Modularity in Ontologies: Module extraction and its logical foundations (Part B)

*Thomas Schneider*¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 13 August 2013

And now ...

2 Overview of the remainder of this course

Reminder

Safety

Concerns the usage of (imported) terms in the importing ontology: Let JRA, GeneticDisorder \in sig(*NCI*). $JRAO \cup NCI \models$ JRA \sqsubseteq GeneticDisorder iff $NCI \models$ JRA \sqsubset GeneticDisorder

Does this sound like inseparability? We want: $JRAO \cup NCI \equiv$ "the imported terms" NCI

Reminder

Independence

Concerns preservation of safety:

If JRAO is safe for Galen and for NCI, then

- JRAO ∪ NCI-module is still safe for Galen and
- $JRAO \cup Galen-module$ is still safe for NCI.

Reminder

Coverage

```
Concerns what we would consider a module:
```

```
Let JRA, GeneticDisorder \in sig(NCI).
```

```
JRAO \cup NCI \models JRA \sqsubseteq GeneticDisorder
iff
JRAO \cup NCI-module \models JRA \sqsubseteq GeneticDisorder
```

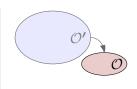
Does this sound like inseparability? We want: $JRAO \cup NCI \equiv$ "the imported terms" $JRAO \cup NCI$ -module

Safety guarantee in detail

Safety for an ontology

 \mathcal{O} imports \mathcal{O}' in an \mathcal{L} -safe way (or \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L})

if
$$\mathcal{O} \cup \mathcal{O}' \equiv_{\operatorname{sig}(\mathcal{O}')}^{\mathcal{L}} \mathcal{O}'.$$



Intuition: $\mathcal{O} \cup \mathcal{O}'$ doesn't change the *meaning* of \mathcal{O}' -terms observable in \mathcal{L} .

Problems

- Which $\mathcal L$ to choose?
 - for ontology design: subsumptions betw. (complex?) concepts
 - for ontology usage: my favourite query language
- We might not have control over \mathcal{O}' and $\operatorname{sig}(\mathcal{O}')$

 $\mathcal{O}' = \mathit{NCI}$ might change over time, we want latest version

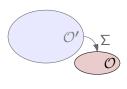
Solution: Safety for a signature!

Safety for a signature

Definition

 \mathcal{O} is safe for Σ w.r.t. \mathcal{L} if,

for every \mathcal{L} -ontology \mathcal{O}' with $\operatorname{sig}(\mathcal{O}) \cap \operatorname{sig}(\mathcal{O}') \subseteq \Sigma$, $\mathcal{O} \cup \mathcal{O}' \equiv \frac{\mathcal{L}}{\Sigma} \mathcal{O}'$.



 $(\mathcal{O} \equiv^{\mathrm{SO}}_{\Sigma} \emptyset),$

Theorem

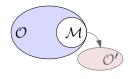
- If \mathcal{O} is a model Σ -conservative extension of \emptyset then \mathcal{O} is safe for Σ w.r.t. any $\mathcal{L} \leq SO$.
- Under certain assumptions: \mathcal{O} is safe for Σ w.r.t. \mathcal{L} iff $\mathcal{O} \equiv_{\Sigma}^{\mathcal{L}} \emptyset$.

Coverage guarantee in detail

Module for an ontology

 $\mathcal{M}\subseteq \mathcal{O}$ is a module for \mathcal{O}' in \mathcal{O} w.r.t. $\mathcal L$ if

 $\mathcal{O}' \cup \mathcal{O} \equiv^{\mathcal{L}}_{\mathsf{sig}(\mathcal{O}')} \mathcal{O}' \cup \mathcal{M}.$

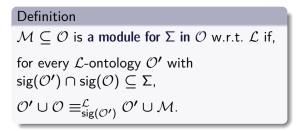


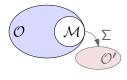
Intuition: $\mathcal{O}' \cup \mathcal{M}$ says as much about the \mathcal{O}' -terms as $\mathcal{O}' \cup \mathcal{O}$ (observable in \mathcal{L})

Problems

- Which \mathcal{L} to choose?
 - for ontology design: subsumptions betw. (complex?) concepts
 - for ontology usage: my favourite query language
- The module shouldn't depend on the importing ontology, but only on the signature we want to use.

Module for a signature





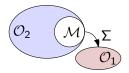
Observation

• If $\mathcal{M} \subseteq \mathcal{O}$ and \mathcal{O} is a model Σ -c.e. of \mathcal{M} $(\mathcal{O} \equiv_{\Sigma}^{SO} \mathcal{M})$, then \mathcal{M} is a module for Σ in \mathcal{O} w.r.t. any $\mathcal{L} \leq SO$

Modules and Safety are closely related

The following is immediate from the previous definitions.

Homework: Prove.



Let $\mathcal{O}_1, \ \mathcal{M} \subseteq \mathcal{O}_2$ be ontologies in \mathcal{L} and Σ a signature. Then

- If O₂ \ M is safe for Σ ∪ sig(M) w.r.t. L, then M is a Σ-module in O₂ w.r.t. L
 O₂ \ M doesn't constrain interpretation of terms from Σ ∪ sig(M)

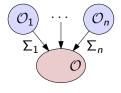
Independence Guarantee in Detail

Basic requirement for importing ontologies independently.

Independence

Safety is preserved under imports:

If \mathcal{O} is safe for Σ_i (\mathcal{O}_i), then $\mathcal{O} \cup \mathcal{O}_j$ is still safe for Σ_i (\mathcal{O}_i).



Independence is difficult to guarantee ...

• when the Σ_i share terms:

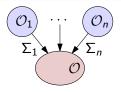
e.g., $\mathcal{O} = \{A \sqsubseteq \top\}$ is safe for $\Sigma = \{A, B\}$, but $\mathcal{O} \cup \{A \sqsubseteq B\}$ is *not safe* for Σ

• when the Σ_i don't share terms:

e.g.,
$$\mathcal{O} = \{A \sqsubseteq B\}$$
 is safe for $\Sigma_2 = \{A\}$ and $\Sigma_3 = \{B\}$,
but $\mathcal{O} \cup \{B \equiv \bot\}$ is not safe for Σ_2
and $\mathcal{O} \cup \{A \equiv \top\}$ is not safe for Σ_3

Problems to solve for supporting Ontology Engineering

Given "our" ontology Oand ontologies O_i from which we want to reuse terms Σ_i ,



- make sure that \mathcal{O} is safe for Σ_i
- **2** determine modules for Σ_i from $\mathcal{O} \rightsquigarrow$ but which?
 - (a) Did engineer "forget something" when specifying Σ_i ?
 - (b) Should modules be as small as possible?
 - (c) Even minimal modules are not unique (see next slide) \rightsquigarrow which one to use?
- **③** add modules \mathcal{M}_i to \mathcal{O}
 - (a) static/call-by-value: determine and add \mathcal{M}_i
 - (b) dynamic/call-by-name: always use "freshest" $M_i \rightarrow how$? (We need to provide mechanisms/syntax for this.)

Example

Let $\Sigma = \{ Knee, HingeJoint \}$. Suppose *Galen* contains:

Knee ≡ Joint ⊓ ∃hasPart.Patella ⊓	(1)
$\exists hasFunct.Hinge$	
Patella ⊑ Bone ⊓ Sesamoid	(2)
$Ginglymus \equiv Joint \sqcap \exists hasFunct.Hinge$	(3)
$Joint \sqcap \exists hasPart.(Bone \sqcap Sesamoid) \sqsubseteq Ginglymus$	(4)
$Ginglymus\equivHingeJoint$	(5)
$Meniscus \equiv FibroCartilage \sqcap \exists locatedIn.Knee$	

 \subseteq -Minimal module for Σ ? $\{(1), (2), (4), (5)\}$ and $\{(1), (3), (5)\}$

Note that a module for $\boldsymbol{\Sigma}$ does not necessarily contain

- $\bullet\,$ only axioms that use terms from $\Sigma\,$
- $\bullet\,$ all axioms that use terms from $\Sigma\,$

Bad news for expressive ontology languages?

Big, sad theorem

Let $\mathcal{O}_1, \ \mathcal{M} \subseteq \mathcal{O}_2$ be ontologies in \mathcal{L} and Σ a signature.

• Determining whether \mathcal{O}_1 is safe for \mathcal{O}_2 w.r.t. \mathcal{L} or whether \mathcal{M} is a module for \mathcal{O}_1 in \mathcal{O}_2 w.r.t. \mathcal{L} is

ExpTime-completefor $\mathcal{L} = \mathcal{EL}$,2ExpTime-completefor $\mathcal{L} = \mathcal{ALC}, \mathcal{ALCQI}$, andundecidablefor $\mathcal{L} = \mathcal{ALCQIO}$ (almost OWL)

undecidable w.r.t. $\mathcal{L} = \mathcal{ALCO}$ (even if \mathcal{O}_1 is in \mathcal{ALC}).

[Konev, Lutz, Walther, Wolter 2009] [Lutz and Wolter 2010]

Consequences for safety/modules of expressive DLs

Deciding safety/modules is highly complex or even undecidable for expressive DLs.

What to do?

- Give up? No: modules/safety clearly too important
- Provide the second s
- Approximate for expressive logics? Yes but from the right direction!

Tomorrow:

- $\textcircled{O} \mathsf{MEX} \mathsf{ modules} \mathsf{ for a fragment of } \mathcal{EL}$
- 2 approximations, i.e., sufficient conditions for safety based on semantic and syntactic locality

And now ...

2 Overview of the remainder of this course

Course overview

Module extraction

- Efficient module notions (locality, MEX)
- Module extraction algorithms and tools
- Occomposing ontologies
 - Atomic decomposition
- Selated notions and recent advances
 - Forgetting and interpolation
 - Logical difference
 - Reachability-based modules
 - Incremental/modular reasoning

