Modularity in Ontologies: Module extraction: approaches, tools

*Thomas Schneider*¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 14 August 2013

Thomas Schneider, Dirk Walther

Reminder of yesterday's lecture

Deciding safety/modules is highly complex or even undecidable for expressive DLs.

What to do?

- Give up? No: modules/safety clearly too important
- Reduce expressivity of logic? Yes!
- Approximate for expressive logics? Yes but from the *right* direction!

Today, we will discuss

- 2 approximations, i.e., sufficient conditions for safety based on semantic and syntactic locality
- \bullet MEX modules for a fragment of \mathcal{EL}
- tool support for module extraction 🍂
- the relation between these module notions

Plan for today

Locality and locality-based modules

2 Tool support

Thanks: Parts 1+2 based on slides by Uli Sattler and Frank Wolter.

Thomas Schneider, Dirk Walther

Modularity: Module extraction

And now ...

Locality and locality-based modules

Testing safety using locality

$$\begin{array}{c} \mathcal{O} \text{ is } \Sigma \text{-safe w.r.t. any } \mathcal{L} \\ \quad \text{if} \\ \mathcal{O} \text{ is a model } \Sigma \text{-conservative extension of } \emptyset \\ \quad \text{iff} \\ \text{for each } \mathcal{I}, \text{ there is } \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \\ \quad \text{if} \\ \forall \mathcal{I} \exists \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{J}} = \emptyset, \forall X \notin \Sigma \\ \quad \text{iff} \\ \forall \mathcal{I} \exists \mathcal{J} \forall \alpha \in \mathcal{O} : \mathcal{J} \models \alpha \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{J}} = \emptyset, \forall X \notin \Sigma \\ \quad \text{iff} \\ \forall \mathcal{I} \forall \alpha \in \mathcal{O} \exists \mathcal{J} : \mathcal{J} \models \alpha \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{J}} = \emptyset, \forall X \notin \Sigma \\ \quad \text{iff} \\ \forall \alpha \in \mathcal{O} : \underbrace{``\alpha \text{ with all } X \notin \Sigma \text{ replaced by } \bot`` \text{ is a tautology} \\ \alpha \text{ is } \emptyset \text{-local w.r.t. } \Sigma \end{array}$$

Testing locality

Ergo: \mathcal{O} is Σ -safe w.r.t. any \mathcal{L} if: for each $\alpha \in \mathcal{O}$ and each \mathcal{I} where all $r, A \notin \Sigma$ are interpreted as \emptyset , we have $\mathcal{I} \models \alpha$.

Algorithm for testing locality Input: Σ , \mathcal{O} \mathcal{ALC} -TBox For each $C_1 \sqsubseteq C_2 \in \mathcal{O}$ with C_i in NNF, construct C'_i from C_i by replacing all $A \notin \Sigma$ with \bot replacing all $\exists r.C$ with $r \notin \Sigma$ with \bot replacing all $\forall r.C$ with $r \notin \Sigma$ with \top If $C'_1 \sqcap \neg C'_2$ is satisfiable % can find countermodel then return "probably not safe" Return "safe"

Answers "safe" if \mathcal{O} is Σ -safe w.r.t. \mathcal{ALC} ; extensible to more expressive DLs

Dual notion of locality

Analogously: \mathcal{O} is Σ -safe w.r.t. any \mathcal{L} if: for each $\alpha \in \mathcal{O}$ and each \mathcal{I} where all $r, A \notin \Sigma$ are interpreted as Δ , we have $\mathcal{I} \models \alpha$.

Algorithm for testing locality
Input: $\Sigma, \mathcal{O} \ \mathcal{ALC}\text{-TBox}$
For each $C_1 \sqsubseteq C_2 \in \mathcal{O}$ with C_i in NNF, construct C'_i from C_i by replacing all $A \notin \Sigma$ with \top replacing all $\exists r. \top$ with $r \notin \Sigma$ with \top replacing all $\forall r. \bot$ with $r \notin \Sigma$ with \bot If $C'_1 \sqcap \neg C'_2$ is satisfiable % can find countermodel then return "probably not safe"
Return "safe"

Answers "safe" if ${\cal O}$ is $\Sigma\text{-safe}$ w.r.t. ${\cal ALC};$ extensible to more expressive DLs

Testing locality

Both variants of our algorithm decide Σ -safety.

But:

- Both locality notions only approximate Σ-safety. (see all highlighted "if"s)
- We still need to perform reasoning: for each axiom α, test satisfiability of C'₁ □ ¬C'₂
 - \bullet Testing satisfiability in \mathcal{ALC} is ExpTime-complete!
 - Testing satisfiability in \mathcal{SROIQ} is N2ExpTime-complete!
 - There are highly optimised reasoners available, but optimised largely for classification.
- **Q**: Isn't there a **cheaper** approximation?
- A: We can use syntactic approximation of locality!

Locality

Tool support

Syntactic approximation of locality

- Define sets $\mathcal{C}^{\emptyset}, \mathcal{C}^{\Delta}$ of \perp -equivalent and \top -equivalent concepts:
 - $\begin{array}{ll} \text{if } A \notin \Sigma, & \text{then } A \in \mathcal{C}^{\emptyset} & \top \in \mathcal{C}^{\Delta} \\ \text{if } C \in \mathcal{C}^{\Delta}, & \text{then } \neg C \in \mathcal{C}^{\emptyset} & \text{if } C \in \mathcal{C}^{\emptyset}, & \text{then } \neg C \in \mathcal{C}^{\Delta} \\ \text{if } C \in \mathcal{C}^{\emptyset}, & \text{then } C \sqcap D \in \mathcal{C}^{\emptyset} & \text{if } C, D \in \mathcal{C}^{\Delta}, & \text{then } C \sqcap D \in \mathcal{C}^{\Delta} \\ \text{if } C \in \mathcal{C}^{\emptyset}, & \text{then } \exists r. C \in \mathcal{C}^{\emptyset} & \text{(minimal rule set for } \mathcal{ALC} \end{array}$
- Axiom α = (C ⊑ D) is syntactically Σ-local if C ∈ C^Ø or D ∈ C^Δ
- Ontology \mathcal{O} is syntactically Σ -local if all $\alpha \in \mathcal{O}$ are

Theorem

Syntactic $\Sigma\text{-locality}$ implies semantic $\Sigma\text{-locality}$ implies $\Sigma\text{-safety}$

[Cuenca Grau et al. 2009]

Thomas Schneider, Dirk Walther

Exercise: which of these axioms are syntactically local?

 $(A, B, C: \text{ atomic concepts}; \overline{X} \text{ means } X \in \Sigma)$

 $\overline{B} \sqsubseteq A \qquad B \notin \mathcal{C}^{\emptyset}, A \notin \mathcal{C}^{\Delta} \rightsquigarrow \text{ not } \{\overline{B}, \dots\}\text{-local}$ $A \sqsubseteq \overline{B} \sqcap \exists r.\overline{C} \qquad A \in \mathcal{C}^{\emptyset} \rightsquigarrow \{\overline{B}, \overline{C}\}\text{-local}$ $X \sqcap A \sqsubseteq Y \qquad \text{ is } \Sigma\text{-local whenever } A \notin \Sigma$ $\overline{B} \sqcap \exists r.\overline{C} \sqsubseteq A \qquad B \sqcap \exists r.C \in \mathcal{C}^{\emptyset} \rightsquigarrow \{\overline{B}, \overline{C}\}\text{-local}$ $\overline{A} \sqsubseteq \overline{A} \sqcup \overline{B} \qquad \text{ is not } \{\overline{A}, \overline{B}\}\text{-local, yet a tautology!}$

Reminder

 α

if
$$A \notin \Sigma$$
, then $A \in C^{\emptyset}$ $\top \in C^{\Delta}$
if $C \in C^{\Delta}$, then $\neg C \in C^{\emptyset}$ if $C \in C^{\emptyset}$, then $\neg C \in C^{\Delta}$
if $C \in C^{\emptyset}$, then $C \sqcap D \in C^{\emptyset}$ if $C, D \in C^{\Delta}$, then $C \sqcap D \in C^{\Delta}$
if $C \in C^{\emptyset}$, then $\exists r. C \in C^{\emptyset}$
if $r \notin \Sigma$, then $\exists r. C \in C^{\emptyset}$
 $= (C \sqsubset D)$ is syntactically Σ -local if $C \in C^{\emptyset}$ or $D \in C^{\Delta}$

Back to our real example

In JRAO, we can reuse

 $\{\overline{\text{Arthritis}}, \overline{\text{Joint}}, \overline{\text{Knee}}\}$

and "syntactically safely" write:

 $JRA \equiv \overline{Arthritis} \sqcap \exists affects.(\overline{Joint} \sqcap \exists located ln.Juvenile)$ $KJRA \equiv JRA \sqcap \exists affects.\overline{Knee}$

- → We can safely reference and **refine** existing terms from *NCI* and *Galen*.
 - What if we want to **generalise** terms? Then use different syntactic locality: dual notion

Tool support

Summary

Locality for modules

Remember: If $\mathcal{O}_2 \setminus \mathcal{M}$ is safe for $\Sigma \cup sig(\mathcal{M})$ w.r.t. \mathcal{L} , then \mathcal{M} is a Σ -module in \mathcal{O}_2 w.r.t. \mathcal{L} .

 \rightsquigarrow poly-time algorithm to compute a $\Sigma\text{-module}$ in $\mathcal{O}_2\text{:}$

$\begin{array}{l} \mbox{Algorithm} \\ \mbox{Input: Sig. } \Sigma, \ \mbox{TBox } \mathcal{O} \\ \mathcal{M} \leftarrow \emptyset, \ \ \Sigma_+ \leftarrow \Sigma \\ \mbox{Repeat } \Sigma_{\text{prev}} \leftarrow \Sigma_+ \\ & \mbox{For each } \alpha \in \mathcal{O} \setminus \mathcal{M} \\ & \mbox{If } \alpha \ \mbox{not } \Sigma_+ \mbox{-safe, then add } \alpha \ \mbox{to } \mathcal{M} \ \mbox{and sig}(\alpha) \ \mbox{to } \Sigma_+ \\ \mbox{Until } \Sigma_{\text{prev}} = \Sigma_+ \\ \mbox{Return } \mathcal{M} \end{array}$

Observation: \mathcal{M} is a Σ_+ -module in \mathcal{O} and therefore a Σ -module (since $\Sigma \subseteq \Sigma_+$ – we need some anti-monotonicity here) Example: see blackboard

Thomas Schneider, Dirk Walther

Modularity: Module extraction

Locality

Variations to the module extraction algorithm

- Different safety checks, based on locality, lead to different notions of a locality-based modules:
 - semantic locality \rightsquigarrow "Ø-modules"
 - dual notion \rightsquigarrow " Δ -modules"
 - syntactic locality (\perp -locality) $\rightsquigarrow \perp$ -modules
 - dual notion (T-locality) \rightsquigarrow T-modules
 - Remember: the first two require reasoning (often intractable), while a syntactic locality check is tractable!
- Smaller modules by nesting $\top-$ and $\bot-module$ extraction: $\top\bot^*\text{-modules}$
- More efficient extraction of (semantic) Ø- and Δ-modules: start with extracting a ⊥- or ⊤-module

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (1) Your axiom might violate locality, but not safety. (Remember: locality *approximates* safety.)
 - \rightsquigarrow Call 0800-inseparability,

ask your favourite logician to decide whether the axiom is safe.

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (2) Your axiom violates safety? Do you have a good reason to write it? If yes, keep it, but be aware that you've amended the topic!

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (3) Want to repair a non-local axiom?
 - Delete it.
 - Modify it:

Bird ⊑ Flies	\sim	Bird □ ¬Penguin ⊑ Flies
Bird 🔄 Flies	\rightsquigarrow	Bird 드 Flies 🗆 Penguin

• Explanations ...

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (4) Prescriptive/analytic safety checking

Pitfall 2: independence

 Required property: If O₁ is safe for Σ₂ and Σ₃, then O₁ ∪ O₂ should be safe for Σ₃.

- Difficult to achieve prescriptively: only holds under restrictive preconditions
- Advice: treat independence analytically.

Locality

Pitfall 3: specifying the topic

- Ask 0800-domainexpert for a list of terms.
- Browse through the class hierarchy and find suitable terms.
- Shopping for symbols:

- Select terms.
- Get a preview of the module.
- If you're satisfied, check out the module.
- Prototype: Hancock, to be shown later

Summary: locality

- Safety and economy/coverage are important guarantees (not only) for reuse.
- They can be defined using inseparability.
- They can be approximated using locality.
- Modules based on syntactic locality can be extracted efficiently in logics up to OWL.
- Determining a signature for a module is still a non-trivial task.

And now ...

Overview

What there is

- Command line tool for extracting MEX modules http://cgi.csc.liv.ac.uk/~konev/software/
- Java libraries for extracting locality-based mod.s in OWL API http://owlapi.sourceforge.net/
- Web module extractor for locality-based modules http://owl.cs.manchester.ac.uk/modularity
- Prototype of module extraction GUI: Hancock (not publicly available, but on ESSLLI Wiki soon)

What there isn't

• A Protégé plugin that fully supports the specification of the signature

And now ...

2 Tool support

Summary and outlook

- Safety and economy/coverage are important guarantees (not only) for reuse.
- Modules based on syntactic locality can be extracted efficiently in logics up to OWL, and are often close to minimal. ⇒ Thursday
- Modules based on MEX can be extracted efficiently from acyclic *ELI* ontologies.
- There is tool support for extracting modules. http://owl.cs.manchester.ac.uk/modularity http://owlapi.sourceforge.net/
- Tool support for checking safety and determining seed signatures is still needed.

Course overview

Module extraction

- MEX modules
- Comparison

Decomposing ontologies

- Atomic decomposition
- Selated notions and recent advances
 - Forgetting and interpolation
 - Logical difference
 - Incremental/modular reasoning

Semantic vs. syntactic LBMs: affected ontologies (1)

Ontology	Abbreviation	DL expressivity	#axioms	#terms
MiniTambis-repaired	MiniT	ALCN	170	226
Tambis-full	Tambis	SHIN(D)	592	496
Bleeding History Phenotype	BHO	$\mathcal{ALCIF}(\mathcal{D})$	1,925	581
Neuro Behavior Ontology	NBO	\mathcal{AL}	1,314	970
Pharmacogenomic Relationsh	PhaRe	$\mathcal{ALCHIF}(\mathcal{D})$	459	311
Terminological and Ontological	ТОК	SRIQ(D)	466	330

Table 1. Ontologies that exhibit differences in modules

Semantic vs. syntactic LBMs: affected ontologies (2)

Ontol.	Types	#diffs	size of diffs		size of $\Delta \emptyset^*$ -modules				culprit	
	affected		#axs	(rel.)	T1 (%) $T2$			type		
					range	avg.	range	avg.	+ fr	eq.
miniT	bot, nested	14 - 25%	1-7	$0-600\%^{ m b}$	48 - 79	66	0-8	2	c	3
Tambis	bot, nested	32 - 57%	$2-41^{c}$	$1-62\%^{c}$	75 - 88	82	0-34	9	c	8
BH0 ^a	nested	17%	1 - 12	0 - 300%	55 - 72	65	0 - 31	4	b	31
NBO^{a}	nested	3%	2	0 - 200%	64 - 78	71	0 - 3	0	d	3
$PhaRe^{\mathrm{a}}$	top, nested	1 - 8%	$1 - 326^{d}$	$0\!-\!6,\!520\%^{\rm d}$	50 - 70	60	0–8	1	d	10
ток	top, nested	49100%	1 - 7	0 - 9%	48 - 68	59	9 - 17	10	d	3

^adifferences only for genuine modules

^bdifferences > 5% only for genuine modules

^cdifferences > 11 axioms (> 2%) only for genuine modules

 $^{\rm d}$ differences > 13 axioms (> 1,300%) only for top-modules

 Δ -modules cannot always be extracted using DL reasoners:

- Remember locality check: replace non- Σ symbols with \top and test for tautology
- Global restrictions of SROIQ don't allow ⊤-role in number restrictions or role chains
- This affects some 40 ontologies in our corpus