Modularity in Ontologies: MEX Modules

Thomas Schneider¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 15 August 2013

Modularity for Light-weight DLs

Logic-based modularity in light-weight DLs

- DL-Lite family
 - [Kontchakov, Wolter, Zakharyaschev, 2010]
- \mathcal{EL} family
 - [Lutz, Wolter, 2010]

 \rightsquigarrow Here we focus on $\mathcal{EL}.$

 \mathcal{EL} is a fragment of \mathcal{ALC} .

EL-syntax:

$C ::= \top \mid A \mid C \sqcap C \mid \exists r.C$

 \mathcal{EL} -TBox \mathcal{T} is a finite set of \mathcal{EL} -concept inclusions $C \sqsubseteq D$.

Reasoning tasks:

- \bullet Satisfiability of $\mathcal{EL}\text{-concept}\ C$ wrt. $\mathcal{EL}\text{-}TBox\ \mathcal{T}$
 - trivial: always satisfiable in a one-point model
- \bullet Subsumption of $\mathcal{EL}\text{-concepts}\ C, D$ wrt. $\mathcal{EL}\text{-}\mathsf{TBox}\ \mathcal{T}$
 - tractable (decidable in polynomial time)

Modularity reasoning for $\mathcal{E\!L}$

- Deciding whether two \mathcal{EL} -TBoxes are Σ -inseparable wrt. \mathcal{EL} is ExpTime-complete.
- For \mathcal{EL} -TBoxes, Σ -inseparability wrt. SO is undecidable.
- For \mathcal{EL} -TBoxes, even $\mathcal{T} \equiv_{\Sigma}^{SO} \emptyset$, (equivalently, whether

$$\{\mathcal{I}_{|\Sigma} \mid \mathcal{I} \models \mathcal{T}\} = \text{ class of all } \Sigma\text{-models})$$

is undecidable.

We consider \mathcal{EL} -TBoxes of a particular form.

\mathcal{EL} -terminologies

Definition

An \mathcal{EL} -TBox \mathcal{T} is a \mathcal{EL} -terminology if

- every axiom is of the form $A \equiv C$, where A is a concept name;
- no concept name A occurs more than once on the left hand side of an axiom.

A $\mathcal{EL}\text{-terminology}\ \mathcal{T}$ is acyclic if no concept name refers to itself along definitions:

let A ≺_T X if there exists an axiom A ≡ C in T such that X occurs in C.

Then \mathcal{T} is acyclic iff $\prec_{\mathcal{T}}$ is acyclic (equivalently $\prec_{\mathcal{T}}^+$ is irreflexive).

In a TBox \mathcal{T} , we rewrite $A \sqsubseteq C$ into $A \equiv X \sqcap C$, where X is fresh.

96

Example

Knee ≡ Joint ⊓ ∃hasPart.Patella ⊓	(1)
∃hasFunct.Hinge	
Patella 드 Bone 🗆 Sesamoid	(2)
$Ginglymus \equiv Joint \sqcap \exists hasFunct.Hinge$	(3)
$Joint \sqcap \exists hasPart.(Bone \sqcap Sesamoid) \sqsubseteq Ginglymus$	(4)
$Ginglymus\equivHingeJoint$	(5)
$Meniscus \equiv FibroCartilage \sqcap \exists locatedIn.Knee$	(6)

It is an \mathcal{EL} -TBox. But is it an \mathcal{EL} -terminology?

Thomas Schneider, Dirk Walther

Example

Knee ≡ Joint ⊓ ∃hasPart.Patella ⊓	(1)
∃hasFunct.Hinge	
Patella 드 Bone 🗆 Sesamoid	(2)
$Ginglymus \equiv Joint \sqcap \exists hasFunct.Hinge$	(3)
$Joint \sqcap \exists hasPart.(Bone \sqcap Sesamoid) \sqsubseteq Ginglymus$	(4)
$Ginglymus\equivHingeJoint$	(5)
$Meniscus \equiv FibroCartilage \sqcap \exists locatedIn.Knee$	(6)

no complex LHSs allowed

Thomas Schneider, Dirk Walther

Example

Knee ≡ Joint ⊓ ∃hasPart.Patella ⊓	(1)
∃hasFunct.Hinge	
Patella ⊑ Bone ⊓ Sesamoid	(2)
$Ginglymus \equiv Joint \sqcap \exists hasFunct.Hinge$	(3)
$Joint \sqcap \exists hasPart.(Bone \sqcap Sesamoid) \sqsubseteq Ginglymus$	(4)
$Ginglymus\equivHingeJoint$	(5)
$Meniscus \equiv FibroCartilage \sqcap \exists locatedIn.Knee$	(6)

no multiple occurrences of a concept name on LHSs of axioms

Prominent Example: SNOMED CT

- Systematised Nomenclature of Medicine (Clinical Terms)
- \sim 400,000 terms
- used in health care in the US, UK, Australia, etc.
- acyclic *EL*-terminology (+ role box)

Plan for \mathcal{EL} -terminologies

- deciding 'T ≡^{SO}_Σ Ø' in polynomial time, then T is safe ⇒ Tuesday's lecture
- extract modules

Deciding '
$$\mathcal{T} \equiv^{SO}_{\Sigma} \emptyset$$
'

Theorem

The following problem can be solved in polynomial time: given an acyclic \mathcal{EL} -terminology \mathcal{T} , decide whether

$$\mathcal{T} \equiv^{SO}_{\Sigma} \emptyset.$$

For the proof, we distinguish two types of syntactic dependencies between Σ -symbols in \mathcal{T} :

- (a) direct: 'definition' of a Σ -symbol uses another Σ -symbol
- (b) indirect: two $\Sigma\text{-symbols}$ are 'defined' using common non- $\Sigma\text{-symbol}$

Direct Σ -dependencies

Let ${\mathcal T}$ be an acyclic ${\mathcal {EL}}\mbox{-terminology}.$

(a) \mathcal{T} contains a direct Σ -dependency if there exist $A, X \in \Sigma$ such that $A \prec_{\mathcal{T}}^+ X$.

Theorem

If an acyclic \mathcal{EL} -terminology $\mathcal T$ contains a direct Σ -dependency, then $\mathcal T\not\equiv^{SO}_{\Sigma} \emptyset.$

Proof. Suppose \mathcal{T} contains a syntactic Σ -dependency $A \prec_{\Sigma}^{+} X$. Take an interpretation \mathcal{I} with $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $X^{\mathcal{I}} = \emptyset$. Then \mathcal{I} can't be expanded to a model of \mathcal{T} .

- Does not work for acyclic ALC-terminologies!
- From now on, we assume ${\mathcal T}$ does not contain direct $\Sigma\text{-dependencies}.$

Indirect Σ -dependencies

Decomposing an acyclic $\mathcal{EL}\text{-terminology}$

- Let $\mathcal T$ be an acyclic $\mathcal{EL}\text{-terminology}$ and Σ a signature.
- Take partition

$$\mathcal{T} = \mathcal{T}_{\Sigma} \cup \mathcal{T}',$$

where

$$\mathcal{T}_{\Sigma} = \{ A \equiv C \mid A \in \Sigma \text{ or } \exists B \in \Sigma, \ B \prec_{\mathcal{T}}^{+} A \}$$

*T*_Σ does not contain Σ-role names
(as there are no direct Σ-dependencies in *T*)

Theorem

If
$$\mathcal{I} \models \mathcal{T}_{\Sigma}$$
, then there exists $\mathcal{J} \models \mathcal{T}$ such that $\mathcal{J}_{|\Sigma} = \mathcal{I}_{|\Sigma}$.

Proof. Expand \mathcal{I} inductively by setting $A^{\mathcal{J}} := C^{\mathcal{J}}$ for $A \equiv C \in \mathcal{T}'$.

Checking indirect Σ -dependencies

Theorem

Let \mathcal{T} be an acyclic \mathcal{EL} -terminology without direct Σ -dependencies. Then the following conditions are equivalent:

2 Every one-point Σ -interpr. can be expanded to a model of \mathcal{T}_{Σ} .

Point 2 implies Point 1. Let \mathcal{I} be an interpretation. As \mathcal{T}_{Σ} contains no Σ -roles, we may assume that Σ contains no roles. For each d in \mathcal{I} , let $\mathcal{J}_{\{d\}} \models \mathcal{T}_{\Sigma}$ be an expansion of $\mathcal{I}_{\{d\}}$. Then

$$\mathcal{J} = \bigcup_{d \in \mathcal{I}} \mathcal{J}_{\{d\}} \models \mathcal{T}_{\Sigma}$$

and ${\mathcal J}$ is an expansion of ${\mathcal I}.$

Polytime algorithm for $\mathcal{T} \equiv^{SO}_{\Sigma} \emptyset$

To decide whether $\mathcal{T} \equiv^{SO}_{\Sigma} \emptyset$, check

 $\ \, \bullet \ \ \, \ \bullet \ \ \, T \ \ \, contains \ no \ \, direct \ \ \, \Sigma-dependencies; \ \ \,$

@ every one point Σ -model can be expanded to a model of \mathcal{T}_{Σ} .

Point 2 holds iff

For all $A \in \Sigma$,

$$\{X \mid A \prec_{\mathcal{T}}^+ X\} \not\subseteq \{X \mid \exists B \in \Sigma \setminus \{A\}, \ B \prec_{\mathcal{T}}^+ X\}.$$

Observation: For acyclic ALC-terminologies without Σ -dependencies, one can decide $\mathcal{T} \equiv_{\Sigma}^{SO} \emptyset$ by considering one point-models (then Π_2^p -complete).

Module extraction

From deciding inseparability to module extraction.

• Given acyclic \mathcal{EL} -terminology \mathcal{T} and signature Σ , the decision procedure extracts from \mathcal{T} the smallest $M \subseteq \mathcal{T}$ such that

$$\mathcal{T} \setminus M \equiv^{SO}_{\Sigma \cup \operatorname{sig}(M)} \emptyset.$$

⇒ then $\mathcal{T} \setminus M$ is safe for $\Sigma \cup sig(M)$ wrt. \mathcal{EL} (Tuesday's lecture)

• Equivalently,

$$M \equiv^{SO}_{\Sigma \cup \operatorname{sig}(M)} \mathcal{T}.$$

\longrightarrow then *M* is a Σ -module in \mathcal{T} wrt. \mathcal{EL}

Module extraction algorithm

Algorithm

Input: Sig. Σ , acyclic \mathcal{EL} -terminology \mathcal{T} $\mathcal{M} \leftarrow \emptyset, \quad \Sigma_+ \leftarrow \Sigma$ Repeat $\Sigma_{\text{prev}} \leftarrow \Sigma_+$ For each $\alpha \in \mathcal{O} \setminus \mathcal{M}$ If $\alpha \Sigma_+$ -dependent, then add α to \mathcal{M} and sig (α) to Σ_+ Until $\Sigma_{\text{prev}} = \Sigma_+$ Return \mathcal{M}

Output: smallest
$$\mathcal{M} \subseteq \mathcal{T}$$
 such that $\mathcal{T} \setminus \mathcal{M} \equiv^{SO}_{\Sigma \cup \operatorname{sig}(\mathcal{M})} \emptyset$.

W G

Module extraction algorithm

Axiom $\alpha = A \equiv C$ is Σ_+ -dependent in $\mathcal{T} \setminus \mathcal{M}$ if:

- direct dependencies $A, X \in \Sigma_+$ with $A \prec_{\mathcal{T} \setminus \mathcal{M}}^+ X$,
- (2) indirect dependencies $A \in \Sigma_+$ and

 $\{X \mid A \prec^+_{\mathcal{T} \setminus \mathcal{M}} X\} \subseteq \{X \mid \exists B \in \Sigma_+ \setminus \{A\} : B \prec^+_{\mathcal{T} \setminus \mathcal{M}} X\}$

... over to Thomas! ...

