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Incremental Classification

Incremental Classification: Motivation

@ early detection of modelling errors is important for developing
and maintaining ontologies

e frequent classification of ontologies required

@ issue:

e long response times from reasoners

@ solutions:

e classification algorithms and optimisation techniques
e lightweight logics with tractable classification such as £

@ limitation: similarities between versions of ontologies are not
taken into account (reasoning is repeated from scratch)
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Incremental Classification

Example: Incremental Classification

Original ontology O3
Cystic_Fibrosis = Fibrosis M Jlocated_In.Pancreas

Genetic__Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic_Fibrosis = Fibrosis M Pancreatic_Disorder
Genetic_ Fibrosis C Genetic_Disorder

Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas
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@ 9 concept names + T + L

@ taxonomy: 121 subsumptions
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Incremental Classification

Example: Incremental Classification

Updated ontology 0> = (01 \ O7) U OF

Cystic_Fibrosis = Fibrosis M Jlocated_In.Pancreas
M Shas_Origin.Genetic_Origin
Genetic_Fibrosis = Fibrosis M has_ Origin.Genetic_Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic_ Fibrosis = Genetic_Disorder

Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas
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°o 07 ={(1)}
e O" = {(1) M Jhas_Origin.Genetic_Origin}
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Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic_Fibrosis = Fibrosis M Jlocated__In.Pancreas
M Thas_ Origin.Genetic_Origin
Genetic_Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic__Fibrosis C Genetic_Disorder

Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas

(1)
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@ Which subsumptions have changed?
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Incremental Classification

Incremental Classification

Idea
@ small changes in ontologies affect relatively few subsumptions
@ avoid recomputing unaffected subsumptions
@ identify subsumptions affected by change using modules
@ [Cuenca Grau et al., JAR 2010]
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Incremental Classification Logical Diff Forgetting Conclusion

Incremental Classification using Modules

M C O is a module for axiom « in O if:

ME aiff O E «a.

@ locality-based modules for sig(a) of O have this property

Let 01 and O3 be ontologies and « an axiom. Let fo be a
module for a in O;, for i =1, 2.

e if O haandMiQOz,then(’)glza
o if O1 £ o and M2 C Oy, then O, £ «
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Incremental Classification

Algorithm: Incremental Classification using Modules

Algorithm: Step 1

Input: Oq, 4, M,14|A65ig((’)1)1 O—, 0t

Output: Oy, o, M%'AEsig(Og)

Oy = (Ol \ O_) uot

For every A € sig(O2) \ sig(01)
M = My
for every (T7 B) Egl: El = El U {(A7 B)}
for every (B, L) €C1: C1:=LC; U{(B,A)}

Update ontology

Set a module and update classification [C; for the new concept
names
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Incremental Classification

Algorithm: Incremental Classification using Modules

Algorithm: Step 2
N~ :=0, Nt :=0
For every A € sig(O3)
For every a € O~
if a not sig(M?3)-local, then N~ := N~ U {A}
For every a € Ot
if a not sig(MY)-local, then N* := N+t U {A}

Determine concept names whose modules are affected by the
change (using locality check for axioms)
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Incremental Classification

Algorithm: Incremental Classification using Modules

Algorithm: Step 3
For every A € sig(O,)
If A€ N~ U NT, then M3 := extract_module({A}, 02);
else M3 := M},

Determine the module for every concept name (recomputing
affected modules)
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Incremental Classification

Algorithm: Incremental Classification using Modules

Algorithm: Step 4

For every A € sig(O3)
For every B € sig(O,) U { L}
if (A€ N~ and A Cy B) or
(A€ Nt and AZ; B)
then Co:=C, U{(A,B)}if M3 EALC B
else Cr:=0Cr U{(A,B)}if (A B) ey

Determine new classification 5 (possibly using a reasoner — any
reasoner)
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Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic_Fibrosis = Fibrosis M Jlocated__In.Pancreas
M has_Origin.Genetic_Origin
Genetic_Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic_ Fibrosis C Genetic_Disorder

Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas

(10)

@ Algorithm Step 1:
e skip since no new symbols were added

Thomas Schneider, Dirk Walther Modularity: Other

Yo



Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic__Fibrosis = Fibrosis M Jlocated__In.Pancreas
M Fhas_Origin.Genetic_Origin
Genetic_ Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic_ Fibrosis C Genetic_Disorder

Pancreatic__Disorder = Disorder M Jlocated__In.Pancreas

@ Algorithm Step 2:
o N~ = {Cystic_Fibrosis, Pancreatic_Fibrosis}
o NT = {Cystic_Fibrosis}
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Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic_Fibrosis = Fibrosis M Jlocated_In.Pancreas (6)
M has_Origin.Genetic_Origin
Genetic_Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin (7)
Pancreatic__Fibrosis = Fibrosis M Pancreatic_Disorder (8)
Genetic_Fibrosis C Genetic_Disorder (9)
Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas (10))

@ Algorithm Step 3:
e compute modules for Cystic_Fibrosis and Pancreatic_ Fibrosis
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Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic_Fibrosis = Fibrosis M Jlocated_ In.Pancreas
M Fhas_Origin.Genetic_Origin
Genetic_ Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic_ Fibrosis C Genetic_Disorder

Pancreatic__Disorder = Disorder M Jlocated__In.Pancreas

(6)

(8)
(9)
(10) |

@ Algorithm Step 4:

e compute whether O, = Pancreatic_Fibrosis C B
e compute whether O, = Cystic_Fibrosis C B
e perform only about 13 subsumption tests
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Logical Diff

Logical Difference: Motivation

Task

@ given two versions 71 and 7> of an ontology and a signature
Y, compute “the difference” between 71 and 75 observable in

> in a query language QL.

Syntactical difference
@ Many tools compute the syntactical difference between
versions of texts and program code.
@ But many syntactic differences do not affect the semantics of
ontologies!

o Example:
o 1 = {A‘:Bl|_|32} B:{AEBl,AEBQ}
Y ={A By, B}

o Then 71 # 7o, but 71 =3° To.
U
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Logical Diff

Logical Difference: Motivation

Structural difference

@ extends syntactic diff by taking into account structural
meta-information of distinct versions of ontologies

@ regards ontologies as structured objects (e.g., taxonomy, set
of RDF triplets, set of axioms)

@ changes are structural operations (e.g.,
adding/deleting/extending/renaming classes)

@ but:

e syntax dependent and no formal semantics
e tailored to applications of ontologies based on taxonomy
e ontology based data access not captured
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Logical Diff

Logical Difference

71 and 7> ontologies, QL a query language, ¥ a signature.
The logical difference between 77 and T, wrt. (QL,Y) is defined as

Diff 24 (71, T2) U Diff4(T2, T1),

where
o Diffe“(T1, o) = {9 € QL | Ti E . T2 £ ¢,sig(p) € T}
o Diffe“(T2, T1) = {9 € QL | T2 E ., T1 ¥ ¢,sig(p) € T}

Observation: Diffg*(7y, T2) U Diffe(T2, T1) = 0 iff T =2° Ta.
Problem: How to present DifF%ﬁ(’Tl,Tg) if it is non-empty?
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Logical Diff

> -difference for £L-terminologies

Take query language QLg, consisting of C = D, where C, D are
EL-concepts. We also denote QLg, simply as EL.
Set

Diffs (71, 72) = Diffé*(T1, Ta).

Example of ‘large’ smallest elements in Diffs (71, 72):
° T2 =0;
o 71 ={A' C By,A= B,}U{Biy1 = Ir.BiM3s.B | i < n};
oY ={A Ar,s}

For the minimal C C A € Diffs (71, 72) we have |C| = 2".
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Logical Diff

> -difference for £L-terminologies

Theorem (“Primitive Witnesses Theorem")
If (C E D) € Diffs(T1, 72) then either

e (AL Dy) € Diffs(T1, 72) or

o (Co C A) € Diffs(T1, T2),
where A is a concept name and

A, Co — subconcepts of C;
Dy, A — subconcepts of D, resp.

In propositional EL: if C C A; M Ay € Diffs(71, 72), then
e C C Ay € Diffg(7T1,7T2) or
e C C A, € Diffg(T1, T2)-
(&
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Logical Diff

Compact representation of Diffy (77, 72)

Let

o difiLy (71, 73) =

Acy there is a ¥-concept C in EL s.t.
TTEACCand b EFACC

e diffRs(71,72) =
{A cy there is a Z-concept C in EL s.t. }

TiECCAand b EFCCA
diffLy (71, 72) and diffRs (71, 72) provide a list of concept names in
Y about which 77 “says more” than 7>.
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Logical Diff

> -difference between E£L-terminologies

Theorem

Let 71 and T, be £L-terminologies and X a signature. Then
e diffLx(71,72) and
e diffRyx (71, 72)

can be computed in polynomial time. In particular, X-inseparability
wrt. EL is tractable.

y
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Logical Diff

Tools

CEX

@ implementation of tractable algorithm computing
DiffLy (71, 72) and DiffRx (771, T2) for acyclic EL-terminologies
[Konev, Walther, Wolter, 2008]

@ http://www.csc.liv.ac.uk/ konev/software/

OWLDiff

o CEX-diff for £L-terminologies
[Kremen, Smid, Kouba, 2011, to appear]

@ plugins for Protégé and NeON toolkit
@ http://krizik.felk.cvut.cz/km/owldiff
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Logical Diff

Tools

CEX2

e extends CEX to ELH" (i.e. EL with role inclusion axioms and
domain and range restrictions) without loosing tractability
[Konev, Ludwig, Walther, Wolter, 2012]

@ http://www.csc.liv.ac.uk/ michel/software/cex2/

LogDiffViz

@ Protégé plugin that calls CEX2 and visualises ontology
versions and the differences as a hierarchical structure

@ http://www.csc.liv.ac.uk/ cs8wg/LogDiffViz/
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Logical Diff

CEX applied to SNOMED CT

Task: Compute the logical difference of two versions of
SNOMED CT

@ two versions:
o SNOMED CT 2005 (SM-05):

@ 379691 axioms
e 09 February 2005

o SNOMED CT 2006 (SM-06):

@ 389472 axioms
@ 30 December 2006

e ¥ C sig(SM-05) N sig(SM-06) randomly selected

@ compute average (of time/memory/diff-size) over 20 samples
for every signature size

@ hardware: Intel Core 2 CPU at 2.13 GHz and 3 GB of RAM
U
20
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SM-05 vs SM-06

Logical Diff

CEX: diff(SM-05,SM-06)
Size of | Time | Memory | |diffLy| | |diffRg|
x (Sec.) | (MByte)

100 513.1 | 1393.7 0.10 0.10
1000 512.4 | 1394.6 2.35 2.15
10000 | 517.7 | 14243 155.35 125.35

100000 || 559.8 | 1473.2 | 11795.90 | 4108.6

@ Note: role box ignored

Thomas Schneider, Dirk Walther
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Logical Diff

Comparison on the Joint Signature

e diff(SM-05,SM-06) on
Y = sig(SM-05) N sig(SM-06)
e 689 seconds
o |diffLy| + |diffRg| = 162010
e Class hierarchy comparison misses 32475 of them
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Incremental Classification Logical Diff

Comparing with classification

Forgetting

e Combined diffLx (@, M) and diffRs (0, M)
e M is a subset of SM-05 containing ~ 140,000 axioms
e Y — randomly selected from M (incl. 20 role names)
e avg. over 500 samples for each signature size

o Difference in class hierarchy

Conclusion

60

50

Size of difil. U diffR
~ w B
=] =1 S

=
S

o
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Logical Diff

CEX on MEX

Instead of computing diffLs (77, 72) U diffRg (71, 72) directly,
o first extract minimal X-modules 7'1’ and ’7'2’ from 71 and 7>,
respectively,

e then compute diffLx (77, 7)) U diffRs(7{, 7).

CEX: diff(SM-05,SM-06) CEX: diff(Mod'05,Mod’06) ‘

Size of || Time | Memory | [diffLs| | |diffRg| || Time Memory

r (Sec.) | (MByte) (Sec.) (MByte)
100 513.1 | 1393.7 0.0 0.0 3.66 116.5
1000 512.4 | 1394.6 25 2.5 4.46 122.5
10000 || 517.7 | 14243 183.2 122.0 22.29 126.5
100000 || 559.8 | 1473.2 | 11322.1 | 4108.5 | 189.98 615.8
379741 || 790.0 | 1999.3 191714 684.1 1850.7 237044
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Forgetting

Forgetting Vocabulary: Motivation

Forgetting vocabulary is eliminating that vocabulary from the
ontology (involving a reformulation of the ontology).

Use-cases

@ re-use: instead of whole ontology, use a potentially much
smaller ontology resulting from forgetting

@ predicate hiding: concealing confidential information in
ontologies

@ ontology summary: succinct presentation of what ontology
states about non-forgotten vocabulary

The dual notion of forgetting is uniform interpolation.
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Forgetting

Uniform Interpolation

Let 7 be a ££-TBox and X a signature. A TBox 7 is called a
uniform interpolant of 7 wrt. X if the following holds:

e sig(7") C X,

o T =547

Theorem

Let 7/, 7; be uniform interpolants of 7; and 7, wrt. ¥.
The following conditions are equivalent:

o i =5 To;

e 7/ and T are logically equivalent.
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Forgetting

EL-terminologies

Theorem

There exist an EL-terminology 7 and X such that there does not
exist an uniform interpolant of 7 wrt. X.

Proof. Let
T={ACB,BC 3r.B}, X={Ar}
An infinite axiomatisation of the uniform interpolant is given by

{AC 3r..--3r. T | n>1}.
[ ———

A finite Ty does not exist (even in first-order logic).
Y
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Forgetting

Acyclic EL-terminologies

Theorem

For acyclic £L-terminologies, uniform interpolants always exist. In
the worst case, exponentially many axioms are required.

Proof of second part. Let

T={A=Bn---MB,}U{A; C B |1<i,j<n}

and
r={Atu{A;|1<ij<n}
Then
7-2 = {Aljl rl"'rlAn,jn EA | 1 Sjla"'vjn S n}
is a minimal uniform interpolant. Note that |7x| = n". @)
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Forgetting

Computing uniform interpolants for SNOMED CT and NCI

@ NUI: prototype implementation computing uniform
interpolants for acyclic ££-terminologies.

e ¥ — randomly selected from sig(SNOMED CT) and
sig(NCl), respectively.
@ table shows success rate of NUI

[ T=] [SNOMED CT [ [X] [ NCI |

2000 100.0% 5000 | 97.0%
3000 92.2% 10000 | 81.1%
4000 67.0% 15000 | 72.0%
5000 60.0% 20000 | 59.2%
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Incremental Classification Logical Diff Forgetting

Comparing the size of MEX-modules and X -interpolants

Conclusion

@ Size distribution of MEX-modules and instance X-interpolants
of SNOMED CT wrt. signatures containing 3 000 concept

names and 20 role names

85
m MEX
80
BN
20 —
15
10
5
0 IIIJ_F_F_F_FJJ_F_Wﬁ
2 o o o ©o ©o @ ©o © © © o o o o o o o o So
2 © 6 @ © © e o e e e o o e o o 6 e o <So
2 ©o ©o © ©o © © ©o ©o ©o o o o o o ©o o o o 2o
© ©o ©o ©o ©o ©o ©o © ©o ©o o ©o o o o ©o o o o 2o
n © m © 1 e m e I e m o m @ I o m © mnm <So
= = N ™ Mm m g g W W ® 9 ~ ™~ ® B o o 29
—
A

Thomas Schneider, Dirk Walther Modularity: Other

©
®

w
s



Incremental Classification Logical Diff Forgetting Conclusion

Comparing the size of T-local modules and X -interpolants

@ Size distribution of CEL-modules and instance Z-interpolants
of NCI wrt. signatures containing 7 000 concept names and 20
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Incremental Classification Logical Diff Forgetting Conclusion

Uniform interpolants beyond ££

For ALC-TBoxes, uniform interpolants expressed in FOL do not
always exist. [Ghilardi, Lutz, Wolter, 2006]

For ALC-TBoxes, deciding the existence of uniform interpolants in
ALC is 2ExpTime-complete. If they exist, uniform interpolants are
most triple exponential in the size of the original TBox.

[Lutz, Wolter, 2011]

Yo

Thomas Schneider, Dirk Walther Modularity: Other 33



Incremental Classification Logical Diff Forgetting Conclusion

@ Incremental Classification
© Logical Difference for Ontology Versioning
9 Forgetting and Uniform Interpolation

@ Conclusion

Yo



Conclusion

Conclusion

What are modules good for (so far)?
@ import/reuse of ontologies (locality-based/MEX modules)

e towards understanding the structure of an ontology (atomic
decomposition)

@ incremental reasoning

Related notions
@ Y -inseparability (foundation of modules)
e logical difference (ontology versioning)
e forgetting (hiding of symbols)
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Conclusion

Outlook

Some open problems

e finding appropriate signature for a module (shopping for
symbols)

@ methodology for collaborative ontology development using
modules

@ ontology comprehension /visualisation (e.g. using atomic
decomposition)

e modular reasoning (improve performance using modules)
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Conclusion

So.. that's it.

Thank you for coming!

tschneider(at)informatik.uni-bremen.de
dirk.walther(at)tu-dresden.de

Reminder: Workshop on Modular Ontologies (WoMO)
7th International Workshop on Modular Ontologies
September 15, Corunna, Spain
http://www.iaoa.org/womo/2013.html
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