Modularity in Ontologies: Comparison of module notions

*Thomas Schneider*¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 15 August 2013

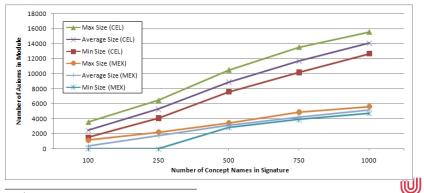
Comparison between

- MEX and locality-based modules
- modules based on syntactic and semantic locality

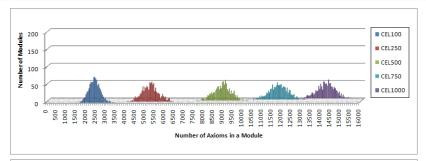
MEX experiments with SNOMED CT

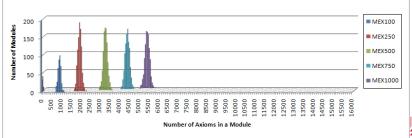
SNOMED CT:

- Systematised Nomenclature of Medicine (Clinical Terms).
- \sim 400,000 terms
- used in health care etc. in the US, UK, Australia etc.
- an acyclic *EL*-terminology (+ role box):


[Konev, Lutz, Walther, Wolter 2008] [Sattler, Schneider, Zakharyaschev 2009]

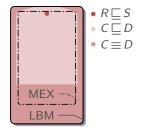
Experiment 1: Extraction of modules from SNOMED CT


MEX: prototype implementation of the MEX algorithm¹ vs. CEL: implementation of \perp -locality based modules


- Σ randomly selected from SNOMED CT
- signature size up to 1000; for each size 1000 samples

¹http://www.csc.liv.ac.uk/~konev/software/

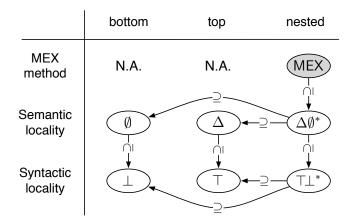
MEX vs. ⊥-locality based modules: frequency



Thomas Schneider, Dirk Walther

Experiment 2: SNOMED modules for clinical signatures

- Experiments with SNOMED again
- Compared modules for 24,000 terms from intensive care unit
- Locality-based modules (LBM) \Leftrightarrow minimal modules (MEX)


Preliminary conclusion

- MEX and locality-based modules are efficient to extract
- For random signatures from SNOMED, they differ significantly in size
- For clinical signatures from SNOMED, they don't differ much
- Most differences are caused by equivalence axioms (in fact, MEX = LBMs for equivalence-free *EL* terminologies)

Can this be generalised

- to other ontologies?
- to modules based on syntactic versus semantic locality?

Reminder: module notions

ŨÛ

Questions

Given a seed signature Σ and ontology \mathcal{O} ,

• ... how likely is
$$\emptyset$$
-mod $(\Sigma, \mathcal{O}) \subset \bot$ -mod (Σ, \mathcal{O})
 Δ -mod $(\Sigma, \mathcal{O}) \subset \top$ -mod (Σ, \mathcal{O})
 $\Delta \emptyset^*$ -mod $(\Sigma, \mathcal{O}) \subset \top \bot^*$ -mod (Σ, \mathcal{O})
MEX-mod $(\Sigma, \mathcal{O}) \subset \Delta \emptyset^*$ -mod (Σ, \mathcal{O})

and how large is the difference?

(variation: given axiom α , is it likely that α is Ø-local but not \perp -local for Σ Δ -local but not \top -local for Σ ?)

Is the difference in extraction time?

Sampling the seed signatures

- \mathcal{O} has exponentially many potential seed signatures Σ .
- Modules for different Σ_1, Σ_2 may coincide.
- Still, O can have exponentially many modules.
 ⇒ Thursday [Del Vescovo et al., 2010]
- We don't yet know what typical seed signatures are.
- Sample random seed signatures
 - Sample one Σ : pick each axiom with probability p = 0.5
 - Achieve confidence interval ±5% with confidence level 95%: select 400 random Σ's (if O is big enough)

Sample axiom seed signatures (non-random, exhaustively)

Genuine mod.s (GMs) → Thursday

- \ldots -mod(sig(α), \mathcal{O}), for $\alpha \in \mathcal{O}$
- $\bullet\,$ every module of ${\mathcal O}$ is the union of some GMs

The ontology corpus

Name	Expressivity	#Axioms	Sig. size	
BioPortal	AL-SROIQ(D)	10-16,066	10-16,068	
(234 entries)				
TONES				
Galen	$\mathcal{ALEHIF}+$	4,735	3,161	
Koala	$\mathcal{ALCON}(\mathcal{D})$	42	32	
Mereology	SHIN	38	21	
MiniTambis-rep'd	\mathcal{ALCN}	170	227	
OWL-S Profile	$\mathcal{ALCHOIN}(\mathcal{D})$	276	163	
People	ALCHOIÑ	108	96	
Tambis-full	$\mathcal{SHIN}(\mathcal{D})$	592	497	
University	SOIN(D)	52	44	

Thomas Schneider, Dirk Walther

Results: syntactic vs. semantic LBMs (1)

For 209 out of 242 ontologies, syntactic and semantic LBMs agree, i.e.:

- Given an arbitrary Σ , there is no difference between
 - \emptyset -mod (Σ, \mathcal{O}) and \perp -mod (Σ, \mathcal{O}) , or
 - Δ -mod (Σ, \mathcal{O}) and \top -mod (Σ, \mathcal{O}) , or
 - $\Delta \emptyset^*$ -mod (Σ, \mathcal{O}) and $\top \bot^*$ -mod (Σ, \mathcal{O}) , or
 - any α being \emptyset -local and \perp -local w.r.t. Σ , or
 - any α being Δ -local and \top -local w.r.t. Σ ,

at a significance level of 0.05.

- Given any axiom signature sig(a), there is no difference between the syntactic and semantic LBM versions above
- Extracting a Ø-module took up to 5× as long as ⊥-module (outlier: 34× for Galen)

Results: syntactic vs. semantic LBMs (2)

For 6 of the remaining 33 ontologies, negligible differences:

- Differences are only caused by tautologies:
 - axioms like $r \equiv (r^-)^-$, for some role r
 - contained in some BioPortal ontologies (published version is closed under certain entailments)
 - are not syntactically local for r ∈ Σ but semantically local
 - sometimes "pull" other axioms into the module via signature extension
 - are uncritical: can be detected easily

\rightsquigarrow No observable differences for 215 out of 242 ontologies

And the remaining 27?

Thomas Schneider, Dirk Walther

Results: syntactic vs. semantic LBMs (3)

For the remaining 27 out of 242 ontologies,

- syntactic and semantic modules differ in only 6 cases
- differences between $\Delta \emptyset^*$ -mod (Σ, \mathcal{O}) and $\top \bot^*$ -mod (Σ, \mathcal{O}) : at most 13 axioms
- larger differences only for Δ vs. \top -modules
- time differences not measurable (few milliseconds per module)
- in the other 21 cases, only locality of single axioms differs
- \rightsquigarrow Relevant module differences only in 6 of 242 ontologies!

Differences are due to 3 patterns of axioms: culprits (next)

Example axiom α :

$$\mathbb{M} \equiv \underline{\mathbb{S}} \sqcap \forall \underline{\mathbf{c}}.F \sqcap \forall g.\{m\} \sqcap =3 \underline{\mathbf{c}}.\top$$

EquivClasses(M,

S and conly F and g value m and c exactly 3 Thing) $% \left({{{\mathbf{F}}_{\mathrm{s}}}} \right)$

• Suppose
$$\Sigma = \{S, c, g\}$$

- α is not \perp -local because none of its conjuncts is \perp -equiv.
- α is Ø-local:

after replacing M, F with \bot , it becomes a tautology in particular, $\forall c. \bot \Box = 3 c. T$ cannot have any instances

Q: How do LBMs compare with **minimal** modules? \sim Partial answer via MEX possible

Problem: MEX only defined for acyclic \mathcal{ELI} -TBoxes So what can we do?

- Test only ontologies that comply?
 → only 33 of 242 ☺
- Tweak + test ontologies that "almost" comply?
 → only some 60 of 242 ☺
- Test \mathcal{ELI} -approximation of all ontologies! \bigcirc

LBMs vs. MEX: \mathcal{ELI} -fication

Reduce every ontology to an acyclic $\mathcal{E\!L\!I}$ subset, removing

- \bullet all non- ${\cal ELI}$ axioms
- axioms involved in terminological cycles
- This is a rather crude procedure.

Amount of reduction

- 33 ontologies are acyclic $\mathcal{ELI}\text{-terminologies}$
- from 36 ontologies, up to 28 axioms were removed
- from 170 ontologies, 30–12,185 axioms were removed

Compare LBMs and MEX for this new corpus

LBMs vs. MEX: result overview

- \bullet Diffs MEX–LBMs in $\sim 27\%$ of the preprocessed ontologies
- for these, no diffs syntactic-semantic LBM

Experiment	#ontol.	% tests	avg size	of diffs
	with diffs.	with diffs.	#axs	rel.
Random signatures	66	84%	0 - 26	0 - 13%
Axiom signatures	61	12%	0 - 13	0 - 80%

- Largest differences: Galen with 127 axioms (outlier)
- same differences occur for many seed signatures
 → probably caused by features of the ontology
- **Q**: Do the differences correlate with ontology size, expressivity, or amount of modification (\mathcal{ELI} -fication)?

Thomas Schneider, Dirk Walther

LBMs vs. MEX: results by ontology measures

Group	#axioms removed	#ontologies	ontology si	ize (avg.)
1 unchanged ontologies $no \text{ diff. } \Delta \emptyset^* \setminus MEX$	0	33 (14%)	19-16,066	(2,176)
2 little-changed ontologies no diff. $\Delta \emptyset^* \setminus MEX$	1-28	36 (15%)	13- 6,587	(466)
3 largely-changed ontologies $no \text{ diff. } \Delta \emptyset^* \setminus MEX$	31–7,836 (avg. 884)	104 (44%)	51 - 13,153	(2,373)
4 largely-changed ontologies with diff. $\Delta \emptyset^* \setminus MEX$ (4)	30–12,185 avg. 1,001)	66 (27%)	42–12,344	(1,843)

Differences correlate with

expressivity

(Group 1+2 mostly \mathcal{EL} ; Group 4 highly expressive, e.g., nominals)

 \bullet amount of $\mathcal{ELI}\mbox{-fication}$

(only "largely-changed" ontologies show differences)

• not with size

Culprits: equivalence axioms $A \equiv C$

Summary of module comparison

- Only 6 out of 242 ontologies showed non-trivial differences between semantic and syntactic LBMs
- These differences are small
- Theoretically hard semantic LBMs are often easy to compute
- \bullet Only 66 out of 242 $\mathcal{ELI}\text{-fied}$ ontologies showed differences between LBMs and MEX
- Many of these differences are rather small

→ Cheap is cheerful!