
Modularity in Ontologies:
Atomic decomposition

Thomas Schneider 1 Dirk Walther2

1Department of Computer Science, University of Bremen, Germany

2Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 15 August 2013

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 1

What is my ontology about?

We can’t inspect all its axioms.

1,000,000 axioms

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 2

What is my ontology about?

We can inspect its modular structure, obtained a posteriori.

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 2

We bet Robert Stevens

Ontology about periodic table of the chemical elements

Logical structure ≈ intended modelling?

What are its main parts?
How do they logically interact with each other?

Challenge: automatic partition into meaningful modules

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 3

Modular structure with existing tools

Partition of Koala via E-connections in Swoop

Animal

Gender

Degree

Habitat

importing part
imported but non-importing part
isolated part

“imports vocabulary from”

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 4

Partition for ontology SWEET

Figure 7:Partitioning Graph for SWEET-JPL

-Algorithm GenerateModule(G,C)
-Input: The partition graphG

A conceptC in T
-Output: The moduleT ′ for C in T

v ← V(C)
T ′ ← L(v)
Add toT ′ all axioms in the label of the nodes accessible fromv.
if L(v) has nominals,then
for eachpredecessorw of v in G:

Select any conceptD in L(w)
T ′ ← T ′ ∪ GenerateModule(G,D)

return T ′

Figure 8: Generation of Modules

Theorem 5 The ontologyT ′ = GenerateModule(G,C) is
a logical module ofT .

Theorem 6 The ontologyT ′ = GenerateModule(G,C)
with G = Partition(T) is a module forC w.r.t. T .

It is not hard to verify that our modularization algorithm
is worst-case quadratic in the size of the input ontology and
hence the module for a concept in a consistent ontology can
be obtained in polynomial time.

As an example of module extraction from a partitioning
graph, consider Figure 6, which shows the decomposition
for the OWL-S ontologies, describing Web Services. The
ontology exhibits a nice decomposition, since a significant
proportion of nodes correspond to independent or leaf nodes
(white and gray nodes respectively), which is ideal for re-
use. Interestingly, there is a improvement in modularity
for every concept, in the sense that every module isstrictly
smaller than the ontology as a whole. Finally, note that the

whole modularization process iscompletely automatic. No
user intervention is required at any stage of the process.

Related Work
The problem of modularity in Web ontologies has been re-
cently addressed in (StuckenSchmidt & Klein 2004), (Noy
& Musen 2003) and (Seidenberg & Rector 2006).

In (StuckenSchmidt & Klein 2004), the output of the
modularization process is presented as a graph visualization
of the different kinds of information contained in the input
ontology. However, the heuristics used to generate the visu-
alization only consider a small fragment of OWL-DL and no
correspondence between the nodes of the graph and sets of
axioms is provided.

(Noy & Musen 2003) and (Seidenberg & Rector 2006)
describe different structural techniques for extracting rele-
vant fragments of ontologies. Although the output in these
cases, as opposed to (StuckenSchmidt & Klein 2004), is a
set of axioms, a formal characterization of their properties is
lacking and hence no notion of correctness of the process is
established.

(MacCartneyet al. 2003) explores partitioning FOL the-
ories to improve theorem proving performance. The work
rigorously addresses logical issues, such as interpolation.
However, the focus is on improving reasoning performance
only and, thus, does not address reuse tasks. Our goal in
this paper has been very different, since we have examined
modularization primarily for reuse purposes.

In our previous work (Cuenca-Grau, Parsia, & E.Sirin
2005), we proposedE-Connections (Kutzet al. 2004) as a
suitable formalism forcombining(rather than decomposing)
OWL ontologies describing largely disjoint subject matters.
There is indeed a tight relationship betweenE-Connections
and our partitioning algorithm. In fact, the partitioning
graph can be seensyntacticallyas a knowledge base in the
language of anE-Connection, with the roles in the edges
of the graph corresponding tolink relations. This syntac-
tic correspondence provides an intuition on why Theorems
3 and 4 hold. The reader should note, however, that theE-
Connections framework defines its own semantics; in fact,
all the models of anE-Connected KB are enforced to be of
the form given in Theorem 3. In this paper, however, we see
E-Connections as a way of guiding the partitioning process,
rather than as a logical formalism.

Conclusion
Ontology engineers need a clear notion of what to expect
from a modularization process, both from a logical and a
modeling perspective. Without such an understanding, the
ontology engineer is at a loss. The result is the adoption
of ad-hoc and highly unpredictable techniques as a common
practice, which often leads to undesired results.

In this paper, we have presented a method for auto-
matically identifying and extracting relevant fragments of
ontologies, called modules, with precise semantic guaran-
tees. Our method encompasses the full expressive power of
OWL-DL and provides a good computational performance.
Our initial experimental results with real-world ontologies

importing part
imported but non-importing part
isolated part

“imports vocabulary from”

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 5

Partition for ontology Periodic

Thing

importing part
imported but non-importing part
isolated part

“imports vocabulary from”

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 6

Modular structure via LBMs – goals

Draw conclusions on characteristics of an ontology:

Which topics does O cover?
How do they interact with each other?
How strongly are certain terms connected in O?
Does O have superfluous parts?
Agreement between logical and intended intuitive modelling?

Guide users in choosing the right signatures/modules

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 7

Modular structure
Remember: Ontology O is a set of axioms; module M ⊆ O

Modules are great: if you know your (seed) signature . . .
and for “module local” tasks such as reuse

Single module extraction does not help if you
do not know the right seed signature
want to understand other modules
want to understand axiom dependency structure

M

?

?

To analyse the modular structure of the ontology:
significant modules
significant relations between modules
. . . which reveals logical dependency between axioms

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 8

Are all modules significant?

M

=

M1

∪
M2

=

M1 M2

M

To understand M, one must understand
the dependency structure of M1

the dependency structure of M2

nothing else: M1 and M2 have no further dependencies

; M is not significant: it is a fake module
M1 and M2 may be “significant”
Knowing that M is “only” a union is important

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 9

Are all modules significant?

Consider a module M that is not fake.

To understand M, one has to understand M as a whole.
all axioms in M logically interact
in different ways – but interact

“Not fake” implies significant: genuine

M

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 10

How many (fake, genuine) modules are there?

The number of all modules can and does grow exponentially in |O|
[Del Vescovo, Parsia, Sattler, Schneider 2010]

Given a set of genuine modules,
Unions lead to fake modules

; The space of fake modules is exponential
But not every union of genuine modules is a module

Question 1
Is module growth primarily due to trivial combinations?
I.e., are most modules fake?

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 11

Yes!

Theorem 1
Each genuine module is the smallest module that contains α,
for some axiom α ∈ O.

[Del Vescovo, Parsia, Sattler, Schneider 2011]

; The family of genuine modules is linear in |O|.
Most modules are fake!

Proof exploits properties of modules
uniqueness, monotonicity, self-containedness, . . .
which are satisfied by all locality-based modules

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 12

Wrap-up so far

Ontology O can have exponentially many modules

Genuine modules are of particular interest: M 6= M1 ∪M2

Central theorem:

M is genuine iff M = . . . -mod(sig(α),O)

(works for different module notions, e.g., LBMs, MEX)

; There are linearly many genuine modules!

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 13

Atoms

Atom

= atomic part of a module in the context of all other modules

Example:

M1
M2

M3

a1 a2 a3

a4
a5

a6
a7

Easy to see: ∀a∀M : a ⊆M or a ∩M = ∅

Important result:
All atoms can be computed using only the genuine modules
; linearly many!

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 14

Dependency between atoms

Example:

M1
M2

a1 a2 a3 ;

M1 \M2 M2 \M1

M1∩M2

a1 a3

a2

Axioms in a1 depend on those in a2 – but not vice versa
In general: a depends on b if

iff a needs b to form a module:
iff ∀M : a ⊆M⇒ b ⊆M

Important result:
All dependencies can be computed using only the genuine modules
; in polynomial time!

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 15

In reality?

Next:

Example
Decomposition of some existing ontologies
(Thanks to Chiara Del Vescovo and Nicolas Matentzoglu for pictures.)

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 16

Example

∃hasChild.> v Animal (α1)
> v ∀hasChild.Animal (α2)

Mother ≡ ∃hasChild.> u ∃hasGender.{female} (α3)
∃hasGender.> v Animal (α4)

> v ∀hasGender.Gender (α5)

; AD via ⊥-modules:
⊥-mod(sig(α1),O) = {α1, α2}
⊥-mod(sig(α2),O) = {α1, α2}
⊥-mod(sig(α3),O) = {α1, α2, α3, α4, α5}
⊥-mod(sig(α4),O) = {α4, α5}
⊥-mod(sig(α5),O) = {α4, α5}

; Atoms and dependencies:
{α1, α2}, {α3}, {α4, α5} — {α3} depends on the other two

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 17

Decomposition of Koala (>⊥∗)

!

!" "#

"

!$

#

"!

%

& '

(

!($

)!* !!

!'

!# !%

!&

!)

"*

""

Figure 1: The atomic decomposition of Koala

16

Atom 9:

University v Habitat

Atom 7:
7 axioms about
Animal, Female, Male,
hasGender, hasHabitat

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 18

Decomposition of Koala (⊥)

N
global axioms

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 19

Decomposition of Koala (>)

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 20

Decomposition of Mereology (>⊥∗)Mereology Ontology
42 axioms
1952 modules
17 atoms/GMs

1

2

12

3

4

16

5

6

7

8

9

10

11

13

14 15 17

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 21

Decomposition of Mereology (⊥)

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 22

Decomposition of Mereology (>)

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 23

Decomposition of c-elegans (⊥)

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 24

Summary

The atomic decomposition (AD) . . .

is a linear representation of the potentially exponential
set of all modules
can be computed using a linear number of
module extractions
exposes 2 types of logical dependencies between axioms
is implemented in the OWL API Tools (but not yet released)
http://sourceforge.net/projects/owlapitools

Thank you.

Thomas Schneider, Dirk Walther Modularity: Atomic decomposition 25

http://sourceforge.net/projects/owlapitools

