From Graph Transformation to Algebraic Specification and Back Again

Dedicated to 60th Birthday of HJK
Bremen, Haus der Wissenschaften, September 2009
Hartmut Ehrig, TU Berlin
What Came First?

Double Pushout or Parameter Passing

GRA-GRA or ALG-SPEC?

Diagram:

- L: Diagram with nodes labeled a, a, a, and m
- K: Diagram with nodes labeled a
- R: Diagram with nodes labeled d, b, e, d, and data
- G: Diagram with nodes labeled a, a, a, and a
- D: Diagram with nodes labeled a
- H: Diagram with nodes labeled a, b, d, e, d, and nat
- L to K via m
- K to R via string(data)
- R to G via string(nat)
- L to G via a
- K to D via a
- R to H via d

(a) (1) (2)
Neither GRA-GRA Nor ALG-SPEC

CAT–AUT Came First!
We are in 1970

- 2 years after student movement against establishment at universities

ORDINARIEN-UNIVERSITÄT
We are in 1970 at Math Dept

- Seminar „Kategorien und Automaten“
- 20 Students – 2 Assis – No Profs
 - Main Questions
 - What is a Category?
 - What is an Automaton?
 - What is the Category of Automata?
Scientific Opinion in 1970

- Optimistic View
 - Category Theory is „Heart of Mathematics“
 - Automata Theory is „Soul of Computer Science“

- Pessimistic View
 - Category Theory is „Abstract Nonsense“
 - Automata Theory is „Dead“ (Hartmanis)

CAT – AUT ?

P = NP ?
What is the Outcome in the 70ies?

- **Students** receive **Seminar Certificates**
- **Students** and **Assis** become **Book Authors**
 - Kategorien und Automaten, de Gruyter 1971
 - Universal Theory of Automata, Teubner 1974
- **Student HJK** receives **Dipl. Math. Degree**
 - Theorie von Automaten in pseudoabgeschlossenen Kategorien
We are in 1978 at CS Dept of TUB

HJK submits his PhD thesis

„Manipulationen von Graphmanipulationen“

- Very strange title!
- What does it mean?
- Is it Mathematics or Computer Science?

- Keywords:
 - Local Church-Rosser for Graph Transformation
 - Shift Equivalence of Parallel Deriv. Sequences
 - Canonical Derivation Sequences
What does it mean?

- Local Church-Rosser & Parallelism
 - Parallel and Sequential Independence
 - Switch & Shift Equivalence
- Existence & Uniqueness of Canonical Parallel Derivation Sequences
We are still in 1978

- **Problem:** Can HJK-PhD-thesis be accepted?
 - Paper on Local CR was rejected by ICALP
 - Referee comment:
 Result obvious, proof only complicated by use of „strange notion of pushouts“

- **Solution:** Search for new referees

- **Result:** Acceptance of paper for MFCS & TCS & Acceptance of HJK-PhD-thesis at TUB
We are in 1982

- ACT-project of HE & HJK accepted by DFG
- **Param.Spec in Initial Algebra Approach (ADJ et al.)**
- Parameter Passing inspired by GRA-GRA (HDEhr)

 Alternatives

- **Final Algebra Approach (Guttag et al.)**
- **Loose Semantics with Constraints (Reichel et al.)**
Algebraic Spec Languages in 1984

- CLEAR [BG 77, San 81]
- OBJ / OBJ 2 [GT 79, FGJM 85]
- CIP / CIP L [CIP 81, CIP 85]
- ACT ONE / ACT TWO [ACT 83, EM 85, EW 86]
- ASL [SW 83, Wir 86]
- LARCH [GH 83]
- PLUSS [Gau 84]
Algebraic Specification Community

- Since 1974 in USA [Zi 74, Gut 75, ADJ 76]
- Since 1976 in Europe [GGM 76] MFCS’76
- Since 1978 in Germany [EKW 78] VLDB’78
 - [EL 79] GRA-GRA’78, [Rei80] MFCS’80, [BW80] CAAP’80

Problem: ACT ONE rejected by ACTA INFORMATICA Referee: ACT ONE causes “headache because of 2 levels of semantics”

Solution: ACT ONE published in EATCS Monographs [EM 85]
- HJK receives Professorship at Uni Bremen
10 – 25 Years Later?

- CAT-AUT
 UnivTheory of Automata

- GRA-GRA
 Local CR & Parallelism

- ALG-SPEC
 ACT-Approach

? ? ? ?
10 – 25 Years Later!

- CAT-AUT
 UnivTheory of Automata

- GRA-GRA
 Local CR & Parallelism

- ALG-SPEC
 ACT-Approach

- CAT ALG-SPEC
 Institutions

- CAT GRA-TRA
 Adhesive HLR System

- GRA-GRA Extensions
 Constraints & Control

- GRA-GRA & ALG-SPEC
 Typed Attributed Gra-Tra
CAT ALG-SPEC

- **Aim**: Institution Independence of Approach
 - Institutions [BG 84]
 - Specification Frames [EM 90]

- **Mod**: $\text{SPEC}^{\text{op}} \rightarrow \text{CatCat}$ Model Functor
 - $\text{Mod}(\text{SPEC}) = \text{Category of Algebras/Models}$
 - $\text{Mod}(f) = V_f = \text{Forgetful Functor}$
 - Liberal Institution: Existence of Free Functor F_f
 - Amalgamation & Extension Lemma based on POs

- **Main New ALG-SPEC Languages**
 - MAUDE, SPECTRUM, CASL
CAT GRA-TRA

- High-Level Replacement Systems [EHKP91]
 - DPO-Approach based on HLR-Conditions
 - Graphs, Hypergraphs, Typed Attributed Graphs
 - Low & High-Level Petri Nets
 - Local CR, Parallelism, Concurrency & Confluence

- Adhesive Categories [LS04]
 - Compatibility of POs & PBs in VK-cube

- Adhesive HLR Systems [EHPP04]
 - Categorical Theory of GRA-TRA
GRA-GRA EXTENSIONS

- Application Conditions [EH86]
 - Graph Constraints & Application Cond [LKW 95]

- Control by Transformation Units [KK96]
 - GRA-TRA with Clone & Graph Variables [Hof06]
 - GRA-TRA with NACs [HW95, Lam08/09]
 - GRA-TRA with Nested Application Cond [HP05]
 - FOL with Graph Variables

- Parallelism & Concurrency for Rules with Nested Application Conditions
 [EHL09, HJK-Festschrift]
Nested Application Conditions

List of Examples:

\[\exists(\circ_1 \circ_2 \leftrightarrow \circ_1 \rightarrow \circ_2) \]
\[\nexists(\circ_1 \circ_2 \leftrightarrow \circ_1 \rightarrow \circ_2) \]
\[\exists(\circ_1 \circ_2 \leftrightarrow \circ_1 \rightarrow \circ_2) \]
\[\land \nexists(\circ_1 \circ_2 \leftrightarrow \circ_1 \rightarrow \circ_2) \]
\[\exists(\circ_1 \rightarrow \circ_2) \]
\[\nexists(\circ_1 \circ_2 \leftrightarrow \circ_1 \rightarrow \circ_2) \]
\[\forall(\circ_1 \rightarrow \circ_2 \rightarrow \circ_2) \]
\[\exists(\circ_1 \rightarrow \circ_2 \rightarrow \circ_2) \]
\[\forall(\circ_1 \rightarrow \circ_2 \rightarrow \circ_3) \]
\[\exists(\circ_1 \rightarrow \circ_3 \rightarrow \circ_2) \] (im. of 2)

There is an edge from the image of 1 to the im. of 2.
There is no edge from the image of 1 to the im. of 2.
There is a directed path of length 2, but not of length 1, from the image of 1 to the image of 2.
There is a proper edge outgoing from the image of 1 without edge in converse direction.
For every proper edge outgoing from the image of 1, the target has a loop.

For the image of node 1, there exists an outgoing edge such that, for all edges outgoing from the target, the target has a loop.
GRA-GRA & ALG-SPEC

Attributed Graphs [LKW93, HKT02]
- Attributed Graph AG = (G, D)
 - G = E-Graph with Graph & Data Nodes
 - D = DSIG-Algebra with D-data = Data Nodes

Typed Attr.Graphs = Adhesive HLR [EPT 04] \Rightarrow
DPO-Approach for Typed Attr.Graphs [EEPT06]

Applications
- Visual Modelling
- Model Transformation
Model Transformation based on Graph Transformation

- Attributed graph transformation system
 - $AGTS=(ATG,Prod)$
 - ATG: attributed type graph
 - $Prod$: set of transformation productions

- Typing for model transformations
ModTrafo Typegraph `Statecharts to Petri Nets´
Alternatives for DPO-Approach

- NLC, Hyperedge, SPO, Logical, 2-Struct, Progr. Gra-Gra
 - Handbook of GRA-GRA [Roz 97]
- DPO, DPB, DPO-BC, SqPO, MPOC
 - (1) DELETE & (2) ADD
- What about (1) ADD & (2) DELETE ?
Cospan-DPO Rules & Trafos

- **Rules are Cospan**s $\bar{p} = (L \rightarrow \bar{K} \leftarrow R)$
 - DPO (1) = ADD & DPO (2) = DELETE
- **Application** : Reconfigurable Petri Nets
- **Problem** : $G \equiv > H$ via (p, m) as Cospan-DPO Trafo

$\iff ? G \Rightarrow H$ via (p, m) as DPO Trafo
Proof of Equivalence

- Top PO & PB by Relationship of p & \bar{p}
- Bottom PO & PB by Relationship of D & \bar{D}
- $G \equiv > H \text{ via } (p,m) \iff \text{ Front Left & Right PO}$
- $\iff \text{ Back Left & Right PO} \iff G \Rightarrow H \text{ via } (p,m)$
CONCLUSION: From GRA-GRA to ALG-SPEC & Back Again

- CAT AUT
 UnivTheory of Automata

- GRA-GRA
 Local CR & Parallelism

- ALG-SPEC
 ACT-Approach

- CAT ALG-SPEC Institutions
- CAT GRA-TRA Adhesive HLR System
- GRA-GRA Extensions Constraints & Control
- GRA-GRA & ALG-SPEC Typed Attr.Gra-Tra
Joint History of HJK & HE

- 1974 – 1983 HJK Ass / AssProf at CS-Dept TUB
- 1983 – 2009 HJK Prof U Bremen
- 1982 – 86 ACT-Project TUB / UB
- Since 1990 Joint European Projects
 - COMPASS
 - COMPUGRAPH
 - GETGRATS
 - APPLIGRAPH
 - SEGRAVIS