σ of all models of \mathcal{T}_1 and all models of \mathcal{T}_2 coincide.
- Proof omitted, rather straightforward
- Why SO?
 - contains all established ontology languages (DLs, FO)
 - expressive enough to describe FO-interpretations (up to isomorphism)

Conservative extensions in DLs

- Restrict ourselves to description logics L
 and to QL_L = {C ⊑ D | C, D are L-concepts}
- \bullet generalisation to arbitrary $\mathcal L$ and $\mathcal{QL}_{\mathcal L}$ below SO is easy

Definition

Let \mathcal{M}, \mathcal{O} be TBoxes (finite sets of sentences). Then

- O is a deductive Σ-conservative extension of M in QL_L if M ⊆ O, and M and O are Σ-inseparable w.r.t. QL_L

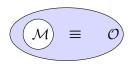
Consequence:

 $\begin{array}{l} (2') \ \mathcal{O} \ \text{is a model } \Sigma\text{-conservative extension of } \mathcal{M} \\ \text{iff } \mathcal{M} \ \text{and } \mathcal{O} \ \text{are } \Sigma\text{-inseparable w.r.t. SO} \end{array}$

Thomas Schneider, Dirk Walther

Summary: notion of a module

 $\begin{array}{l} \mathcal{M} \text{ is a module of } \mathcal{O} \text{ for } (\Sigma, \mathcal{QL}) \\ \Leftrightarrow \ \mathcal{M} \subseteq \mathcal{O} \text{ and } \mathcal{M}, \mathcal{O} \text{ have the same functionality} \\ \Leftrightarrow \ \mathcal{M} \subseteq \mathcal{O}, \text{ and } \mathcal{M} \text{ and } \mathcal{O} \text{ are } \Sigma \text{-inseparable w.r.t. } \mathcal{QL} \\ \Leftrightarrow \ \mathcal{O} \text{ is a deductive } \Sigma \text{-conservative extension of } \mathcal{M} \end{array}$



Important questions

- How to compute modules?
 - \rightsquigarrow boils down to:
- Can we automatically decide whether two theories are inseparable?

Thomas Schneider, Dirk Walther

Big, sad theorem ③

Theorem

- Deciding Σ -inseparability of \mathcal{EL} -TBoxes w.r.t. $\mathcal{QL}_{\mathcal{EL}}$ is ExpTIME-complete. [Lutz and Wolter 2010]
- Deciding Σ-inseparability of ALC-TBoxes w.r.t. QL_{ALC} is 2ExpTIME-complete. [Konev, Lutz, Walther, Wolter 2008]
- Deciding Σ-inseparability of *EL*-TBoxes w.r.t. SO is undecidable. [Lutz and Wolter 2010]

What do we do now?

- Give up? No, modules are too important!
- Drop inseparability? No, safety etc. are too important!
- Approximate? Yes, but from the right direction!

Please bear with us ③

until we've introduced a few more central notions.

21

And now ...

(2) Logical foundations of safety and coverage

3 Logical guarantees in detail

... over to Thomas! ...

