
Incremental Classification Logical Diff Forgetting Conclusion

Modularity in Ontologies:
Incremental Classification, Logical Diff and

Forgetting

Thomas Schneider1 Dirk Walther 2

1Department of Computer Science, University of Bremen, Germany

2Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 16 August 2013

Thomas Schneider, Dirk Walther Modularity: Other 1

Incremental Classification Logical Diff Forgetting Conclusion

Plan for today

1 Incremental Classification

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

4 Conclusion

Thomas Schneider, Dirk Walther Modularity: Other 2

Incremental Classification Logical Diff Forgetting Conclusion

And now . . .

1 Incremental Classification

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

4 Conclusion

Thomas Schneider, Dirk Walther Modularity: Other 3

Incremental Classification Logical Diff Forgetting Conclusion

Incremental Classification: Motivation

early detection of modelling errors is important for developing
and maintaining ontologies

frequent classification of ontologies required

issue:
long response times from reasoners

solutions:
classification algorithms and optimisation techniques
lightweight logics with tractable classification such as EL

limitation: similarities between versions of ontologies are not
taken into account (reasoning is repeated from scratch)

Thomas Schneider, Dirk Walther Modularity: Other 4

Incremental Classification Logical Diff Forgetting Conclusion

Example: Incremental Classification

Original ontology O1

Cystic_Fibrosis ≡ Fibrosis u ∃located_In.Pancreas (1)

u ∃has_Origin.Genetic_Origin

Genetic_Fibrosis ≡ Fibrosis u has_Origin.Genetic_Origin (2)
Pancreatic_Fibrosis ≡ Fibrosis u Pancreatic_Disorder (3)

Genetic_Fibrosis v Genetic_Disorder (4)
Pancreatic_Disorder ≡ Disorder u ∃located_In.Pancreas (5)

9 concept names + > + ⊥
taxonomy: 121 subsumptions

Thomas Schneider, Dirk Walther Modularity: Other 5

Incremental Classification Logical Diff Forgetting Conclusion

Example: Incremental Classification

Updated ontology O2 = (O1 \ O−) ∪ O+

Cystic_Fibrosis ≡ Fibrosis u ∃located_In.Pancreas (1)
u ∃has_Origin.Genetic_Origin

Genetic_Fibrosis ≡ Fibrosis u has_Origin.Genetic_Origin (2)
Pancreatic_Fibrosis ≡ Fibrosis u Pancreatic_Disorder (3)

Genetic_Fibrosis v Genetic_Disorder (4)
Pancreatic_Disorder ≡ Disorder u ∃located_In.Pancreas (5)

O− = {(1)}
O+ = {(1) u ∃has_Origin.Genetic_Origin}

Thomas Schneider, Dirk Walther Modularity: Other 5

Incremental Classification Logical Diff Forgetting Conclusion

Example: Incremental Classification

Updated ontology O2 = (O1 \ O−) ∪ O+

Cystic_Fibrosis ≡ Fibrosis u ∃located_In.Pancreas (1)
u ∃has_Origin.Genetic_Origin

Genetic_Fibrosis ≡ Fibrosis u has_Origin.Genetic_Origin (2)
Pancreatic_Fibrosis ≡ Fibrosis u Pancreatic_Disorder (3)

Genetic_Fibrosis v Genetic_Disorder (4)
Pancreatic_Disorder ≡ Disorder u ∃located_In.Pancreas (5)

Which subsumptions have changed?

Thomas Schneider, Dirk Walther Modularity: Other 5

Incremental Classification Logical Diff Forgetting Conclusion

Incremental Classification

Idea
small changes in ontologies affect relatively few subsumptions
avoid recomputing unaffected subsumptions
identify subsumptions affected by change using modules
[Cuenca Grau et al., JAR 2010]

Thomas Schneider, Dirk Walther Modularity: Other 6

Incremental Classification Logical Diff Forgetting Conclusion

Incremental Classification using Modules

Definition
M ⊆ O is a module for axiom α in O if:

M |= α iff O |= α.

locality-based modules for sig(α) of O have this property

Proposition
Let O1 and O2 be ontologies and α an axiom. Let Mi

α be a
module for α in Oi , for i = 1, 2.

if O1 |= α and M1
α ⊆ O2, then O2 |= α

if O1 6|= α and M2
α ⊆ O1, then O2 6|= α

Thomas Schneider, Dirk Walther Modularity: Other 7

Incremental Classification Logical Diff Forgetting Conclusion

Algorithm: Incremental Classification using Modules

Algorithm: Step 1
Input: O1, v1, M1

A|A∈sig(O1), O−, O+

Output: O2, v2, M2
A|A∈sig(O2)

O2 := (O1 \ O−) ∪ O+

For every A ∈ sig(O2) \ sig(O1)
M1

A := M1
>

for every (>,B) ∈v1: v1 :=v1 ∪{(A,B)}
for every (B,⊥) ∈v1: v1 :=v1 ∪{(B,A)}

Update ontology
Set a module and update classification v1 for the new concept
names

Thomas Schneider, Dirk Walther Modularity: Other 8

Incremental Classification Logical Diff Forgetting Conclusion

Algorithm: Incremental Classification using Modules

Algorithm: Step 2
N− := ∅, N+ := ∅
For every A ∈ sig(O2)

For every α ∈ O−
if α not sig(M1

A)-local, then N− := N− ∪ {A}
For every α ∈ O+

if α not sig(M1
A)-local, then N+ := N+ ∪ {A}

Determine concept names whose modules are affected by the
change (using locality check for axioms)

Thomas Schneider, Dirk Walther Modularity: Other 8

Incremental Classification Logical Diff Forgetting Conclusion

Algorithm: Incremental Classification using Modules

Algorithm: Step 3
For every A ∈ sig(O2)

If A ∈ N− ∪ N+, then M2
A := extract_module({A},O2);

else M2
A := M1

A

Determine the module for every concept name (recomputing
affected modules)

Thomas Schneider, Dirk Walther Modularity: Other 8

Incremental Classification Logical Diff Forgetting Conclusion

Algorithm: Incremental Classification using Modules

Algorithm: Step 4
For every A ∈ sig(O2)

For every B ∈ sig(O2) ∪ {⊥}
if (A ∈ N− and A v1 B) or
(A ∈ N+ and A 6v1 B)

then v2 :=v2 ∪{(A,B)} if M2
A |= A v B

else v2 :=v2 ∪{(A,B)} if (A,B) ∈v1

Determine new classification v2 (possibly using a reasoner – any
reasoner)

Thomas Schneider, Dirk Walther Modularity: Other 8

Incremental Classification Logical Diff Forgetting Conclusion

Example: Incremental Classification

Updated ontology O2 = (O1 \ O−) ∪ O+

Cystic_Fibrosis ≡ Fibrosis u ∃located_In.Pancreas (6)
u ∃has_Origin.Genetic_Origin

Genetic_Fibrosis ≡ Fibrosis u has_Origin.Genetic_Origin (7)
Pancreatic_Fibrosis ≡ Fibrosis u Pancreatic_Disorder (8)

Genetic_Fibrosis v Genetic_Disorder (9)
Pancreatic_Disorder ≡ Disorder u ∃located_In.Pancreas (10)

Algorithm Step 1:
skip since no new symbols were added

Thomas Schneider, Dirk Walther Modularity: Other 9

Incremental Classification Logical Diff Forgetting Conclusion

Example: Incremental Classification

Updated ontology O2 = (O1 \ O−) ∪ O+

Cystic_Fibrosis ≡ Fibrosis u ∃located_In.Pancreas (6)
u ∃has_Origin.Genetic_Origin

Genetic_Fibrosis ≡ Fibrosis u has_Origin.Genetic_Origin (7)
Pancreatic_Fibrosis ≡ Fibrosis u Pancreatic_Disorder (8)

Genetic_Fibrosis v Genetic_Disorder (9)
Pancreatic_Disorder ≡ Disorder u ∃located_In.Pancreas (10)

Algorithm Step 2:
N− = {Cystic_Fibrosis,Pancreatic_Fibrosis}
N+ = {Cystic_Fibrosis}

Thomas Schneider, Dirk Walther Modularity: Other 9

Incremental Classification Logical Diff Forgetting Conclusion

Example: Incremental Classification

Updated ontology O2 = (O1 \ O−) ∪ O+

Cystic_Fibrosis ≡ Fibrosis u ∃located_In.Pancreas (6)
u ∃has_Origin.Genetic_Origin

Genetic_Fibrosis ≡ Fibrosis u has_Origin.Genetic_Origin (7)
Pancreatic_Fibrosis ≡ Fibrosis u Pancreatic_Disorder (8)

Genetic_Fibrosis v Genetic_Disorder (9)
Pancreatic_Disorder ≡ Disorder u ∃located_In.Pancreas (10)

Algorithm Step 3:
compute modules for Cystic_Fibrosis and Pancreatic_Fibrosis

Thomas Schneider, Dirk Walther Modularity: Other 9

Incremental Classification Logical Diff Forgetting Conclusion

Example: Incremental Classification

Updated ontology O2 = (O1 \ O−) ∪ O+

Cystic_Fibrosis ≡ Fibrosis u ∃located_In.Pancreas (6)
u ∃has_Origin.Genetic_Origin

Genetic_Fibrosis ≡ Fibrosis u has_Origin.Genetic_Origin (7)
Pancreatic_Fibrosis ≡ Fibrosis u Pancreatic_Disorder (8)

Genetic_Fibrosis v Genetic_Disorder (9)
Pancreatic_Disorder ≡ Disorder u ∃located_In.Pancreas (10)

Algorithm Step 4:
compute whether O2 |= Pancreatic_Fibrosis v B
compute whether O2 |= Cystic_Fibrosis v B
perform only about 13 subsumption tests

Thomas Schneider, Dirk Walther Modularity: Other 9

Incremental Classification Logical Diff Forgetting Conclusion

And now . . .

1 Incremental Classification

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

4 Conclusion

Thomas Schneider, Dirk Walther Modularity: Other 10

Incremental Classification Logical Diff Forgetting Conclusion

Logical Difference: Motivation

Task
given two versions T1 and T2 of an ontology and a signature
Σ, compute “the difference” between T1 and T2 observable in
Σ in a query language QL.

Syntactical difference
Many tools compute the syntactical difference between
versions of texts and program code.
But many syntactic differences do not affect the semantics of
ontologies!
Example:

T1 = {A v B1 u B2}, T2 = {A v B1,A v B2}
Σ = {A,B1,B2}
Then T1 6= T2, but T1 ≡SO

Σ T2.

Thomas Schneider, Dirk Walther Modularity: Other 11

Incremental Classification Logical Diff Forgetting Conclusion

Logical Difference: Motivation

Structural difference
extends syntactic diff by taking into account structural
meta-information of distinct versions of ontologies
regards ontologies as structured objects (e.g., taxonomy, set
of RDF triplets, set of axioms)
changes are structural operations (e.g.,
adding/deleting/extending/renaming classes)
but:

syntax dependent and no formal semantics
tailored to applications of ontologies based on taxonomy
ontology based data access not captured

Thomas Schneider, Dirk Walther Modularity: Other 12

Incremental Classification Logical Diff Forgetting Conclusion

Logical Difference

T1 and T2 ontologies, QL a query language, Σ a signature.
The logical difference between T1 and T2 wrt. (QL,Σ) is defined as

DiffQL
Σ (T1, T2) ∪ DiffQL

Σ (T2, T1),

where
DiffQL

Σ (T1, T2) = {ϕ ∈ QL | T1 |= ϕ, T2 6|= ϕ, sig(ϕ) ∈ Σ}.
DiffQL

Σ (T2, T1) = {ϕ ∈ QL | T2 |= ϕ, T1 6|= ϕ, sig(ϕ) ∈ Σ}.

Observation: DiffQL
Σ (T1, T2) ∪ DiffQL

Σ (T2, T1) = ∅ iff T1 ≡QL
Σ T2.

Problem: How to present DiffQL
Σ (T1, T2) if it is non-empty?

Thomas Schneider, Dirk Walther Modularity: Other 13

Incremental Classification Logical Diff Forgetting Conclusion

Σ-difference for EL-terminologies

Take query language QLEL consisting of C v D, where C ,D are
EL-concepts. We also denote QLEL simply as EL.
Set

DiffΣ(T1, T2) = DiffEL
Σ (T1, T2).

Example of ‘large’ smallest elements in DiffΣ(T1, T2):
T2 = ∅;
T1 = {A′ v B0,A ≡ Bn}∪ {Bi+1 ≡ ∃r .Bi u∃s.Bi | i < n};
Σ = {A′,A, r , s}.

For the minimal C v A ∈ DiffΣ(T1, T2) we have |C | = 2n.

Thomas Schneider, Dirk Walther Modularity: Other 14

Incremental Classification Logical Diff Forgetting Conclusion

Σ-difference for EL-terminologies

Theorem (“Primitive Witnesses Theorem”)
If (C v D) ∈ DiffΣ(T1, T2) then either

(A v D0) ∈ DiffΣ(T1, T2) or
(C0 v A) ∈ DiffΣ(T1, T2),

where A is a concept name and
A, C0 — subconcepts of C ;
D0, A — subconcepts of D, resp.

In propositional EL: if C v A1 u A2 ∈ DiffΣ(T1, T2), then
C v A1 ∈ DiffΣ(T1, T2) or
C v A2 ∈ DiffΣ(T1, T2).

Thomas Schneider, Dirk Walther Modularity: Other 15

Incremental Classification Logical Diff Forgetting Conclusion

Compact representation of DiffΣ(T1, T2)

Let
diffLΣ(T1, T2) ={

A ∈ Σ

∣∣∣∣∣ there is a Σ-concept C in EL s.t.
T1 |= A v C and T2 6|= A v C

}

diffRΣ(T1, T2) ={
A ∈ Σ

∣∣∣∣∣ there is a Σ-concept C in EL s.t.
T1 |= C v A and T2 6|= C v A

}

diffLΣ(T1, T2) and diffRΣ(T1, T2) provide a list of concept names in
Σ about which T1 “says more” than T2.

Thomas Schneider, Dirk Walther Modularity: Other 16

Incremental Classification Logical Diff Forgetting Conclusion

Σ-difference between EL-terminologies

Theorem
Let T1 and T2 be EL-terminologies and Σ a signature. Then

diffLΣ(T1, T2) and
diffRΣ(T1, T2)

can be computed in polynomial time. In particular, Σ-inseparability
wrt. EL is tractable.

Thomas Schneider, Dirk Walther Modularity: Other 17

Incremental Classification Logical Diff Forgetting Conclusion

Tools

CEX
implementation of tractable algorithm computing
DiffLΣ(T1, T2) and DiffRΣ(T1, T2) for acyclic EL-terminologies
[Konev, Walther, Wolter, 2008]
http://www.csc.liv.ac.uk/~konev/software/

OWLDiff
CEX-diff for EL-terminologies
[Kremen, Smid, Kouba, 2011, to appear]
plugins for Protégé and NeON toolkit
http://krizik.felk.cvut.cz/km/owldiff

Thomas Schneider, Dirk Walther Modularity: Other 18

http://www.csc.liv.ac.uk/~konev/software/
http://krizik.felk.cvut.cz/km/owldiff

Incremental Classification Logical Diff Forgetting Conclusion

Tools

CEX2
extends CEX to ELHr (i.e. EL with role inclusion axioms and
domain and range restrictions) without loosing tractability
[Konev, Ludwig, Walther, Wolter, 2012]
http://www.csc.liv.ac.uk/~michel/software/cex2/

LogDiffViz
Protégé plugin that calls CEX2 and visualises ontology
versions and the differences as a hierarchical structure
http://www.csc.liv.ac.uk/~cs8wg/LogDiffViz/

Thomas Schneider, Dirk Walther Modularity: Other 19

http://www.csc.liv.ac.uk/~michel/software/cex2/
http://www.csc.liv.ac.uk/~cs8wg/LogDiffViz/

Incremental Classification Logical Diff Forgetting Conclusion

CEX applied to SNOMED CT

Task: Compute the logical difference of two versions of
SNOMED CT

two versions:
SNOMED CT 2005 (SM-05):

379 691 axioms
09 February 2005

SNOMED CT 2006 (SM-06):
389 472 axioms
30 December 2006

Σ ⊆ sig(SM-05) ∩ sig(SM-06) randomly selected
compute average (of time/memory/diff-size) over 20 samples
for every signature size
hardware: Intel Core 2 CPU at 2.13 GHz and 3 GB of RAM

Thomas Schneider, Dirk Walther Modularity: Other 20

Incremental Classification Logical Diff Forgetting Conclusion

SM-05 vs SM-06

CEX: diff(SM-05,SM-06)
Size of Time Memory |diffLΣ| |diffRΣ|

Σ (Sec.) (MByte)
100 513.1 1 393.7 0.10 0.10
1 000 512.4 1 394.6 2.35 2.15
10 000 517.7 1 424.3 155.35 125.35
100 000 559.8 1 473.2 11 795.90 4 108.6

Note: role box ignored

Thomas Schneider, Dirk Walther Modularity: Other 21

Incremental Classification Logical Diff Forgetting Conclusion

Comparison on the Joint Signature

diff(SM-05,SM-06) on
Σ = sig(SM-05) ∩ sig(SM-06)

689 seconds
|diffLΣ| + |diffRΣ| = 162010
Class hierarchy comparison misses 32475 of them

Thomas Schneider, Dirk Walther Modularity: Other 22

Incremental Classification Logical Diff Forgetting Conclusion

Comparing with classification

Combined diffLΣ(∅,M) and diffRΣ(∅,M)

M is a subset of SM-05 containing ∼ 140, 000 axioms
Σ — randomly selected from M (incl. 20 role names)
avg. over 500 samples for each signature size

Difference in class hierarchy

Thomas Schneider, Dirk Walther Modularity: Other 23

Incremental Classification Logical Diff Forgetting Conclusion

CEX on MEX

Instead of computing diffLΣ(T1, T2) ∪ diffRΣ(T1, T2) directly,
first extract minimal Σ-modules T ′1 and T ′2 from T1 and T2,
respectively,
then compute diffLΣ(T ′1 , T ′2) ∪ diffRΣ(T ′1 , T ′2).

CEX: diff(SM-05,SM-06) CEX: diff(Mod’05,Mod’06)
Size of Time Memory |diffLΣ| |diffRΣ| Time Memory

Σ (Sec.) (MByte) (Sec.) (MByte)
100 513.1 1 393.7 0.0 0.0 3.66 116.5
1 000 512.4 1 394.6 2.5 2.5 4.46 122.5
10 000 517.7 1 424.3 183.2 122.0 22.29 126.5
100 000 559.8 1 473.2 11 322.1 4 108.5 189.98 615.8
379741 790.0 1999.3 191714 684.1 1850.7 237044

Thomas Schneider, Dirk Walther Modularity: Other 24

Incremental Classification Logical Diff Forgetting Conclusion

And now . . .

1 Incremental Classification

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

4 Conclusion

Thomas Schneider, Dirk Walther Modularity: Other 25

Incremental Classification Logical Diff Forgetting Conclusion

Forgetting Vocabulary: Motivation

Forgetting vocabulary is eliminating that vocabulary from the
ontology (involving a reformulation of the ontology).

Use-cases
re-use: instead of whole ontology, use a potentially much
smaller ontology resulting from forgetting
predicate hiding: concealing confidential information in
ontologies
ontology summary: succinct presentation of what ontology
states about non-forgotten vocabulary

The dual notion of forgetting is uniform interpolation.

Thomas Schneider, Dirk Walther Modularity: Other 26

Incremental Classification Logical Diff Forgetting Conclusion

Uniform Interpolation

Let T be a EL-TBox and Σ a signature. A TBox T ′ is called a
uniform interpolant of T wrt. Σ if the following holds:

sig(T ′) ⊆ Σ;
T ≡EL

Σ T ′.

Theorem
Let T ′1 , T ′2 be uniform interpolants of T1 and T2 wrt. Σ.
The following conditions are equivalent:

T1 ≡EL
Σ T2;

T ′1 and T ′2 are logically equivalent.

Thomas Schneider, Dirk Walther Modularity: Other 27

Incremental Classification Logical Diff Forgetting Conclusion

EL-terminologies

Theorem
There exist an EL-terminology T and Σ such that there does not
exist an uniform interpolant of T wrt. Σ.

Proof. Let

T = {A v B,B v ∃r .B}, Σ = {A, r}.

An infinite axiomatisation of the uniform interpolant is given by

{A v ∃r . · · · ∃r︸ ︷︷ ︸
n

.> | n ≥ 1}.

A finite TΣ does not exist (even in first-order logic).

Thomas Schneider, Dirk Walther Modularity: Other 28

Incremental Classification Logical Diff Forgetting Conclusion

Acyclic EL-terminologies

Theorem
For acyclic EL-terminologies, uniform interpolants always exist. In
the worst case, exponentially many axioms are required.

Proof of second part. Let

T = {A ≡ B1 u · · · u Bn} ∪ {Aij v Bi | 1 ≤ i , j ≤ n}.

and
Σ = {A} ∪ {Aij | 1 ≤ i , j ≤ n}.

Then

TΣ = {A1j1 u · · · u An,jn v A | 1 ≤ j1, . . . , jn ≤ n}

is a minimal uniform interpolant. Note that |TΣ| = nn.

Thomas Schneider, Dirk Walther Modularity: Other 29

Incremental Classification Logical Diff Forgetting Conclusion

Computing uniform interpolants for SNOMED CT and NCI

NUI: prototype implementation computing uniform
interpolants for acyclic EL-terminologies.
Σ — randomly selected from sig(SNOMED CT) and
sig(NCI), respectively.
table shows success rate of NUI

|Σ| SNOMED CT |Σ| NCI
2 000 100.0% 5 000 97.0%

3 000 92.2% 10 000 81.1%

4 000 67.0% 15 000 72.0%

5 000 60.0% 20 000 59.2%

Thomas Schneider, Dirk Walther Modularity: Other 30

Incremental Classification Logical Diff Forgetting Conclusion

Comparing the size of MEX-modules and Σ-interpolants

Size distribution of MEX-modules and instance Σ-interpolants
of SNOMED CT wrt. signatures containing 3 000 concept
names and 20 role names

Thomas Schneider, Dirk Walther Modularity: Other 31

Incremental Classification Logical Diff Forgetting Conclusion

Comparing the size of >-local modules and Σ-interpolants

Size distribution of CEL-modules and instance Σ-interpolants
of NCI wrt. signatures containing 7 000 concept names and 20
role names

Thomas Schneider, Dirk Walther Modularity: Other 32

Incremental Classification Logical Diff Forgetting Conclusion

Uniform interpolants beyond EL

Theorem
For ALC-TBoxes, uniform interpolants expressed in FOL do not
always exist. [Ghilardi, Lutz, Wolter, 2006]

Theorem
For ALC-TBoxes, deciding the existence of uniform interpolants in
ALC is 2ExpTime-complete. If they exist, uniform interpolants are
most triple exponential in the size of the original TBox.
[Lutz, Wolter, 2011]

Thomas Schneider, Dirk Walther Modularity: Other 33

Incremental Classification Logical Diff Forgetting Conclusion

And now . . .

1 Incremental Classification

2 Logical Difference for Ontology Versioning

3 Forgetting and Uniform Interpolation

4 Conclusion

Thomas Schneider, Dirk Walther Modularity: Other 34

Incremental Classification Logical Diff Forgetting Conclusion

Conclusion

What are modules good for (so far)?
import/reuse of ontologies (locality-based/MEX modules)
towards understanding the structure of an ontology (atomic
decomposition)
incremental reasoning

Related notions
Σ-inseparability (foundation of modules)
logical difference (ontology versioning)
forgetting (hiding of symbols)

Thomas Schneider, Dirk Walther Modularity: Other 35

Incremental Classification Logical Diff Forgetting Conclusion

Outlook

Some open problems
finding appropriate signature for a module (shopping for
symbols)
methodology for collaborative ontology development using
modules
ontology comprehension/visualisation (e.g. using atomic
decomposition)
modular reasoning (improve performance using modules)

Thomas Schneider, Dirk Walther Modularity: Other 36

Incremental Classification Logical Diff Forgetting Conclusion

So.. that’s it.

Thank you for coming!
tschneider(at)informatik.uni-bremen.de

dirk.walther(at)tu-dresden.de

Reminder: Workshop on Modular Ontologies (WoMO)
7th International Workshop on Modular Ontologies

September 15, Corunna, Spain
http://www.iaoa.org/womo/2013.html

Thomas Schneider, Dirk Walther Modularity: Other 37

tschneider(at)informatik.uni-bremen.de
dirk.walther(at)tu-dresden.de
http://www.iaoa.org/womo/2013.html

