Modularity in Ontologies: Atomic decomposition

*Thomas Schneider*¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 15 August 2013

What is my ontology about?

We can't inspect all its axioms.

What is my ontology about?

We can inspect its modular structure, obtained a posteriori.

- Ontology about periodic table of the chemical elements
- Logical structure \approx intended modelling?
 - What are its main parts?
 - How do they logically interact with each other?
- Challenge: automatic partition into meaningful modules

Modular structure with existing tools

Partition of Koala via E-connections in Swoop

- importing part
 imported but non-importing part
 isolated part
- "imports vocabulary from"

Partition for ontology SWEET

- importing part
 imported but non-importing part
 -) isolated part
- "imports vocabulary from"

Thomas Schneider, Dirk Walther

Partition for ontology Periodic

- importing part
 imported but non-importing part
 isolated part
- "imports vocabulary from"

Modular structure via LBMs – goals

- Draw conclusions on characteristics of an ontology:
 - \bullet Which topics does ${\cal O}$ cover?
 - How do they interact with each other?
 - How strongly are certain terms connected in \mathcal{O} ?
 - Does \mathcal{O} have superfluous parts?
 - Agreement between logical and intended intuitive modelling?
- Guide users in choosing the right signatures/modules

Modular structure

Remember: Ontology $\mathcal O$ is a set of axioms; module $\mathcal M\subseteq \mathcal O$

Modules are great: if you know your (seed) signature . . . and for "module local" tasks such as reuse

Single module extraction does not help if you

- do not know the right seed signature
- want to understand other modules
- want to understand *axiom dependency structure*

To analyse the modular structure of the ontology:

- significant modules
- significant relations between modules
- ... which reveals logical dependency between axioms

? _M

Are all modules significant?

To understand \mathcal{M} , one must understand

- \bullet the dependency structure of \mathcal{M}_1
- \bullet the dependency structure of \mathcal{M}_2
- \bullet nothing else: \mathcal{M}_1 and \mathcal{M}_2 have no further dependencies
- $\rightsquigarrow \mathcal{M}$ is not significant: it is a fake module
 - \mathcal{M}_1 and \mathcal{M}_2 may be "significant"
 - \bullet Knowing that ${\mathcal M}$ is "only" a union is important

Consider a module \mathcal{M} that is not fake.

To understand $\mathcal M_{\text{\rm i}}$ one has to understand $\mathcal M$ as a whole.

- \bullet all axioms in ${\mathcal M}$ logically interact
- in different ways but interact

"Not fake" implies significant: genuine

How many (fake, genuine) modules are there?

The number of *all* modules can and does grow exponentially in |O| [Del Vescovo, Parsia, Sattler, Schneider 2010]

Given a set of genuine modules,

- Unions lead to fake modules
- \rightsquigarrow The space of fake modules is exponential
 - But not every union of genuine modules is a module

Question 1

Is module growth primarily due to trivial combinations? I.e., are most modules fake?

Yes!

Theorem 1

Each genuine module is the smallest module that contains α , for some axiom $\alpha \in \mathcal{O}$.

[Del Vescovo, Parsia, Sattler, Schneider 2011]

 \rightsquigarrow The family of genuine modules is linear in $|\mathcal{O}|$. Most modules are fake!

Proof exploits properties of modules

- uniqueness, monotonicity, self-containedness,
- which are satisfied by all locality-based modules

- \bullet Ontology ${\mathcal O}$ can have exponentially many modules
- Genuine modules are of particular interest: $\mathcal{M} \neq \mathcal{M}_1 \cup \mathcal{M}_2$
- Central theorem:

$$\mathcal{M}$$
 is genuine iff $\mathcal{M} = \dots - \operatorname{mod}(\operatorname{sig}(\alpha), \mathcal{O})$

(works for different module notions, e.g., LBMs, MEX)

→ There are linearly many genuine modules!

Atoms

Atom

= atomic part of a module in the context of all other modules

- Example:
- Easy to see: $\forall \mathfrak{a} \forall \mathcal{M} : \mathfrak{a} \subseteq \mathcal{M} \text{ or } \mathfrak{a} \cap \mathcal{M} = \emptyset$

Important result:

All atoms can be computed using only the genuine modules \rightsquigarrow linearly many!

ŨG

Dependency between atoms

• Axioms in a_1 depend on those in a_2 – but not vice versa

• In general: a depends on b if

iff \mathfrak{a} needs \mathfrak{b} to form a module:

$$\mathsf{iff} \; \forall \mathcal{M} : \mathfrak{a} \subseteq \mathcal{M} \Rightarrow \mathfrak{b} \subseteq \mathcal{M}$$

Important result:

All dependencies can be computed using only the genuine modules \rightsquigarrow in polynomial time!

Thomas Schneider, Dirk Walther

In reality?

Next:

- Example
- Decomposition of some existing ontologies (Thanks to Chiara Del Vescovo and Nicolas Matentzoglu for pictures.)

Example

$\exists hasChild. \top \sqsubseteq Animal$	(α_1)
$\top \sqsubseteq \forall$ hasChild.Animal	(α_2)
$Mother \equiv \exists hasChild. \top \sqcap \exists hasGender. \{female\}$	(α ₃)
$\exists hasGender. \top \sqsubseteq Animal$	(α ₄)
$\top \sqsubseteq \forall$ hasGender.Gender	(α_5)

\rightsquigarrow AD via $\perp\text{-modules:}$

$$\perp - \operatorname{mod}(\operatorname{sig}(\alpha_1), \mathcal{O}) = \{\alpha_1, \alpha_2\}$$

$$\perp - \operatorname{mod}(\operatorname{sig}(\alpha_2), \mathcal{O}) = \{\alpha_1, \alpha_2\}$$

$$\perp - \operatorname{mod}(\operatorname{sig}(\alpha_3), \mathcal{O}) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$$

$$\perp - \operatorname{mod}(\operatorname{sig}(\alpha_4), \mathcal{O}) = \{\alpha_4, \alpha_5\}$$

$$\perp - \operatorname{mod}(\operatorname{sig}(\alpha_5), \mathcal{O}) = \{\alpha_4, \alpha_5\}$$

\rightsquigarrow Atoms and dependencies:

$$\{\alpha_1, \alpha_2\}, \{\alpha_3\}, \{\alpha_4, \alpha_5\} - \{\alpha_3\}$$
 depends on the other two

Decomposition of Koala $(\top \bot^*)$

Decomposition of Koala (\bot)

₩G

Decomposition of Koala (\top)

GraduateStudent, KoalaWithPhD, hasDegree, Male, TasmanianDevil, hasChildren, Quokka, Marsupials, Dry Eucalypt Fores (Stud) ent, Koala, Female, Animal, MaleStudentWith3Daughters, hasGender, isHardWorking, Person, Parent, University, hasHabilat

Decomposition of Mereology $(\top \bot^*)$

Decomposition of Mereology (\bot)

УØ

[<http://www.estrellaproject.org/lkif-core/lkif-top.owl#Mental_Objet>,

Thomas Schneider, Dirk Walther

Modularity: Atomic decomposition

Decomposition of Mereology (\top)

Thomas Schneider, Dirk Walther

Modularity: Atomic decomposition

Decomposition of c-elegans (\bot)

Thomas Schneider, Dirk Walther

Modularity: Atomic decomposition

Summary

The atomic decomposition (AD) ...

- is a linear representation of the potentially exponential set of all modules
- can be computed using a linear number of module extractions
- exposes 2 types of logical dependencies between axioms
- is implemented in the OWL API Tools (but not yet released) http://sourceforge.net/projects/owlapitools

Thank you.

