Modularity in Ontologies:
Incremental Classification, Logical Diff and
Forgetting

Thomas Schneider! Dirk Walther?

1Department of Computer Science, University of Bremen, Germany

2Center for Advancing Electronics Dresden, TU Dresden, Germany

ESSLLI, 16 August 2013

Yo

Thomas Schneider, Dirk Walther Modularity: Other 1

Incremental Classification Logical Diff Forgetting Conclusion

Plan for today

@ Incremental Classification

© Logical Difference for Ontology Versioning
© Forgetting and Uniform Interpolation

@ Conclusion

Yo

Thomas Schneider, Dirk Walther Modularity: Other 2

Incremental Classification Logical Diff Forgetting Conclusion

@ Incremental Classification
© Logical Difference for Ontology Versioning
e Forgetting and Uniform Interpolation

@ Conclusion

Yo

Incremental Classification

Incremental Classification: Motivation

@ early detection of modelling errors is important for developing
and maintaining ontologies

e frequent classification of ontologies required

@ issue:

e long response times from reasoners

@ solutions:

e classification algorithms and optimisation techniques
e lightweight logics with tractable classification such as £

@ limitation: similarities between versions of ontologies are not
taken into account (reasoning is repeated from scratch)

Yo

Thomas Schneider, Dirk Walther Modularity: Other 4

Incremental Classification

Example: Incremental Classification

Original ontology O3
Cystic_Fibrosis = Fibrosis M Jlocated_In.Pancreas

Genetic__Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic_Fibrosis = Fibrosis M Pancreatic_Disorder
Genetic_ Fibrosis C Genetic_Disorder

Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas

AAAA
g B~ W DN
— — — —

@ 9 concept names + T + L

@ taxonomy: 121 subsumptions

Thomas Schneider, Dirk Walther Modularity: Other

Yo

Incremental Classification

Example: Incremental Classification

Updated ontology 0> = (01 \ O7) U OF

Cystic_Fibrosis = Fibrosis M Jlocated_In.Pancreas
M Shas_Origin.Genetic_Origin
Genetic_Fibrosis = Fibrosis M has_ Origin.Genetic_Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic_ Fibrosis = Genetic_Disorder

Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas

w
~

ﬁﬁ,\,\
(20
-

°o 07 ={(1)}
e O" = {(1) M Jhas_Origin.Genetic_Origin}

Thomas Schneider, Dirk Walther Modularity: Other

Yo

Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic_Fibrosis = Fibrosis M Jlocated__In.Pancreas
M Thas_ Origin.Genetic_Origin
Genetic_Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic__Fibrosis C Genetic_Disorder

Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas

(1)

B W N
— — —

~ ~ —~
(6]
~

@ Which subsumptions have changed?

Thomas Schneider, Dirk Walther Modularity: Other

Yo

Incremental Classification

Incremental Classification

Idea
@ small changes in ontologies affect relatively few subsumptions
@ avoid recomputing unaffected subsumptions
@ identify subsumptions affected by change using modules
@ [Cuenca Grau et al., JAR 2010]

Yo

Thomas Schneider, Dirk Walther Modularity: Other 6

Incremental Classification Logical Diff Forgetting Conclusion

Incremental Classification using Modules

M C O is a module for axiom « in O if:

ME aiff O E «a.

@ locality-based modules for sig(a) of O have this property

Let 01 and O3 be ontologies and « an axiom. Let fo be a
module for a in O;, for i =1, 2.

e if O haandMiQOz,then(’)glza
o if O1 £ o and M2 C Oy, then O, £ «

Yo

Thomas Schneider, Dirk Walther Modularity: Other 7

Incremental Classification

Algorithm: Incremental Classification using Modules

Algorithm: Step 1

Input: Oq, 4, M,14|A65ig((’)1)1 O—, 0t

Output: Oy, o, M%'AEsig(Og)

Oy = (Ol \ O_) uot

For every A € sig(O2) \ sig(01)
M = My
for every (T7 B) Egl: El = El U {(A7 B)}
for every (B, L) €C1: C1:=LC; U{(B,A)}

Update ontology

Set a module and update classification [C; for the new concept
names

Yo

Thomas Schneider, Dirk Walther Modularity: Other 8

Incremental Classification

Algorithm: Incremental Classification using Modules

Algorithm: Step 2
N~ :=0, Nt :=0
For every A € sig(O3)
For every a € O~
if a not sig(M?3)-local, then N~ := N~ U {A}
For every a € Ot
if a not sig(MY)-local, then N* := N+t U {A}

Determine concept names whose modules are affected by the
change (using locality check for axioms)

Yo

Thomas Schneider, Dirk Walther Modularity: Other 8

Incremental Classification

Algorithm: Incremental Classification using Modules

Algorithm: Step 3
For every A € sig(O,)
If A€ N~ U NT, then M3 := extract_module({A}, 02);
else M3 := M},

Determine the module for every concept name (recomputing
affected modules)

Yo

Thomas Schneider, Dirk Walther Modularity: Other 8

Incremental Classification

Algorithm: Incremental Classification using Modules

Algorithm: Step 4

For every A € sig(O3)
For every B € sig(O,) U { L}
if (A€ N~ and A Cy B) or
(A€ Nt and AZ; B)
then Co:=C, U{(A,B)}if M3 EALC B
else Cr:=0Cr U{(A,B)}if (A B) ey

Determine new classification 5 (possibly using a reasoner — any
reasoner)

Yo

Thomas Schneider, Dirk Walther Modularity: Other 8

Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic_Fibrosis = Fibrosis M Jlocated__In.Pancreas
M has_Origin.Genetic_Origin
Genetic_Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic_ Fibrosis C Genetic_Disorder

Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas

(10)

@ Algorithm Step 1:
e skip since no new symbols were added

Thomas Schneider, Dirk Walther Modularity: Other

Yo

Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic__Fibrosis = Fibrosis M Jlocated__In.Pancreas
M Fhas_Origin.Genetic_Origin
Genetic_ Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic_ Fibrosis C Genetic_Disorder

Pancreatic__Disorder = Disorder M Jlocated__In.Pancreas

@ Algorithm Step 2:
o N~ = {Cystic_Fibrosis, Pancreatic_Fibrosis}
o NT = {Cystic_Fibrosis}

Thomas Schneider, Dirk Walther Modularity: Other

Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic_Fibrosis = Fibrosis M Jlocated_In.Pancreas (6)
M has_Origin.Genetic_Origin
Genetic_Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin (7)
Pancreatic__Fibrosis = Fibrosis M Pancreatic_Disorder (8)
Genetic_Fibrosis C Genetic_Disorder (9)
Pancreatic_Disorder = Disorder M Jlocated_In.Pancreas (10))

@ Algorithm Step 3:
e compute modules for Cystic_Fibrosis and Pancreatic_ Fibrosis

Yo

Thomas Schneider, Dirk Walther Modularity: Other 9

Incremental Classification

Example: Incremental Classification

Updated ontology O, = (01 \ O7)U O*

Cystic_Fibrosis = Fibrosis M Jlocated_ In.Pancreas
M Fhas_Origin.Genetic_Origin
Genetic_ Fibrosis = Fibrosis M has_ Origin.Genetic_ Origin
Pancreatic__Fibrosis = Fibrosis M Pancreatic__Disorder
Genetic_ Fibrosis C Genetic_Disorder

Pancreatic__Disorder = Disorder M Jlocated__In.Pancreas

(6)

(8)
(9)
(10) |

@ Algorithm Step 4:

e compute whether O, = Pancreatic_Fibrosis C B
e compute whether O, = Cystic_Fibrosis C B
e perform only about 13 subsumption tests

Thomas Schneider, Dirk Walther Modularity: Other

Yo

Incremental Classification Logical Diff Forgetting Conclusion

@ Incremental Classification
© Logical Difference for Ontology Versioning
e Forgetting and Uniform Interpolation

@ Conclusion

Yo

Logical Diff

Logical Difference: Motivation

Task

@ given two versions 71 and 7> of an ontology and a signature
Y, compute “the difference” between 71 and 75 observable in

> in a query language QL.

Syntactical difference
@ Many tools compute the syntactical difference between
versions of texts and program code.
@ But many syntactic differences do not affect the semantics of
ontologies!

o Example:
o 1 = {A‘:Bl|_|32} B:{AEBl,AEBQ}
Y ={A By, B}

o Then 71 # 7o, but 71 =3° To.
U

Thomas Schneider, Dirk Walther Modularity: Other 11

Logical Diff

Logical Difference: Motivation

Structural difference

@ extends syntactic diff by taking into account structural
meta-information of distinct versions of ontologies

@ regards ontologies as structured objects (e.g., taxonomy, set
of RDF triplets, set of axioms)

@ changes are structural operations (e.g.,
adding/deleting/extending/renaming classes)

@ but:

e syntax dependent and no formal semantics
e tailored to applications of ontologies based on taxonomy
e ontology based data access not captured

Yo

Thomas Schneider, Dirk Walther Modularity: Other 12

Logical Diff

Logical Difference

71 and 7> ontologies, QL a query language, ¥ a signature.
The logical difference between 77 and T, wrt. (QL,Y) is defined as

Diff 24 (71, T2) U Diff4(T2, T1),

where
o Diffe“(T1, o) = {9 € QL | Ti E . T2 £ ¢,sig(p) € T}
o Diffe“(T2, T1) = {9 € QL | T2 E ., T1 ¥ ¢,sig(p) € T}

Observation: Diffg*(7y, T2) U Diffe(T2, T1) = 0 iff T =2° Ta.
Problem: How to present DifF%ﬁ(’Tl,Tg) if it is non-empty?

Yo

Thomas Schneider, Dirk Walther Modularity: Other 13

Logical Diff

> -difference for £L-terminologies

Take query language QLg, consisting of C = D, where C, D are
EL-concepts. We also denote QLg, simply as EL.
Set

Diffs (71, 72) = Diffé*(T1, Ta).

Example of ‘large’ smallest elements in Diffs (71, 72):
° T2 =0;
o 71 ={A' C By,A= B,}U{Biy1 = Ir.BiM3s.B | i < n};
oY ={A Ar,s}

For the minimal C C A € Diffs (71, 72) we have |C| = 2".

Yo

Thomas Schneider, Dirk Walther Modularity: Other 14

Logical Diff

> -difference for £L-terminologies

Theorem (“Primitive Witnesses Theorem")
If (C E D) € Diffs(T1, 72) then either

e (AL Dy) € Diffs(T1, 72) or

o (Co C A) € Diffs(T1, T2),
where A is a concept name and

A, Co — subconcepts of C;
Dy, A — subconcepts of D, resp.

In propositional EL: if C C A; M Ay € Diffs(71, 72), then
e C C Ay € Diffg(7T1,7T2) or
e C C A, € Diffg(T1, T2)-
(&

Thomas Schneider, Dirk Walther Modularity: Other 15

Logical Diff

Compact representation of Diffy (77, 72)

Let

o difiLy (71, 73) =

Acy there is a ¥-concept C in EL s.t.
TTEACCand b EFACC

e diffRs(71,72) =
{A cy there is a Z-concept C in EL s.t. }

TiECCAand b EFCCA
diffLy (71, 72) and diffRs (71, 72) provide a list of concept names in
Y about which 77 “says more” than 7>.

Yo

Thomas Schneider, Dirk Walther Modularity: Other 16

Logical Diff

> -difference between E£L-terminologies

Theorem

Let 71 and T, be £L-terminologies and X a signature. Then
e diffLx(71,72) and
e diffRyx (71, 72)

can be computed in polynomial time. In particular, X-inseparability
wrt. EL is tractable.

y

Yo

Thomas Schneider, Dirk Walther Modularity: Other 17

Logical Diff

Tools

CEX

@ implementation of tractable algorithm computing
DiffLy (71, 72) and DiffRx (771, T2) for acyclic EL-terminologies
[Konev, Walther, Wolter, 2008]

@ http://www.csc.liv.ac.uk/ konev/software/

OWLDiff

o CEX-diff for £L-terminologies
[Kremen, Smid, Kouba, 2011, to appear]

@ plugins for Protégé and NeON toolkit
@ http://krizik.felk.cvut.cz/km/owldiff

Yo

Thomas Schneider, Dirk Walther Modularity: Other 18

http://www.csc.liv.ac.uk/~konev/software/
http://krizik.felk.cvut.cz/km/owldiff

Logical Diff

Tools

CEX2

e extends CEX to ELH" (i.e. EL with role inclusion axioms and
domain and range restrictions) without loosing tractability
[Konev, Ludwig, Walther, Wolter, 2012]

@ http://www.csc.liv.ac.uk/ michel/software/cex2/

LogDiffViz

@ Protégé plugin that calls CEX2 and visualises ontology
versions and the differences as a hierarchical structure

@ http://www.csc.liv.ac.uk/ cs8wg/LogDiffViz/

Yo

Thomas Schneider, Dirk Walther Modularity: Other 19

http://www.csc.liv.ac.uk/~michel/software/cex2/
http://www.csc.liv.ac.uk/~cs8wg/LogDiffViz/

Logical Diff

CEX applied to SNOMED CT

Task: Compute the logical difference of two versions of
SNOMED CT

@ two versions:
o SNOMED CT 2005 (SM-05):

@ 379691 axioms
e 09 February 2005

o SNOMED CT 2006 (SM-06):

@ 389472 axioms
@ 30 December 2006

e ¥ C sig(SM-05) N sig(SM-06) randomly selected

@ compute average (of time/memory/diff-size) over 20 samples
for every signature size

@ hardware: Intel Core 2 CPU at 2.13 GHz and 3 GB of RAM
U
20

Thomas Schneider, Dirk Walther Modularity: Other

SM-05 vs SM-06

Logical Diff

CEX: diff(SM-05,SM-06)
Size of | Time | Memory | |diffLy| | |diffRg|
x (Sec.) | (MByte)

100 513.1 | 1393.7 0.10 0.10
1000 512.4 | 1394.6 2.35 2.15
10000 | 517.7 | 14243 155.35 125.35

100000 || 559.8 | 1473.2 | 11795.90 | 4108.6

@ Note: role box ignored

Thomas Schneider, Dirk Walther

Modularity: Other

Yo

21

Logical Diff

Comparison on the Joint Signature

e diff(SM-05,SM-06) on
Y = sig(SM-05) N sig(SM-06)
e 689 seconds
o |diffLy| + |diffRg| = 162010
e Class hierarchy comparison misses 32475 of them

Yo

Thomas Schneider, Dirk Walther Modularity: Other 22

Incremental Classification Logical Diff

Comparing with classification

Forgetting

e Combined diffLx (@, M) and diffRs (0, M)
e M is a subset of SM-05 containing ~ 140,000 axioms
e Y — randomly selected from M (incl. 20 role names)
e avg. over 500 samples for each signature size

o Difference in class hierarchy

Conclusion

60

50

Size of difil. U diffR
~ w B
=] =1 S

=
S

o

——CEX: #r=20 /

—m—CD: #r=20 /V

100% |

80%

60% |

—m—CEX:#r=20

CD: #r=20

10 30 50 70 90 110 130 150 170 130 210 230 250 270

Number of Concept Names in Random Signature

/ 40% .’
20%
/ M "

10 30 50 70 S0 110 130 150 170 180 210 230 250 270

Number of Concept Names in Random Signature

Thomas Schneider, Dirk Walther

Modularity: Other

Yo

23

Logical Diff

CEX on MEX

Instead of computing diffLs (77, 72) U diffRg (71, 72) directly,
o first extract minimal X-modules 7'1’ and ’7'2’ from 71 and 7>,
respectively,

e then compute diffLx (77, 7)) U diffRs(7{, 7).

CEX: diff(SM-05,SM-06) CEX: diff(Mod'05,Mod’06) ‘

Size of || Time | Memory | [diffLs| | |diffRg| || Time Memory

r (Sec.) | (MByte) (Sec.) (MByte)
100 513.1 | 1393.7 0.0 0.0 3.66 116.5
1000 512.4 | 1394.6 25 2.5 4.46 122.5
10000 || 517.7 | 14243 183.2 122.0 22.29 126.5
100000 || 559.8 | 1473.2 | 11322.1 | 4108.5 | 189.98 615.8
379741 || 790.0 | 1999.3 191714 684.1 1850.7 237044

Yo

Thomas Schneider, Dirk Walther Modularity: Other 24

Incremental Classification Logical Diff Forgetting Conclusion

@ Incremental Classification
© Logical Difference for Ontology Versioning
© Forgetting and Uniform Interpolation

@ Conclusion

Yo

Forgetting

Forgetting Vocabulary: Motivation

Forgetting vocabulary is eliminating that vocabulary from the
ontology (involving a reformulation of the ontology).

Use-cases

@ re-use: instead of whole ontology, use a potentially much
smaller ontology resulting from forgetting

@ predicate hiding: concealing confidential information in
ontologies

@ ontology summary: succinct presentation of what ontology
states about non-forgotten vocabulary

The dual notion of forgetting is uniform interpolation.

Yo

Thomas Schneider, Dirk Walther Modularity: Other 26

Forgetting

Uniform Interpolation

Let 7 be a ££-TBox and X a signature. A TBox 7 is called a
uniform interpolant of 7 wrt. X if the following holds:

e sig(7") C X,

o T =547

Theorem

Let 7/, 7; be uniform interpolants of 7; and 7, wrt. ¥.
The following conditions are equivalent:

o i =5 To;

e 7/ and T are logically equivalent.

Yo

Thomas Schneider, Dirk Walther Modularity: Other 27

Forgetting

EL-terminologies

Theorem

There exist an EL-terminology 7 and X such that there does not
exist an uniform interpolant of 7 wrt. X.

Proof. Let
T={ACB,BC 3r.B}, X={Ar}
An infinite axiomatisation of the uniform interpolant is given by

{AC 3r..--3r. T | n>1}.
[———

A finite Ty does not exist (even in first-order logic).
Y

Thomas Schneider, Dirk Walther Modularity: Other 28

Forgetting

Acyclic EL-terminologies

Theorem

For acyclic £L-terminologies, uniform interpolants always exist. In
the worst case, exponentially many axioms are required.

Proof of second part. Let

T={A=Bn---MB,}U{A; C B |1<i,j<n}

and
r={Atu{A;|1<ij<n}
Then
7-2 = {Aljl rl"'rlAn,jn EA | 1 Sjla"'vjn S n}
is a minimal uniform interpolant. Note that |7x| = n". @)

Thomas Schneider, Dirk Walther Modularity: Other 29

Forgetting

Computing uniform interpolants for SNOMED CT and NCI

@ NUI: prototype implementation computing uniform
interpolants for acyclic ££-terminologies.

e ¥ — randomly selected from sig(SNOMED CT) and
sig(NCl), respectively.
@ table shows success rate of NUI

[T=] [SNOMED CT [[X] [NCI |

2000 100.0% 5000 | 97.0%
3000 92.2% 10000 | 81.1%
4000 67.0% 15000 | 72.0%
5000 60.0% 20000 | 59.2%

Yo

Thomas Schneider, Dirk Walther Modularity: Other 30

Incremental Classification Logical Diff Forgetting

Comparing the size of MEX-modules and X -interpolants

Conclusion

@ Size distribution of MEX-modules and instance X-interpolants
of SNOMED CT wrt. signatures containing 3 000 concept

names and 20 role names

85
m MEX
80
BN
20 —
15
10
5
0 IIIJ_F_F_F_FJJ_F_Wﬁ
2 o o o ©o ©o @ ©o © © © o o o o o o o o So
2 © 6 @ © © e o e e e o o e o o 6 e o <So
2 ©o ©o © ©o © © ©o ©o ©o o o o o o ©o o o o 2o
© ©o ©o ©o ©o ©o ©o © ©o ©o o ©o o o o ©o o o o 2o
n © m © 1 e m e I e m o m @ I o m © mnm <So
= = N ™ Mm m g g W W ® 9 ~ ™~ ® B o o 29
—
A

Thomas Schneider, Dirk Walther Modularity: Other

©
®

w
s

Incremental Classification Logical Diff Forgetting Conclusion

Comparing the size of T-local modules and X -interpolants

@ Size distribution of CEL-modules and instance Z-interpolants
of NCI wrt. signatures containing 7 000 concept names and 20

80
W CEL
75
W NUI
25 —
20
15
10
5
. ll Lobh, ol Lepp o apel 2
L T L L L LD D B B B | 1
(=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 = (=1 (=1 (=1 (=1 (=1 oo
(=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 (=1 = (=1 (=1 (=1 (=1 = oo
(=1 (=1 (=1 (=1 (=1 (=1 (=1 = (=1 (=1 (=1 = (=1 = (=1 (=1 (=1 (=1 (=1 oo
= = =1 f=1 (=1 = = = f=1 (=1 f=1 (=1 (=1 = (=1 = = (=1 f=1 j=l =1
™~ =t i w L=1 ™~ <t i w = ™~ =t o o (=1 ™~ <t o o oo
— — — — — ™~ ™~ ~ ™~ ~ m m m m m < =
A\J“I

w
N

Thomas Schneider, Dirk Walther Modularity: Other

Incremental Classification Logical Diff Forgetting Conclusion

Uniform interpolants beyond ££

For ALC-TBoxes, uniform interpolants expressed in FOL do not
always exist. [Ghilardi, Lutz, Wolter, 2006]

For ALC-TBoxes, deciding the existence of uniform interpolants in
ALC is 2ExpTime-complete. If they exist, uniform interpolants are
most triple exponential in the size of the original TBox.

[Lutz, Wolter, 2011]

Yo

Thomas Schneider, Dirk Walther Modularity: Other 33

Incremental Classification Logical Diff Forgetting Conclusion

@ Incremental Classification
© Logical Difference for Ontology Versioning
9 Forgetting and Uniform Interpolation

@ Conclusion

Yo

Conclusion

Conclusion

What are modules good for (so far)?
@ import/reuse of ontologies (locality-based/MEX modules)

e towards understanding the structure of an ontology (atomic
decomposition)

@ incremental reasoning

Related notions
@ Y -inseparability (foundation of modules)
e logical difference (ontology versioning)
e forgetting (hiding of symbols)

Yo

Thomas Schneider, Dirk Walther Modularity: Other 35

Conclusion

Outlook

Some open problems

e finding appropriate signature for a module (shopping for
symbols)

@ methodology for collaborative ontology development using
modules

@ ontology comprehension /visualisation (e.g. using atomic
decomposition)

e modular reasoning (improve performance using modules)

Yo

Thomas Schneider, Dirk Walther Modularity: Other 36

Conclusion

So.. that's it.

Thank you for coming!

tschneider(at)informatik.uni-bremen.de
dirk.walther(at)tu-dresden.de

Reminder: Workshop on Modular Ontologies (WoMO)
7th International Workshop on Modular Ontologies
September 15, Corunna, Spain
http://www.iaoa.org/womo/2013.html

Yo

Thomas Schneider, Dirk Walther Modularity: Other 37

tschneider(at)informatik.uni-bremen.de
dirk.walther(at)tu-dresden.de
http://www.iaoa.org/womo/2013.html

