
Locality Tool support Summary

Modularity in Ontologies:
Module extraction: approaches, tools

Thomas Schneider 1 Dirk Walther2

1Department of Computer Science, University of Bremen, Germany

2Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 14 August 2013

Thomas Schneider, Dirk Walther Modularity: Module extraction 1

Locality Tool support Summary

Reminder of yesterday’s lecture
Deciding safety/modules is highly complex or even undecidable
for expressive DLs.

What to do?
1 Give up? No: modules/safety clearly too important
2 Reduce expressivity of logic? Yes!
3 Approximate for expressive logics? Yes – but from the right

direction!

Today, we will discuss
2 approximations, i.e., sufficient conditions for safety
based on semantic and syntactic locality
MEX modules for a fragment of EL
tool support for module extraction
the relation between these module notions

Thomas Schneider, Dirk Walther Modularity: Module extraction 2

Locality Tool support Summary

Plan for today

1 Locality and locality-based modules

2 Tool support

3 Summary and outlook

Thanks: Parts 1+2 based on slides by Uli Sattler and Frank Wolter.

Thomas Schneider, Dirk Walther Modularity: Module extraction 3

Locality Tool support Summary

And now . . .

1 Locality and locality-based modules

2 Tool support

3 Summary and outlook

Thomas Schneider, Dirk Walther Modularity: Module extraction 4

Locality Tool support Summary

Testing safety using locality

Remember:

O is Σ-safe w.r.t. any L
if

O is a model Σ-conservative extension of ∅
iff

for each I, there is J |= O with I|Σ = J |Σ
if

∀I ∃J |= O with I|Σ = J |Σ and XJ = ∅, ∀X /∈ Σ
iff

∀I ∃J ∀α ∈ O : J |= α and I|Σ = J |Σ and XJ = ∅, ∀X /∈ Σ
iff

∀I ∀α ∈ O ∃J : J |= α and I|Σ = J |Σ and XJ = ∅, ∀X /∈ Σ
iff

∀α ∈ O : “α with all X /∈ Σ replaced by ⊥” is a tautology︸ ︷︷ ︸
α is ∅-local w.r.t. Σ

Thomas Schneider, Dirk Walther Modularity: Module extraction 5

Locality Tool support Summary

Testing locality
Ergo: O is Σ-safe w.r.t. any L if:
for each α ∈ O and each I where all r ,A /∈ Σ are interpreted as ∅,
we have I |= α.

Algorithm for testing locality
Input: Σ, O ALC-TBox
For each C1 v C2 ∈ O with Ci in NNF, construct C ′i from Ci by

replacing all A /∈ Σ with ⊥
replacing all ∃r .C with r /∈ Σ with ⊥
replacing all ∀r .C with r /∈ Σ with >
If C ′1 u ¬C ′2 is satisfiable % can find countermodel

then return “probably not safe”
Return “safe”

Answers “safe” if O is Σ-safe w.r.t. ALC;
extensible to more expressive DLs

Thomas Schneider, Dirk Walther Modularity: Module extraction 6

Locality Tool support Summary

Dual notion of locality
Analogously: O is Σ-safe w.r.t. any L if:
for each α ∈ O and each I where all r ,A /∈Σ are interpreted as ∆,
we have I |= α.

Algorithm for testing locality
Input: Σ, O ALC-TBox
For each C1 v C2 ∈ O with Ci in NNF, construct C ′i from Ci by

replacing all A /∈ Σ with >
replacing all ∃r .> with r /∈ Σ with >
replacing all ∀r .⊥ with r /∈ Σ with ⊥
If C ′1 u ¬C ′2 is satisfiable % can find countermodel
then return “probably not safe”

Return “safe”

Answers “safe” if O is Σ-safe w.r.t. ALC;
extensible to more expressive DLs

Thomas Schneider, Dirk Walther Modularity: Module extraction 7

Locality Tool support Summary

Testing locality

Both variants of our algorithm decide Σ-safety.

But:

Both locality notions only approximate Σ-safety.
(see all highlighted “if”s)

We still need to perform reasoning:
for each axiom α, test satisfiability of C ′1 u ¬C ′2

Testing satisfiability in ALC is ExpTime-complete!
Testing satisfiability in SROIQ is N2ExpTime-complete!
There are highly optimised reasoners available,
but optimised largely for classification.

Q: Isn’t there a cheaper approximation?

A: We can use syntactic approximation of locality!

Thomas Schneider, Dirk Walther Modularity: Module extraction 8

Locality Tool support Summary

Syntactic approximation of locality

Define sets C∅, C∆ of ⊥-equivalent and >-equivalent concepts:
if A /∈ Σ, then A ∈ C∅ > ∈ C∆

if C ∈ C∆, then ¬C ∈ C∅ if C ∈ C∅, then ¬C ∈ C∆

if C ∈ C∅, then C u D ∈ C∅ if C ,D ∈ C∆, then C u D ∈ C∆

if C ∈ C∅, then ∃r .C ∈ C∅

if r /∈ Σ, then ∃r .C ∈ C∅ (minimal rule set for ALC)

Axiom α = (C v D) is syntactically Σ-local
if C ∈ C∅ or D ∈ C∆

Ontology O is syntactically Σ-local if all α ∈ O are

Theorem
Syntactic Σ-locality implies semantic Σ-locality implies Σ-safety

[Cuenca Grau et al. 2009]
Thomas Schneider, Dirk Walther Modularity: Module extraction 9

Locality Tool support Summary

Exercise: which of these axioms are syntactically local?
(A,B,C : atomic concepts; X means X ∈ Σ)

B v A B /∈ C∅, A /∈ C∆ ; not {B, . . . }-local
A v B u ∃r .C A ∈ C∅ ; {B, C}-local

X u A v Y is Σ-local whenever A /∈ Σ

B u ∃r .C v A B u ∃r .C ∈ C∅ ; {B,C}-local
A v A t B is not {A,B}-local, yet a tautology!

Reminder
if A /∈ Σ, then A ∈ C∅ > ∈ C∆

if C ∈ C∆, then ¬C ∈ C∅ if C ∈ C∅, then ¬C ∈ C∆

if C ∈ C∅, then C u D ∈ C∅ if C ,D ∈ C∆, then C u D ∈ C∆

if C ∈ C∅, then ∃r .C ∈ C∅

if r /∈ Σ, then ∃r .C ∈ C∅

α = (C v D) is syntactically Σ-local if C ∈ C∅ or D ∈ C∆

Thomas Schneider, Dirk Walther Modularity: Module extraction 10

Locality Tool support Summary

Back to our real example

NCI

JRAO Galen

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy

In JRAO, we can reuse

{Arthritis, Joint,Knee}

and “syntactically safely” write:

JRA ≡ Arthritis u ∃affects.(Joint u ∃locatedIn.Juvenile)

KJRA ≡ JRA u ∃affects.Knee

; We can safely reference and refine existing terms
from NCI and Galen.
What if we want to generalise terms?
Then use different syntactic locality: dual notion

Thomas Schneider, Dirk Walther Modularity: Module extraction 11

Locality Tool support Summary

Locality for modules
Remember: If O2 \M is safe for Σ ∪ sig(M) w.r.t. L,
then M is a Σ-module in O2 w.r.t. L.
; poly-time algorithm to compute a Σ-module in O2:

Algorithm
Input: Sig. Σ, TBox O
M← ∅, Σ+ ← Σ
Repeat Σprev ← Σ+

For each α ∈ O \M
If α not Σ+-safe, then add α to M and sig(α) to Σ+

Until Σprev = Σ+

Return M

Observation: M is a Σ+-module in O and therefore a Σ-module
(since Σ ⊆ Σ+ – we need some anti-monotonicity here)
Example: see blackboard

Thomas Schneider, Dirk Walther Modularity: Module extraction 12

Locality Tool support Summary

Variations to the module extraction algorithm

Different safety checks, based on locality,
lead to different notions of a locality-based modules:

semantic locality ; “∅-modules”
dual notion ; ”∆-modules“
syntactic locality (⊥-locality) ; ⊥-modules
dual notion (>-locality) ; >-modules
Remember: the first two require reasoning (often intractable),
while a syntactic locality check is tractable!

Smaller modules by nesting >- and ⊥-module extraction:
>⊥∗-modules

More efficient extraction of (semantic) ∅- and ∆-modules:
start with extracting a ⊥- or >-module

Thomas Schneider, Dirk Walther Modularity: Module extraction 13

Locality Tool support Summary

Pitfall 1: what to do if safety is violated?

Q: Help, my tool found a non-local axiom! What shall I do?

A: There are several possibilities:

(1) Your axiom might violate locality, but not safety.
(Remember: locality approximates safety.)

; Call 0800-inseparability,
ask your favourite logician to decide whether the axiom is safe.

Thomas Schneider, Dirk Walther Modularity: Module extraction 14

Locality Tool support Summary

Pitfall 1: what to do if safety is violated?

Q: Help, my tool found a non-local axiom! What shall I do?

A: There are several possibilities:

(2) Your axiom violates safety?
Do you have a good reason to write it?
If yes, keep it, but be aware that you’ve amended the topic!

Thomas Schneider, Dirk Walther Modularity: Module extraction 14

Locality Tool support Summary

Pitfall 1: what to do if safety is violated?

Q: Help, my tool found a non-local axiom! What shall I do?

A: There are several possibilities:

(3) Want to repair a non-local axiom?

Delete it.

Modify it:

Bird v Flies ; Bird u ¬Penguin v Flies
Bird v Flies ; Bird v Flies t Penguin

Explanations . . .

Thomas Schneider, Dirk Walther Modularity: Module extraction 14

Locality Tool support Summary

Pitfall 1: what to do if safety is violated?

Q: Help, my tool found a non-local axiom! What shall I do?

A: There are several possibilities:

(4) Prescriptive/analytic safety checking . . .

Thomas Schneider, Dirk Walther Modularity: Module extraction 14

Locality Tool support Summary

Pitfall 2: independence

Required property: If O1 is safe for Σ2 and Σ3,
then O1 ∪ O2 should be safe for Σ3.

Difficult to achieve prescriptively:
only holds under restrictive preconditions
Advice: treat independence analytically.

Thomas Schneider, Dirk Walther Modularity: Module extraction 15

Locality Tool support Summary

Pitfall 3: specifying the topic

1,000,000 axioms

Which terms do I want to import?

Ask 0800-domainexpert for a list of terms.
Browse through the class hierarchy and find suitable terms.

Shopping for symbols:
Select terms.
Get a preview of the module.
If you’re satisfied, check out the module.

Prototype: Hancock, to be shown later

Thomas Schneider, Dirk Walther Modularity: Module extraction 16

Locality Tool support Summary

Summary: locality

Safety and economy/coverage are important guarantees
(not only) for reuse.

They can be defined using inseparability.

They can be approximated using locality.

Modules based on syntactic locality can be extracted
efficiently in logics up to OWL.

Determining a signature for a module is still a non-trivial task.

Thomas Schneider, Dirk Walther Modularity: Module extraction 17

Locality Tool support Summary

And now . . .

1 Locality and locality-based modules

2 Tool support

3 Summary and outlook

Thomas Schneider, Dirk Walther Modularity: Module extraction 18

Locality Tool support Summary

Overview

What there is

Command line tool for extracting MEX modules
http://cgi.csc.liv.ac.uk/~konev/software/

Java libraries for extracting locality-based mod.s in OWL API
http://owlapi.sourceforge.net/

I Web module extractor for locality-based modules
http://owl.cs.manchester.ac.uk/modularity

I Prototype of module extraction GUI: Hancock
(not publicly available, but on ESSLLI Wiki soon)

What there isn’t

A Protégé plugin that fully supports the specification of the
signature

Thomas Schneider, Dirk Walther Modularity: Module extraction 19

http://cgi.csc.liv.ac.uk/~konev/software/
http://owlapi.sourceforge.net/
http://owl.cs.manchester.ac.uk/modularity

Locality Tool support Summary

And now . . .

1 Locality and locality-based modules

2 Tool support

3 Summary and outlook

Thomas Schneider, Dirk Walther Modularity: Module extraction 20

Locality Tool support Summary

Summary and outlook

Safety and economy/coverage are important guarantees
(not only) for reuse.

Modules based on syntactic locality can be extracted
efficiently in logics up to OWL, and are often close to
minimal. ó Thursday

Modules based on MEX can be extracted efficiently from
acyclic ELI ontologies.

There is tool support for extracting modules.
http://owl.cs.manchester.ac.uk/modularity
http://owlapi.sourceforge.net/

Tool support for checking safety and determining seed
signatures is still needed.

Thomas Schneider, Dirk Walther Modularity: Module extraction 21

http://owl.cs.manchester.ac.uk/modularity
http://owlapi.sourceforge.net/

Locality Tool support Summary

Course overview

4 Module extraction
MEX modules
Comparison

Decomposing ontologies
Atomic decomposition

5 Related notions and recent advances
Forgetting and interpolation
Logical difference
Incremental/modular reasoning

Thomas Schneider, Dirk Walther Modularity: Module extraction 22

Semantic vs. syntactic LBMs: affected ontologies (1)

Di↵erences caused not solely by culprits of type a have been observed
for 27 ontologies. In only 6 of these cases, the di↵erences a↵ect modules; in the
remaining 20, they only a↵ect locality of single axioms (tests T1 a and T2 a). We
will focus on the former 6, listed in Table 1, and refer to [5] for details on all 27.

Ontology Abbreviation DL expressivity #axioms #terms

MiniTambis-repaired MiniT ALCN 170 226
Tambis-full Tambis SHIN (D) 592 496
Bleeding History Phenotype BHO ALCIF(D) 1,925 581
Neuro Behavior Ontology NBO AL 1,314 970
Pharmacogenomic Relationsh... PhaRe ALCHIF(D) 459 311
Terminological and Ontological... TOK SRIQ(D) 466 330

Table 1. Ontologies that exhibit di↵erences in modules

According to Table 1, di↵erences between modules occur for ontologies of
medium to large size and medium to high expressivity. Di↵erences in locality
alone additionally a↵ect small ontologies such as Koala (42 axioms) and Pilot
Ontology (85 axioms), as well as large ontologies such as Galen (4,735 axioms)
and Experimental Factor Ontology (7,156 axioms). The number of axioms causing
these di↵erences (i.e., matching the culprit patterns) in the a↵ected ontologies is
small except for Galen, and most of the observed di↵erences are relatively small.

Table 2 gives a representative selection of the di↵erences in modules observed,
plus the relative sizes of modules extracted for (T1) and (T2). For a complete
overview, including di↵erences in locality of single axioms, see the table in [5].

Ontol. Types #di↵s size of di↵s size of �;⇤-modules culprit
a↵ected #axs (rel.) T1 (%) T2 type

range avg. range avg. + freq.
miniT bot, nested 14–25% 1–7 0–600%b 48–79 66 0–8 2 c 3
Tambis bot, nested 32–57% 2–41c 1–62%c 75–88 82 0–34 9 c 8
BHOa nested 17% 1–12 0–300% 55–72 65 0–31 4 b 31
NBOa nested 3% 2 0–200% 64–78 71 0–3 0 d 3
PhaRea top, nested 1–8% 1–326d 0–6,520%d 50–70 60 0–8 1 d 10
TOK top, nested 49–100% 1–7 0–9% 48–68 59 9–17 10 d 3

adi↵erences only for genuine modules
bdi↵erences > 5% only for genuine modules
cdi↵erences > 11 axioms (> 2%) only for genuine modules
ddi↵erences > 13 axioms (> 1,300%) only for top-modules

The columns show: ontology name (abbreviations: see Table 1); type of modules af-
fected; relative number of module pairs with di↵erences; number of axioms in the
di↵erences (absolute and relative to the ;- or �- or �;⇤-case); type of culprit present
and number of axioms of this type involved in di↵erences.

Table 2. Overview of observed di↵erences between modules

Table 2 shows small absolute di↵erences for miniT, BHO, NBO, and TOK. In
Tambis, large di↵erences occur only for genuine modules. Finally, in PhaRe, large
di↵erences occur only for top-modules.

For all these ontologies, a single syntactic or semantic module was extracted
within only a few milliseconds, making module extraction times roughly equal.

Thomas Schneider, Dirk Walther Modularity: Module extraction 23

Semantic vs. syntactic LBMs: affected ontologies (2)

Di↵erences caused not solely by culprits of type a have been observed
for 27 ontologies. In only 6 of these cases, the di↵erences a↵ect modules; in the
remaining 20, they only a↵ect locality of single axioms (tests T1 a and T2 a). We
will focus on the former 6, listed in Table 1, and refer to [5] for details on all 27.

Ontology Abbreviation DL expressivity #axioms #terms

MiniTambis-repaired MiniT ALCN 170 226
Tambis-full Tambis SHIN (D) 592 496
Bleeding History Phenotype BHO ALCIF(D) 1,925 581
Neuro Behavior Ontology NBO AL 1,314 970
Pharmacogenomic Relationsh... PhaRe ALCHIF(D) 459 311
Terminological and Ontological... TOK SRIQ(D) 466 330

Table 1. Ontologies that exhibit di↵erences in modules

According to Table 1, di↵erences between modules occur for ontologies of
medium to large size and medium to high expressivity. Di↵erences in locality
alone additionally a↵ect small ontologies such as Koala (42 axioms) and Pilot
Ontology (85 axioms), as well as large ontologies such as Galen (4,735 axioms)
and Experimental Factor Ontology (7,156 axioms). The number of axioms causing
these di↵erences (i.e., matching the culprit patterns) in the a↵ected ontologies is
small except for Galen, and most of the observed di↵erences are relatively small.

Table 2 gives a representative selection of the di↵erences in modules observed,
plus the relative sizes of modules extracted for (T1) and (T2). For a complete
overview, including di↵erences in locality of single axioms, see the table in [5].

Ontol. Types #di↵s size of di↵s size of �;⇤-modules culprit
a↵ected #axs (rel.) T1 (%) T2 type

range avg. range avg. + freq.
miniT bot, nested 14–25% 1–7 0–600%b 48–79 66 0–8 2 c 3
Tambis bot, nested 32–57% 2–41c 1–62%c 75–88 82 0–34 9 c 8
BHOa nested 17% 1–12 0–300% 55–72 65 0–31 4 b 31
NBOa nested 3% 2 0–200% 64–78 71 0–3 0 d 3
PhaRea top, nested 1–8% 1–326d 0–6,520%d 50–70 60 0–8 1 d 10
TOK top, nested 49–100% 1–7 0–9% 48–68 59 9–17 10 d 3

adi↵erences only for genuine modules
bdi↵erences > 5% only for genuine modules
cdi↵erences > 11 axioms (> 2%) only for genuine modules
ddi↵erences > 13 axioms (> 1,300%) only for top-modules

The columns show: ontology name (abbreviations: see Table 1); type of modules af-
fected; relative number of module pairs with di↵erences; number of axioms in the
di↵erences (absolute and relative to the ;- or �- or �;⇤-case); type of culprit present
and number of axioms of this type involved in di↵erences.

Table 2. Overview of observed di↵erences between modules

Table 2 shows small absolute di↵erences for miniT, BHO, NBO, and TOK. In
Tambis, large di↵erences occur only for genuine modules. Finally, in PhaRe, large
di↵erences occur only for top-modules.

For all these ontologies, a single syntactic or semantic module was extracted
within only a few milliseconds, making module extraction times roughly equal.

Thomas Schneider, Dirk Walther Modularity: Module extraction 24

Semantic vs. syntactic LBMs: checking ∆-locality

∆-modules cannot always be extracted using DL reasoners:
Remember – locality check: replace non-Σ symbols with >
and test for tautology
Global restrictions of SROIQ don’t allow >-role in number
restrictions or role chains
This affects some 40 ontologies in our corpus

Thomas Schneider, Dirk Walther Modularity: Module extraction 25

	Appendix

