Modularity in Ontologies: Incremental Classification, Logical Diff and Forgetting

Thomas Schneider¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

 $^2 \mbox{Center}$ for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 16 August 2013

Thomas Schneider, Dirk Walther

Forgetting

Plan for today

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

Incremental Classification	Logical Diff	Forgetting	Conclusion
And now			

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

4 Conclusion

Incremental Classification

Logical Diff

Forgetting

Conclusion

Incremental Classification: Motivation

- early detection of modelling errors is important for developing and maintaining ontologies
- frequent classification of ontologies required
- issue:
 - long response times from reasoners
- solutions:
 - classification algorithms and optimisation techniques
 - $\bullet\,$ lightweight logics with tractable classification such as \mathcal{EL}
- limitation: similarities between versions of ontologies are not taken into account (reasoning is repeated from scratch)

Example: Incremental Classification

Original ontology \mathcal{O}_1

$Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas$	(1)
$Genetic_Fibrosis \equiv Fibrosis \sqcap has_Origin.Genetic_Origin$	(2)
$Pancreatic_Fibrosis \equiv Fibrosis \sqcap Pancreatic_Disorder$	(3)
Genetic_Fibrosis 드 Genetic_Disorder	(4)
$Pancreatic_Disorder \equiv Disorder \sqcap \exists located_In.Pancreas$	(5)

- 9 concept names + \top + \bot
- taxonomy: 121 subsumptions

Forgetting

Conclusion

Example: Incremental Classification

Updated ontology $\mathcal{O}_2 = (\mathcal{O}_1 \setminus \mathcal{O}^-) \cup \mathcal{O}^+$

$Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas$	(1)
□ ∃has_Origin.Genetic_Origin	
$Genetic_Fibrosis \equiv Fibrosis \sqcap has_Origin.Genetic_Origin$	(2)
$Pancreatic_Fibrosis \equiv Fibrosis \sqcap Pancreatic_Disorder$	(3)
Genetic_Fibrosis 드 Genetic_Disorder	(4)
$Pancreatic_Disorder \equiv Disorder \sqcap \exists located_In.Pancreas$	(5)

ŨÛ

Forgetting

Conclusion

Example: Incremental Classification

Updated ontology $\mathcal{O}_2 = (\mathcal{O}_1 \setminus \mathcal{O}^-) \cup \mathcal{O}^+$

$Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas$	(1)
□ ∃has_Origin.Genetic_Origin	
$Genetic_Fibrosis \equiv Fibrosis \sqcap has_Origin.Genetic_Origin$	(2)
$Pancreatic_Fibrosis \equiv Fibrosis \sqcap Pancreatic_Disorder$	(3)
Genetic_Fibrosis 🔄 Genetic_Disorder	(4)
$Pancreatic_Disorder \equiv Disorder \sqcap \exists located_In.Pancreas$	(5)

• Which subsumptions have changed?

Forgetting

Incremental Classification

Idea

- small changes in ontologies affect relatively few subsumptions
- avoid recomputing unaffected subsumptions
- identify subsumptions affected by change using modules
- [Cuenca Grau et al., JAR 2010]

Incremental Classification using Modules

Definition

 $\mathcal{M} \subseteq \mathcal{O}$ is a module for axiom α in \mathcal{O} if:

 $\mathcal{M} \models \alpha \text{ iff } \mathcal{O} \models \alpha.$

• locality-based modules for sig(α) of $\mathcal O$ have this property

Proposition

Let \mathcal{O}_1 and \mathcal{O}_2 be ontologies and α an axiom. Let \mathcal{M}^i_{α} be a module for α in \mathcal{O}_i , for i = 1, 2.

• if
$$\mathcal{O}_1 \models \alpha$$
 and $\mathcal{M}^1_{\alpha} \subseteq \mathcal{O}_2$, then $\mathcal{O}_2 \models \alpha$

• if $\mathcal{O}_1 \not\models \alpha$ and $\mathcal{M}^2_{\alpha} \subseteq \mathcal{O}_1$, then $\mathcal{O}_2 \not\models \alpha$

Algorithm: Step 1

Input:
$$\mathcal{O}_1$$
, \sqsubseteq_1 , $\mathcal{M}_A^1|_{A \in sig(\mathcal{O}_1)}$, \mathcal{O}^- , \mathcal{O}^+
Output: \mathcal{O}_2 , \sqsubseteq_2 , $\mathcal{M}_A^2|_{A \in sig(\mathcal{O}_2)}$

$$\mathcal{O}_2 := (\mathcal{O}_1 \setminus \mathcal{O}^-) \cup \mathcal{O}^+$$

For every
$$A \in sig(\mathcal{O}_2) \setminus sig(\mathcal{O}_1)$$

 $\mathcal{M}_A^1 := \mathcal{M}_{\top}^1$
for every $(\top, B) \in \sqsubseteq_1 := \bigsqcup_1 \cup \{(A, B)\}$
for every $(B, \bot) \in \sqsubseteq_1 := \bigsqcup_1 \cup \{(B, A)\}$

Update ontology Set a module and update classification \sqsubseteq_1 for the new concept names

Algorithm: Step 2 $N^- := \emptyset, N^+ := \emptyset$ For every $A \in sig(\mathcal{O}_2)$ For every $\alpha \in \mathcal{O}^$ if α not sig (\mathcal{M}^1_A) -local, then $N^- := N^- \cup \{A\}$ For every $\alpha \in \mathcal{O}^+$ if α not sig (\mathcal{M}^1_A) -local, then $N^+ := N^+ \cup \{A\}$

Determine concept names whose modules are affected by the change (using locality check for axioms)

Algorithm: Step 3

For every $A \in sig(\mathcal{O}_2)$ If $A \in \mathbb{N}^- \cup \mathbb{N}^+$, then $\mathcal{M}_A^2 := extract_module(\{A\}, \mathcal{O}_2)$; else $\mathcal{M}_A^2 := \mathcal{M}_A^1$

Determine the module for every concept name (recomputing affected modules)

Algorithm: Step 4

For every
$$A \in sig(\mathcal{O}_2)$$

For every $B \in sig(\mathcal{O}_2) \cup \{\bot\}$
if $(A \in N^- \text{ and } A \sqsubseteq_1 B)$ or
 $(A \in N^+ \text{ and } A \nvdash_1 B)$
then $\sqsubseteq_2 := \bigsqcup_2 \cup \{(A, B)\}$ if $\mathcal{M}_A^2 \models A \bigsqcup B$
else $\sqsubseteq_2 := \bigsqcup_2 \cup \{(A, B)\}$ if $(A, B) \in \bigsqcup_1$

Determine new classification \sqsubseteq_2 (possibly using a reasoner – any reasoner)

Forgetting

Conclusion

Example: Incremental Classification

$Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas$		
□ ∃has_Origin.Genetic_Origin		
$Genetic_Fibrosis \equiv Fibrosis \sqcap has_Origin.Genetic_Origin$	(7)	
$Pancreatic_Fibrosis \equiv Fibrosis \sqcap Pancreatic_Disorder$	(8)	
Genetic_Fibrosis 드 Genetic_Disorder	(9)	
$Pancreatic_Disorder \equiv Disorder \sqcap \exists located_In.Pancreas$	(10)	

- Algorithm Step 1:
 - skip since no new symbols were added

Forgetting

Conclusion

Example: Incremental Classification

$Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas$		
□ ∃has_Origin.Genetic_Origin		
$Genetic_Fibrosis \equiv Fibrosis \sqcap has_Origin.Genetic_Origin$	(7)	
$Pancreatic_{Fibrosis} \equiv Fibrosis \sqcap Pancreatic_{Disorder}$	(8)	
Genetic_Fibrosis 드 Genetic_Disorder	(9)	
$Pancreatic_Disorder \equiv Disorder \sqcap \exists located_In.Pancreas$	(10)	

- Algorithm Step 2:
 - N⁻ = {Cystic_Fibrosis, Pancreatic_Fibrosis}

Forgetting

Conclusion

Example: Incremental Classification

$Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas$	(6)
□ ∃has_Origin.Genetic_Origin	
$Genetic_Fibrosis \equiv Fibrosis \sqcap has_Origin.Genetic_Origin$	(7)
$\frac{Pancreatic_Fibrosis}{Fibrosis} \equiv Fibrosis \sqcap Pancreatic_Disorder$	(8)
Genetic_Fibrosis 드 Genetic_Disorder	(9)
$Pancreatic_Disorder \equiv Disorder \sqcap \exists located_In.Pancreas$	(10)

- Algorithm Step 3:
 - compute modules for Cystic_Fibrosis and Pancreatic_Fibrosis

Forgetting

Conclusion

Example: Incremental Classification

Cystic_Fibrosis ≡ Fibrosis □ ∃located_In.Pancreas	
□ ∃has_Origin.Genetic_Origin	
$Genetic_Fibrosis \equiv Fibrosis \sqcap has_Origin.Genetic_Origin$	(7)
$\frac{Pancreatic_{Fibrosis} \equiv Fibrosis \sqcap Pancreatic_{Disorder}$	(8)
Genetic_Fibrosis 드 Genetic_Disorder	(9)
$Pancreatic_Disorder \equiv Disorder \sqcap \exists located_In.Pancreas$	(10)

- Algorithm Step 4:
 - compute whether $\mathcal{O}_2 \models \mathsf{Pancreatic}_\mathsf{Fibrosis} \sqsubseteq B$
 - compute whether $\mathcal{O}_2 \models \text{Cystic}_{\text{Fibrosis}} \sqsubseteq B$
 - perform only about 13 subsumption tests

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

4 Conclusion

Logical Difference: Motivation

Task

• given two versions \mathcal{T}_1 and \mathcal{T}_2 of an ontology and a signature Σ , compute "the difference" between \mathcal{T}_1 and \mathcal{T}_2 observable in Σ in a query language \mathcal{QL} .

Syntactical difference

- Many tools compute the syntactical difference between versions of texts and program code.
- But many syntactic differences do not affect the semantics of ontologies!
- Example:

•
$$\mathcal{T}_1 = \{ A \sqsubseteq B_1 \sqcap B_2 \}, \quad \mathcal{T}_2 = \{ A \sqsubseteq B_1, A \sqsubseteq B_2 \}$$

 $\Sigma = \{ A, B_1, B_2 \}$

• Then $\mathcal{T}_1 \neq \mathcal{T}_2$, but $\mathcal{T}_1 \equiv_{\Sigma}^{SO} \mathcal{T}_2$.

Logical Difference: Motivation

Structural difference

- extends syntactic diff by taking into account structural meta-information of distinct versions of ontologies
- regards ontologies as structured objects (e.g., taxonomy, set of RDF triplets, set of axioms)
- changes are structural operations (e.g., adding/deleting/extending/renaming classes)
- but:
 - syntax dependent and no formal semantics
 - tailored to applications of ontologies based on taxonomy
 - ontology based data access not captured

 \mathcal{T}_1 and \mathcal{T}_2 ontologies, \mathcal{QL} a query language, Σ a signature. The logical difference between \mathcal{T}_1 and \mathcal{T}_2 wrt. (\mathcal{QL}, Σ) is defined as

$$\mathsf{Diff}_{\Sigma}^{\mathcal{QL}}(\mathcal{T}_1,\mathcal{T}_2) \cup \mathsf{Diff}_{\Sigma}^{\mathcal{QL}}(\mathcal{T}_2,\mathcal{T}_1),$$

where

•
$$\operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(\mathcal{T}_1, \mathcal{T}_2) = \{ \varphi \in \mathcal{QL} \mid \mathcal{T}_1 \models \varphi, \mathcal{T}_2 \not\models \varphi, \operatorname{sig}(\varphi) \in \Sigma \}.$$

• $\operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(\mathcal{T}_2, \mathcal{T}_1) = \{ \varphi \in \mathcal{QL} \mid \mathcal{T}_2 \models \varphi, \mathcal{T}_1 \not\models \varphi, \operatorname{sig}(\varphi) \in \Sigma \}.$

Observation: $\text{Diff}_{\Sigma}^{\mathcal{QL}}(\mathcal{T}_1, \mathcal{T}_2) \cup \text{Diff}_{\Sigma}^{\mathcal{QL}}(\mathcal{T}_2, \mathcal{T}_1) = \emptyset$ iff $\mathcal{T}_1 \equiv_{\Sigma}^{\mathcal{QL}} \mathcal{T}_2$. Problem: How to present $\text{Diff}_{\Sigma}^{\mathcal{QL}}(\mathcal{T}_1, \mathcal{T}_2)$ if it is non-empty?

Σ -difference for \mathcal{EL} -terminologies

Take query language $\mathcal{QL}_{\mathcal{EL}}$ consisting of $C \sqsubseteq D$, where C, D are \mathcal{EL} -concepts. We also denote $\mathcal{QL}_{\mathcal{EL}}$ simply as \mathcal{EL} . Set

$$\operatorname{Diff}_{\Sigma}(\mathcal{T}_1, \mathcal{T}_2) = \operatorname{Diff}_{\Sigma}^{\mathcal{EL}}(\mathcal{T}_1, \mathcal{T}_2).$$

Example of 'large' smallest elements in $\text{Diff}_{\Sigma}(\mathcal{T}_1, \mathcal{T}_2)$:

•
$$\mathcal{T}_2 = \emptyset$$
;
• $\mathcal{T}_1 = \{A' \sqsubseteq B_0, A \equiv B_n\} \cup \{B_{i+1} \equiv \exists r.B_i \sqcap \exists s.B_i \mid i < n\};$
• $\Sigma = \{A', A, r, s\}.$

For the minimal $C \sqsubseteq A \in \text{Diff}_{\Sigma}(\mathcal{T}_1, \mathcal{T}_2)$ we have $|C| = 2^n$.

ŨÛ

Forgetting

Conclusion

Σ -difference for \mathcal{EL} -terminologies

In propositional \mathcal{EL} : if $C \sqsubseteq A_1 \sqcap A_2 \in \text{Diff}_{\Sigma}(\mathcal{T}_1, \mathcal{T}_2)$, then

- $C \sqsubseteq A_1 \in \text{Diff}_{\Sigma}(\mathcal{T}_1, \mathcal{T}_2)$ or
- $C \sqsubseteq A_2 \in \text{Diff}_{\Sigma}(\mathcal{T}_1, \mathcal{T}_2).$

Conclusion

Compact representation of $\text{Diff}_{\Sigma}(\mathcal{T}_1, \mathcal{T}_2)$

Let

• diffL_{$$\Sigma$$}($\mathcal{T}_1, \mathcal{T}_2$) =

$$\begin{cases}
A \in \Sigma \\
\mathcal{T}_1 \models A \sqsubseteq C \text{ and } \mathcal{T}_2 \not\models A \sqsubseteq C
\end{cases}$$

• diffR_{$$\Sigma$$}($\mathcal{T}_1, \mathcal{T}_2$) =

$$\begin{cases}
A \in \Sigma \\
\mathcal{T}_1 \models C \sqsubseteq A \text{ and } \mathcal{T}_2 \nvDash C \sqsubseteq A
\end{cases}$$

diffL_{Σ}($\mathcal{T}_1, \mathcal{T}_2$) and diffR_{Σ}($\mathcal{T}_1, \mathcal{T}_2$) provide a list of concept names in Σ about which \mathcal{T}_1 "says more" than \mathcal{T}_2 .

Σ -difference between \mathcal{EL} -terminologies

Theorem

Let \mathcal{T}_1 and \mathcal{T}_2 be $\mathcal{EL}\text{-terminologies}$ and Σ a signature. Then

- $\bullet \mbox{ diff} L_{\Sigma}(\mathcal{T}_1, \mathcal{T}_2)$ and
- diffR_{Σ}($\mathcal{T}_1, \mathcal{T}_2$)

can be computed in polynomial time. In particular, $\Sigma\text{-inseparability}$ wrt. \mathcal{EL} is tractable.

Incremental Classification	Logical Diff	Forgetting	Conclusion
Tools			

CEX

- implementation of tractable algorithm computing DiffL_{Σ}($\mathcal{T}_1, \mathcal{T}_2$) and DiffR_{Σ}($\mathcal{T}_1, \mathcal{T}_2$) for acyclic \mathcal{EL} -terminologies [Konev, Walther, Wolter, 2008]
- http://www.csc.liv.ac.uk/~konev/software/

OWLDiff

- CEX-diff for *EL*-terminologies [Kremen, Smid, Kouba, 2011, to appear]
- plugins for Protégé and NeON toolkit
- http://krizik.felk.cvut.cz/km/owldiff

Incremental Classification	Logical Diff	Forgetting	Conclusion
Tools			

CEX2

- extends CEX to *ELH^r* (i.e. *EL* with role inclusion axioms and domain and range restrictions) without loosing tractability [Konev, Ludwig, Walther, Wolter, 2012]
- http://www.csc.liv.ac.uk/~michel/software/cex2/

LogDiffViz

- Protégé plugin that calls CEX2 and visualises ontology versions and the differences as a hierarchical structure
- http://www.csc.liv.ac.uk/~cs8wg/LogDiffViz/

Forgetting

Conclusion

CEX applied to SNOMED CT

Task: Compute the logical difference of two versions of SNOMED CT

- two versions:
 - SNOMED CT 2005 (SM-05):
 - 379 691 axioms
 - 09 February 2005
 - SNOMED CT 2006 (SM-06):
 - 389 472 axioms
 - 30 December 2006
- $\Sigma \subseteq sig(SM-05) \cap sig(SM-06)$ randomly selected
- compute average (of time/memory/diff-size) over 20 samples for every signature size
- hardware: Intel Core 2 CPU at 2.13 GHz and 3 GB of RAM

SM-05 vs SM-06

	CEX: diff(SM-05,SM-06)			
Size of	Time	Memory	$ diffL_{\Sigma} $	$ diffR_{\Sigma} $
Σ	(Sec.)	(MByte)		
100	513.1	1 393.7	0.10	0.10
1 000	512.4	1 394.6	2.35	2.15
10 000	517.7	1 424.3	155.35	125.35
100 000	559.8	1 473.2	11795.90	4 108.6

• Note: role box ignored

Comparison on the Joint Signature

- diff(SM-05,SM-06) on
 - $\Sigma = sig(SM-05) \cap sig(SM-06)$
 - 689 seconds
 - $|diffL_{\Sigma}| + |diffR_{\Sigma}| = 162010$
 - Class hierarchy comparison misses 32475 of them

ncremental Classification

Logical Diff

Forgetting

Conclusion

Comparing with classification

- Combined diffL $_{\Sigma}(\emptyset, M)$ and diffR $_{\Sigma}(\emptyset, M)$
 - M is a subset of SM-05 containing \sim 140,000 axioms
 - Σ randomly selected from M (incl. 20 role names)
 - avg. over 500 samples for each signature size
- Difference in class hierarchy

Forgetting

Conclusion

CEX on MEX

Instead of computing diffL_{Σ}($\mathcal{T}_1, \mathcal{T}_2$) \cup diffR_{Σ}($\mathcal{T}_1, \mathcal{T}_2$) directly,

- first extract minimal $\Sigma\text{-modules}\ {\cal T}_1'$ and ${\cal T}_2'$ from ${\cal T}_1$ and ${\cal T}_2,$ respectively,
- then compute diffL_{Σ}($\mathcal{T}'_1, \mathcal{T}'_2$) \cup diffR_{Σ}($\mathcal{T}'_1, \mathcal{T}'_2$).

	CEX: diff(SM-05,SM-06)			CEX: diff(Mod'05,Mod'06)		
Size of	Time	Memory	$ diffL_{\Sigma} $	$ diffR_{\Sigma} $	Time	Memory
Σ	(Sec.)	(MByte)			(Sec.)	(MByte)
100	513.1	1 393.7	0.0	0.0	3.66	116.5
1 000	512.4	1 394.6	2.5	2.5	4.46	122.5
10 000	517.7	1 424.3	183.2	122.0	22.29	126.5
100 000	559.8	1 473.2	11 322.1	4 108.5	189.98	615.8
379741	790.0	1999.3	191714	684.1	1850.7	237044

Incremental Classification	Logical Diff	Forgetting	Conclusio
And now			

1 Incremental Classification

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

4 Conclusion

Forgetting

Conclusion

Forgetting Vocabulary: Motivation

Forgetting vocabulary is eliminating that vocabulary from the ontology (involving a reformulation of the ontology).

Use-cases

- re-use: instead of whole ontology, use a potentially much smaller ontology resulting from forgetting
- predicate hiding: concealing confidential information in ontologies
- ontology summary: succinct presentation of what ontology states about non-forgotten vocabulary

The dual notion of forgetting is uniform interpolation.

Uniform Interpolation

Let \mathcal{T} be a \mathcal{EL} -TBox and Σ a signature. A TBox \mathcal{T}' is called a uniform interpolant of \mathcal{T} wrt. Σ if the following holds:

• $\operatorname{sig}(\mathcal{T}') \subseteq \Sigma;$ • $\mathcal{T} \equiv_{\Sigma}^{\mathcal{EL}} \mathcal{T}'.$

Theorem

Let $\mathcal{T}'_1, \mathcal{T}'_2$ be uniform interpolants of \mathcal{T}_1 and \mathcal{T}_2 wrt. Σ . The following conditions are equivalent:

•
$$\mathcal{T}_1 \equiv_{\Sigma}^{\mathcal{EL}} \mathcal{T}_2;$$

• \mathcal{T}'_1 and \mathcal{T}'_2 are logically equivalent.

Forgetting

Theorem

There exist an \mathcal{EL} -terminology \mathcal{T} and Σ such that there does not exist an uniform interpolant of \mathcal{T} wrt. Σ .

Proof. Let

$$\mathcal{T} = \{A \sqsubseteq B, B \sqsubseteq \exists r.B\}, \quad \Sigma = \{A, r\}.$$

An infinite axiomatisation of the uniform interpolant is given by

$$\{A \sqsubseteq \underbrace{\exists r \dots \exists r}_n . \top \mid n \ge 1\}.$$

A finite \mathcal{T}_{Σ} does not exist (even in first-order logic).

Forgetting

Acyclic \mathcal{EL} -terminologies

Theorem

For acyclic \mathcal{EL} -terminologies, uniform interpolants always exist. In the worst case, exponentially many axioms are required.

Proof of second part. Let

$$\mathcal{T} = \{A \equiv B_1 \sqcap \cdots \sqcap B_n\} \cup \{A_{ij} \sqsubseteq B_i \mid 1 \le i, j \le n\}.$$

and

$$\Sigma = \{A\} \cup \{A_{ij} \mid 1 \leq i, j \leq n\}.$$

Then

$$\mathcal{T}_{\Sigma} = \{A_{1j_1} \sqcap \cdots \sqcap A_{n,j_n} \sqsubseteq A \mid 1 \leq j_1, \ldots, j_n \leq n\}$$

is a minimal uniform interpolant. Note that $|\mathcal{T}_{\Sigma}| = n^n$.

Computing uniform interpolants for SNOMED CT and NCI

- NUI: prototype implementation computing uniform interpolants for acyclic *EL*-terminologies.
- Σ randomly selected from sig(SNOMED CT) and sig(*NCI*), respectively.
- table shows success rate of NUI

Σ	SNOMED CT	Σ	NCI
2 000	100.0%	5 000	97.0%
3 000	92.2%	10 000	81.1%
4 000	67.0%	15 000	72.0%
5 000	60.0%	20 000	59.2%

Comparing the size of MEX-modules and Σ -interpolants

• Size distribution of MEX-modules and instance Σ -interpolants of SNOMED CT wrt. signatures containing 3 000 concept names and 20 role names

Comparing the size of \top -local modules and Σ -interpolants

• Size distribution of CEL-modules and instance Σ -interpolants of NCI wrt. signatures containing 7 000 concept names and 20 role names

Forgetting

Conclusion

Uniform interpolants beyond \mathcal{EL}

Theorem

For \mathcal{ALC} -TBoxes, uniform interpolants expressed in FOL do not always exist. [Ghilardi, Lutz, Wolter, 2006]

Theorem

For \mathcal{ALC} -TBoxes, deciding the existence of uniform interpolants in ALC is 2ExpTime-complete. If they exist, uniform interpolants are most triple exponential in the size of the original TBox. [Lutz, Wolter, 2011]

Incremental Classification	Logical Diff	Forgetting	Conclusion
And now			

Incremental Classification

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

What are modules good for (so far)?

- import/reuse of ontologies (locality-based/MEX modules)
- towards understanding the structure of an ontology (atomic decomposition)
- incremental reasoning

Related notions

- Σ-inseparability (foundation of modules)
- logical difference (ontology versioning)
- forgetting (hiding of symbols)

Incremental Classification	Logical Diff	Forgetting	Conclusion
Outlook			

Some open problems

- finding appropriate signature for a module (shopping for symbols)
- methodology for collaborative ontology development using modules
- ontology comprehension/visualisation (e.g. using atomic decomposition)
- modular reasoning (improve performance using modules)

Forgetting

Conclusion

Logical Diff

ncremental Classification

So.. that's it.

Thank you for coming!

Reminder: Workshop on Modular Ontologies (WoMO) 7th International Workshop on Modular Ontologies September 15, Corunna, Spain http://www.iaoa.org/womo/2013.html

