Preface

Graphs of all kinds are widely used to model complex states, structured objects,
networks, relational structures, and diagrams in many areas of computer science.
Even wider, rules are used to define permitted actions and transitions. Graph
transformation combines graphs and rules into a computing paradigm, the the-
ory of which has been well-developed in the last three decades. At the same time,
a wide spectrum of potential applications has been studied showing that applied
graph transformation provides a rule-based framework for the specification and
development of systems, languages, and tools that are founded on graphs. The
main topics of interest include the following:

Language issues. Features in graph transformation based languages, like typ-
ing, modularity, refinement, parallelism, concurrency, distribution, optimization,
and correctness.

Tool issues. Conception and design of support tools for graph transformation
based languages including editors, parsers, interpreters, compilers, optimizers,
verifiers, and graphical user interfaces.

Application domains. Demonstration of the usefulness of graph transforma-
tion by case studies in various areas like definition of visual languages, database
models, concurrent and distributed systems, software process modeling, imple-
mentation of programming languages.

Readers, who want to know more about the state of the art of graph transforma-
tion, may consult the three volumes of the Handbook of Graph Grammars and
Computing by Graph Transformation published by World Scientific.

The APPLIGRAPH Workshop on Applied Graph Transformation (AGT 2002),
a satellite event of ETAPS 2002, is intended to be a forum to discuss recent
developments in the area. The workshop programme consists of 17 accepted
contributions that are documented in these proceedings. The contributions cover
a wide range of topics in theory and applications. They are organized into six
chapters corresponding to the sessions of the workshop.
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AGT 2002 is the final event of the ESPRIT Working Group APPLIGRAPH
(Applications of Graph Transformation) that started five years ago. The aims of
APPLIGRAPH are

— to coordinate and promote research activities in applied graph transforma-
tion,

— to improve the systematic exchange and dissemination of information on
graph transformation and its applications,

— to provide formal graph transformation methods and modelling tools sup-
porting the software development process including visualisation, prototyp-
ing, and safety issues, and

— to provide formal graph transformation methods and modelling tools sup-
porting the specification and implementation of concurrent and distributed
systems.

APPLIGRAPH consists of nine teams with Bremen as coordinating site.

— Rheinisch-Westfilische Technische Hochschule Aachen, D (Manfred Nagl)
— Universitaire Instelling Antwerpen, B (Dirk Janssens)

— Technische Universitét Berlin, D (Hartmut Ehrig)

— Universitdt Bremen, D (Hans-Jorg Kreowski)

— Universiteit Leiden, NL (Grzegorz Rozenberg)

— Katholieke Universiteit Nijmegen, NL (Rinus Plasmeijer)

— Universitdt Paderborn, D (Gregor Engels)

— Universita di Pisa, I (Ugo Montanari)

— Universita degli Studi di Roma, I (Francesco Parisi-Presicce)

The team leaders and Detlef Plump as APPLIGRAPH manager form the Pro-
gramme Committee of AGT 2002.

In the name of the Programme Committee, we would like to thank the reviewers
(who are not members of the PC) Paolo Baldan, Rosi Bardohl, Andrea Corra-
dini, Ingrid Fischer, Annegret Habel, Berthold Hoffmann, Renate Klempien-
Hinrichs, Peter Knirsch, Sabine Kuske, Andrea Maggiolo Schettini, Manfred
Muench, Anilda Qemali, and Bernhard Westfechtel for their valuable help. We
are also quite grateful to the ETAPS organizers, in particular, to Susanne Graf
and Rachid Echahed for hosting AGT 2002 as a satellite workshop. Finally, we
would like to acknowledge the financial support by the European Commission.

March 2002 Hans-Jorg Kreowski and Peter Knirsch
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Abstract. The Object Constraint Language (OCL) provides an impor-
tant complement to visual formalisms used in the definition of UML lan-
guages. Yet, its usage is limited by two major drawbacks. The first is the
limited availability of tools for the automatic verification of constraints
against model diagrams. The second is the difficulty of amalgamating
a textual formalism such as OCL with the visual languages used in the
rest of UML. We attack these problems with methods deriving from
a graph-transformation based approach. We propose a visualisation of
OCL, based on a recently proposed metamodel for it, which provides a
declarative way to represent OCL constraints, and then we discuss how
an operational semantics for OCL can be based on transformation units
which guide the application of graph-transformation rules.

1 Introduction

The Object Constraint Language (OCL) provides an important complement to
visual formalisms used in the definition of UML languages. It is used both as a
textual counterpart to UML models, and to constrain extensions of UML using
metamodels. Yet, its usage is limited by two major drawbacks. The first is the
limited availability of tools for the automatic verification of constraints against
model diagrams. The second is the difficulty of amalgamating a textual formalism
such as OCL with the visual languages used in the rest of UML.

Both problems can be attacked based on the existence of some formal se-
mantics for OCL. In particular, the existence of a metamodel, as introduced in
[RG99], allows us to devise some form of visualisation, conforming to the meta-
model, but which is better suited to integration with the UML diagrammatic
languages. A visual formalism such as that of graph rewriting rules can also be
used to provide an operational semantics for OCL, which can be applied both to
its visual and to its textual representation. Such an operational semantics can
be realised on top of existing tools for graph rewriting.

The paper first presents the main concepts behind the proposed visualisa-
tion and then discusses how an operational semantics can be achieved in terms
of transformation units defining a strategy in the application of graph transfor-
mation rules. The conclusions illustrate some benefit of the approach

* Partially supported by the EC under Esprit Working Group APPLIGRAPH.



2 Visualisation of OCL Constraints

In the following, we consider two main issues when visualizing OCL. One is the
visualization of navigation expressions, ubiquitous in UML. Another important
issue is the visualization of collections and their operations. The visualization
concepts for both issues are illustrated by examples taken from an industrial
project on ’E-Government’. The project objective is to replace the existing soft-
ware system used in the residents’ offices in Berlin by a new software system
that supports and facilitates both the business process within one or among
several authorities and the business processes between the authority and the
citizen by exploiting Internet technologies. The main responsibilities of the res-
idents’ registration office are the registration of inhabitants, the maintenance
and preparation of the inhabitants data for other authorities like police or fire
department, and the certification of passports and ID cards. The underlying
business object model contains classes like NaturalPerson which describes nat-
ural persons as opposed to legal persons, and Inhabitant containing data of
natural persons being inhabitants. Additional constraints must be checked to
insure the consistency of the data base with the intended application. A more
detailed presentation of the business model can be found in [BKPPTO1]. In the
same paper, the interested reader can also find a discussion on the principles
behind the proposed visualization.

2.1 Constraints on Navigation Expressions

OCL constraints involve complex navigation expressions to reach object prop-
erties. A user trying to follow these expressions incurs in the cognitive cost of
having to reformulate an object structure, given in some static structure diagram,
in a different, textual, syntax. Hence, visualizing navigation paths would help
the developer to maintain an overview of the structure while reasoning about
the constraints. We propose to express object navigation in a visual, declarative
way through collaboration diagrams.

The following is a simple OCL constraint stating that the birth date of a
natural person comes before the date of moving into an apartment; the constraint
is stated textually in the usual OCL syntax.

context NaturalPerson inv:
self.birth.attrBirthDate < self.address.attrDateOfMoveln

The visualized form of this constraint, in Figure 1, contains three classi-
fier roles, two of which present attributes. The attribute values, x and y, are
compared in the bottom compartment. The kind of constraint is indicated by
shortcuts ’inv’, ’pre’ or ’post’ (for invariants, pre- or postconditions, respectively)
in the upper left corner. Four alternative versions for visualizing this constraint
could be employed, as navigation to Birth and Address objects can be per-
formed on named as well as on anonymous associations.



inv

: Address Jself: Natural Person birth : Birth

attrDateOfMoveln = x atrBirthDate =y

Fig. 1. The birth date comes before the date of moving into an apartment.

2.2 Collections and Their Operations

OCL supports three different types of collections: sets, bags and sequences. Sets
are represented using the convention for multi-objects in UML. Under this con-
vention, a multi-object represents all the objects, possibly an empty collection,
reached by a navigation expression. We call this visual form set boz. The other
types of collections are represented by adorning the set box with details recall-
ing the collection type, i.e. connecting the corners of the shifted rectangles with
dots (to remind of a series) for a sequence, and placing a semi circle, reminding a
handle, over the upper rectangle of the collection element for a bag. The concrete
element type of a collection is in the front rectangle. Basing the visualization on
collaborations, the application of an operation is described by an interaction.

We use the select operation to describe how a collection operation can
be visualized. Usually, the selecting expression is framed by a set box. Such a
representation is employed in Figure 2 to select all the addresses of a natural
person who is a resident or a non-resident with a known address. The number
of addresses must be greater than 0. The corresponding textual OCL constraint
is:

context NaturalPerson inv:
self.address—select(naturalPerson.inhabitant.attrState = #resident |
#known)— size > 0

'd N
[
self: Natural Person o
a,
n!
: Inhabitant T
attrState = #resident | #known

Fig. 2. A select statement



2.3 Logical expressions

The use of the alternative operator (|) in Figure 2 is a shortcut for a disjunction
involving duplication of the classifier role to present the possible alternative
values. A more general visualization has been devised for logical expressions. In
particular, logical expressions on object navigation are represented by framing
expressions in order to reproduce the nesting of logical AND and OR operators,
where each level is alternately read as an AND or an OR, starting from an
outermost AND frame. In case the original OCL formula had disjunctions at the
top level, a new fictitious top node is first inserted to constitute the A ND-labeled
root, and then the translation process is started. Dashed diagram parts are used
for negation.

If-then-else expressions can be depicted by frames with different compart-
ments. The 4f compartment is above the then compartment on the left, and the
else compartment on the right.

2.4 OCL Metamodel

As we base the visualization of OCL on collaborations, we perform some adap-
tation of the OCL meta model introduced in [RG99] and further elaborated in
[Bod00] to make it consistent with the meta model for collaborations. The idea is
to use collaborations to describe properties of objects. This is natural, since the
description of object properties is based on classifier and association roles which
are used to describe navigation paths. The dynamic aspects of collaborations are
exploited to represent the calling of methods to determine object properties.

As in [Bod00], a special package UML_OCL contains basic data types and
collections. Abstract collections are thought to be incorporated in this package
as data types. They have to be instantiated by concrete element types, which is
done in a special profile which introduces typed collections with a link back to
classifiers to capture the collected type. Special OCL operations are integrated
by offering special data types in the UML_OCL package as described above.

3 Graph Transformations for Checking Constraints

The main motivation to develop OCL has been the definition of well-formedness
rules in the context of the UML semantics, but it may also be used for precise
modeling of user applications. To express OCL semantics by graph transforma-
tion, a function tr : Set(OclExpression) — Rules U Set(TransformationUnit)
is defined. An OCL constraint is an expression, with a boolean return value, sat-
isfied by an instance model, if the corresponding rule or transformation unit can
be applied to the instance graph. The evaluation of the rule or unit does not
modify the graph on which the constraint is checked.

3.1 The Graph Transformation Approach

We work on directed, typed, and attributed graphs. Rule application follows
the single-pushout approach to graph transformation [Low93,EHK'96]. A rule



may also contain a set of negative application conditions (NAC) to express that
something must not exist for a rule to be applicable [HHT96]. The negative
condition can refer to values of attributes [TFKV99]. Rules can also employ set
nodes, which can be mapped to any number of nodes in the host graph, including
zero. The matching of a set node is in any case exhaustive of all the nodes in the
host graph satisfying the condition indicated by the rule. Set nodes have to be
preserved between the left and right context, but new set nodes can be created.
This implies that it is not possible to use a rule to destroy a set of nodes, but
the nodes in the set have to be removed individually from it. Finally, set nodes
must not occur in NAC’s.

Transformation units are used to further control rule application. In the
following example, the denotation of transformation units is mainly reduced to
the containing rules and control conditions. Initial and terminal configurations
are all instances of the given UML model. The import relation of units remains
implicit. The control condition is specified by expressions over rules.

Given a set Names of rule names from which rule expressions are constructed,
a rule expression E as we will use it, is a term generated by the following syntax:

— basic operators:
E ::= Names | Ey and E, | Ey or Es | Ey; Es | a(E) | na(E) |
null | if E; then E, else E3 end | while E; do E; end
— derived operators:
E ::= E, implies E; | E; = E, | E; xor E, | asLongAsPossible E end

Most of the operators presented above have the obvious meaning: operators
a and na test the applicability and non-applicability, resp. Each rule expression
is either applicable or non-applicable, i.e. it has a boolean return value. In case,
it is applicable, the unit it controls can also produce a value, a node, or a set
node, according to the declaration of the arguments for the unit. In the operators
if-then-else and while-do-end, the rule expression E; is tested for applicabil-
ity (without being applied). The result of this test determines how to proceed
with application in the usual way. Operator asLongasPossible applies a rule
expression to a graph as long as it is applicable. A detailed formal definition of
rule expressions as presented above can be found in [BKPPT00].

3.2 Checking simple OCL constraints

An OCL constraint over navigation expressions can be translated into a graph
rule, easily derivable from the visualization of such OCL constraints by static
collaboration diagrams. Such diagrams can be interpreted as identical graph
rules, i.e. both sides are equal and the rule morphism is the identity (e.g. the
OCL constraint in Figure 1 which can be interpreted as an identical graph rule).

If a rule which is the translation of a constraint can be applied to some
instance graph, the constraint is satisfied for this instance. The non-applicability
of a rule can have two causes: either there is no total mapping of the left-hand
side to the instance graph or no mapping satisfies all the additional application



conditions. In both cases, this can be reported to the user helping him/her to
find the inconsistency. After the user has performed further editing steps on the
UML model, the checking can be started again. Thus, the rule-based character
of inconsistency checking could be advantageously used to perform constraint
checking any time the user so wishes.

3.3 Checking advanced OCL constraints

The proposed visualisation does not always have a direct procedural counterpart
and direct matching is not sufficient when some strategy has to be followed in
constraint checking. For example, checking a constraint expressed as a nesting
of logical connectives, or navigation expressions involving a universal quantifier
requires following a precise sequence of actions.

The translation from OCL constraints to rule expressions can be performed
systematically, as the translation to the declarative visualisation. We consider
here again the example in Figure 2. We assume that the predefined operations,
such as select, have already been translated into suitable transformation units.
Then, the whole constraint is translated again into a transformation unit which
uses the select unit.

createSet (out s: Set) choose (in set: Set, out t: T)

d
@)

(sel ect ; [expr](in s:Set,s :Set) )

createSet(s');

while choose(s,t) do
if tr (expr)
then selectE(s,s ,t)
else deselectE(s )
end

\end

Fig. 3. Translation of pre-defined operation select

The select operation is directly dependent on the evaluation of the selecting
expression. The selecting expression is part of the resulting transformation unit,
thus the unit name is dependent of the expression. (Consider the translation of
select in Figure 3.) In the body of this transformation unit, the operation is
first initialized by creating an additional structure (here a Set node) and then
the select action is performed. Note that the dotted box in the left-hand side



of rule createSet indicates that the set s must not be already present in the
diagram for the rule to be applicable. For each element chosen from the given set
(and not already visited, i.e. without an adjacent done edge), we have to select
or deselect it, depending on the selecting expression. The chosen element is used
as input parameter of the selecting expression.

Having the translation of select available, the translation of the OCL con-
straint in Figure 2 is depicted in Figure 4. The first rule navigates to all the
addresses. Then two transformation units are called, performing the selection of
addresses of residents or known persons and counting them. The last rule checks
if there is at least one of those addresses.

addresses(out set: Set) isResidentOrKnown (in n: Natural Person)
(T I\
self: NaturalPerson self: Natural Person self: Natural Person
| ] () |
1 1 1
—_—
2 : Inhabitant | 2
attrState = x
isGreaterZero(in x: Integer) L=R{x = #resident or x = #known)
inhabitantAddresses(): addresses(s);sel ect, [isResidentOrKnown(n)](s,s);
x>0 J|-R size(s ,x); isGreaterZero(x)

Fig. 4. Translation of OCL constraint in Figure 2

During a constraint check, the instance graph may be augmented by addi-
tional objects and links. These objects, which may be collection nodes and ad-
ditional done edges, have to be deleted by additional rules collected in a special
transformation unit which is invoked after each check.

3.4 An example on an instance diagram

As an example of consistency check of an instance diagram, consider the object
diagram in Figure 5, showing a portion of the data base in the E-Government
project. We want to check the OCL constraint in Figure 2 on the two instances
of NaturalPerson there.

To test the well-formedness of a diagram or model, we have to look for the
applicability of a set of rules and/or transformation units. Looking at our sample
model in Fig. 5, the transformation unit in Fig. 4 can be applied fully to the
portion of the diagram relative to Manuel, but not to the portion relative to
Gabi. Indeed, the transformation unit in Figure 4 will start by constructing the
set of addresses, which results empty for Gabi. Now the select transformation
unit will start by constructing the new set to accommodate the selected address,
but it will not enter the while loop, as the rule defining the looping condition
is not applicable. Hence, the select transformation unit will end by returning



Manuel:Natural Person

:Inahbitant

attrFamilyName = "Koch"
attrSex = "Male"
attDateOfDeath = #none

attrState = #resident

Gabi:Natural Person

attrFamilyName = "Taentzer"
attrSex = "Female"
attrDateOf Death = #none

:Address

attrStateof Apartment = #sole
attrDateOfM Oveln = 22/02/2001 ‘Inhabitant
attrDateOfMoveOut = #none

attrState = #known

Fig.5. An object diagram not satisfying a constraint

an empty set. The inhabitantAddresses transformation unit will then proceed
to compute the size of this set and finally the rule for isGreaterZero is not
applicable, making the whole unit to fail. Conversely, when applying the unit to
Manuel’s portion, the selected set contains the only address present for Manuel,
so that it is not empty, and its size is greater than zero, testifying to that the
constraint is satisfied.

3.5 Discussion

The identification of the transformation units translating a textual OCL con-
straint can proceed in parallel with the translation to a visual counterpart, pro-
viding an operational reading of the declarative visual representation. The two
visual forms of management of OCL constraints, i.e. visual OCL constraints and
graph transformations, share some commonalities at the base level, presenting
elements from the UML syntax, namely, classifiers, associations, multi-objects
and attributes. However, the composition of complex constraints is expressed
through ad hoc visualisations in one case and through rule sequences in the
other. In general, rule expressions can be employed to govern the application
of rules for complex constraints, in a way which can be inferred by the struc-
ture of the visualisation. Conversely, the visualisation provides suitable graphical
constructs to express the iteration and alternative operators of rule sequences.
Using graph transformation to give OCL an operational semantics is rather
closely related to the dynamic metamodeling approach by Engels et al. who
provide a graphical approach to the operational semantics of behavioural UML
diagrams [EHHS00]. To this end, they use collaboration diagrams, which can
be interpreted as graph rules. The two approaches mainly differ in the way rule
application is controlled. While in the metamodeling approach rule applications
can be controlled by sequential and parallel composition as well as the usage of
other transformation units, we allow a larger variety of control constructs.



4 Conclusions

We have proposed to exploit forms of visualisation to achieve a smoother in-
tegration and use of OCL in the context of the UML diagrammatic languages,
both from a declarative and from a procedural point of view. To this end the pa-
per has illustrated how visual representation of constraints exploiting the UML
visual syntax can be achieved, and how graph rules can be used to support
consistency checking of OCL constraints on target diagrams. Two systematic
translations from the textual OCL syntax to the two forms of visual syntax
(static visualization and executable graph transformation units) preserving the
semantics of the constraints can be realized. These visual syntaxes admit some
amount of hybridization with textual syntaxes, as conditions on properties or
primitive OCL operators (such as size or isOCLKindOf) are more simply left
in the textual form (see for instance the realization of isGreaterZero in Figure
4). The presented visualisation is based on collaborations, and is consistent with
the metamodel for OCL proposed in[RG99]. It introduces a limited amount of
new core notation, but offers a variety of visual shortcuts for convenient visual
notation, favouring a greater readability and amenability to reasoning of OCL
constraints. The combination of the visualisation of OCL and the application
of rule expressions has the advantage of allowing an intuitive representation to
the user, who can perform direct checking on the model, and of getting a formal
semantics, in terms of transformation units.

Based on the proposed translation, an OCL evaluator can be implemented
on top of a graph transformation machine like AGG or PROGRES ([EEKR99))
and later integrated into a UML CASE tool. These tools support a step by step
evolution of the underlying host graphs. An OCL evaluator based on such a
graph transformation machine can help to understand the implemented OCL
semantics by following the stepwise evaluation on instance diagrams visually.
An editor for visual OCL constraints is currently being implemented for the
open source CASE tool ArgoUML. The graph transformation-based approach to
checking inconsistencies can easily support automatic repair actions, by defining
suitable graph rules to solve them, if possible. This approach relies on the idea of
living with inconsistencies during software development presented in [GMT99],
also on the basis of graph transformation.
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Towards Automatic Translation of UML Models
into Semantic Domains

Reiko Heckel, Jochen Kiister, Gabriele Taentzer

University of Paderborn, Germany
{reiko,jkuester,gabi}@Qupb.de

Abstract. The use of UML for software specification leads usually to
lots of diagrams showing different aspects and components of the soft-
ware system in several views. In order to support a view-oriented ap-
proach to system modeling, consistency in views and in between views
has to be manageable. It is a reasonable approach to consistency manage-
ment when first choosing a suitable semantic domain, provide a partial
mapping into this domain, and specify as well as verify consistency con-
straints formulated in that domain. Annotated meta model rules can
be used to translate elements of UML models into the semantic domain
chosen. In this contribution, we consider triple graph grammars and at-
tributed graph transformation approaches for the precise definition of
meta model rules and outline the tool support for automatic translation.

1 Motivation

As there is currently no formally defined semantics for UML, consistency check-
ing of UML models on a semantic basis cannot be done within the UML itself.
In principle, there are at least two different ways of tackling the problem of
achieving semantic consistency: One is to define a complete formal semantics for
the UML. The other is to establish semantic consistency using an approach not
relying on such a complete semantics.

Our approach for consistency checking relies on the observation that semantic
consistency checking can also be performed by choosing an appropriate semantic
domain for a particular consistency problem [EKGHO1]. A semantic domain
has to be appropriate in the sense that it must allow the formal specification
and (automatic) verification of consistency constraints of the UML models. For
different consistency problems also different semantic domains can be chosen.
As a consequence, the specification of mappings of UML models into various
semantic domains is of major interest because such a mapping is essential for
checking consistency of UML models following our approach.

In order to illustrate our approach, we introduce the running example of a
statechart modeling the behavior of a person. In the UML, a statechart can be
associated to a class in order to specify the object life cycle, i.e., the order of
operations called upon an object of this class during its life-time. Given a class
A and a subclass B of A, the behavioral conformity of the associated statecharts
gives rise to the problem of statechart inheritance. In the literature, different
notions are proposed (see, e.g., [EE95,EE94 HK99]).
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Fig. 1. The Person example

For analyzing consistency of such models, we have proposed a mapping
of statecharts into CSP [EKHO01]. Communicating Sequential Processes (CSP)
[Hoa85] provide a mathematical model for concurrency based on a simple pro-
gramming notation and supported by tools [For97]. In fact, the existence of
language and tool support are most important to our aim of specifying and ver-
ifying consistency constraints. The semantics of CSP is usually defined in terms
of traces, failures, and divergences [Hoa85]. Together with these semantic models
come several notions of process refinement which can then be used for specify-
ing consistency constraints between processes obtained from the translation of
statecharts to CSP. For example, trace refinement between the process of a su-
perclass and a subclass can be used for establishing specific notions of behavioral
conformity.

The mapping of statecharts into CSP can be described by specifying mapping
rules using extracts from the metamodel of UML diagrams. The metamodel for
statecharts given in Figure2 defines a simplified notion of a statechart. The
presentation conforms to the UML meta model but for the flattening of some
inheritance relations. All meta classes contain a meta attribute name:string which
is not shown in the figure. (In the UML meta model this is inherited from the
super class ModelElement).

Mapping rules for statecharts to CSP can then be described by the rules
in Figures 3 and 4 combining textual grammar rules with graphical patterns.
Consider, for example, rule (2) in Figure 3 which defines the semantics of a
composite (OR) state in terms of the semantics of its default state. In the center,
this is represented by a meta model pattern showing the abstract syntax of
the source language UML. On the right, a rule is shown that generates the
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source :
e trigger
—EStateVertex [ 1Transition }—99—{ Event
target ‘

subvertex £\

StateMachine

PseudoState
kind: PseudoStateKind

| |
.| CompositeState ‘SimpleState‘ ‘ FinalState ‘
isConcurrent: Bool

Fig.2. UML meta model fragment for protocol statecharts

corresponding expression in the target language CSP. It is parameterized over the
names of the UML model elements and contains non-terminals like extBeh which
are to be replaced by application of other rules. On the left, the corresponding
concrete UML syntax is shown. The result of the application of the rules to the
example of the Person example can be found in [EKHO1].

| |
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| |
| |
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| |
| |
| |
| |
default | |
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| |
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,,,,,,,,,,,,,,,,,, e TTTEEEE——.
@ : :SimpleState : Egns ::= Egns, (3)

| [name=s | State(s) =
| | ext Beh('s)
| |

Fig. 3. Mapping rules for states

These mapping rules describe the translation into a semantic domain rather
precisely, but still informally. So, what are the possibilities to formalize, and
moreover, implement such a mapping? In the following, we discuss two ap-
proaches: The formalization by attributed graph transformation and its im-
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Fig. 4. Mapping rules for the behaviour

plementation by AGG and a realization by pair/triple graph grammars. Both
approaches are roughly compared in the conclusion.

2 Translation by Attributed Graph Transformation

Mapping rules as presented in the previous section can be formalized by at-
tributed graph transformation. We will discuss in the following how mapping
rules can be systematically translated into attributed graph rules. Using AGG
as an engine for attributed graph transformation it becomes possible to auto-
matically translate UML models into some semantic domain and to do semantic
consistency checking by further tools. For the whole procedure we assume that
the UML model is already checked to be syntactically correct.

Semantic attributes. In the first step, we extend the metamodel representa-
tion which shows the abstract syntax of a UML model by attributes containing
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semantic expressions. Each model element which shall be equipped with corre-
sponding semantic expressions is extended by further attributes containing some
semantic information. Dependent of the semantic domain the attribute type can
be string or graph or a more specific type. This semantic extension of abstract
syntax graphs can be seen in the very analogy to attributed syntax trees used for
textual languages. Attributed graph transformation systems for graph languages
can be used analogously to attribute grammars for textual languages ([Paa95]).
In particular, there might be an analogous need for inherite d or derived at-
tributes for languages where graphs contain trees as substructures.

Mapping rules as presented in the previous section can be systematically
translated into attributed graph rules as follows: The attributed graph rules
needed for language translation build upon identical pattern rules id, : P — P
dealing with meta model extracts. Since attributed graph transformation as im-
plemented in AGG cannot handle inheritance of node or edge types, the type
information has to be flattened. Additional attributes can be used to further
specify subtypes. The translation to target expressions is done in attribute com-
putations. Testing on the left-hand side that certain semantic attribute values
are set and additional attribute conditions are fulfilled, the graph transformation
computes new values for semantic attributes. An attribute condition is used to
test if the left-hand side of a target rule can match.

RI=E

| DEIC ORI T
(o0 [ el (<] [ [ ] (R[]I [A][][=] [w]][= s

1:State e 2 %
:State fi : [
ey =l | N E— . [ s .
kind="composite” ey ”_ﬂmf:mmp - : name=default ;;;
exp="" i kind ="composite Kind=x %
a- 6t [ exp=CS5P.addcomp("",comp,default) %
e 6:t 2
e 8: 'i{%'
:State ] e h | |
namesy - 4:Transition i 3:State ! i
il o TR o5 - = e

kind="pseudo” [ - name=y 4:Transition

: kind ="pseudo”

=

e

Qs Click on the background to get a node; on a source node and a target node to get an edge.
4] [ »

Fig. 5. Mapping rule (2) as attributed graph rule

Application to sample mapping rules. Now we consider how the semantic at-
tributes in our example would look like. Mapping statecharts to CSP a new
equation is created for the state machine and for each state not being a pseudo
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state. Thus, nodes of type StateMachine and State get a semantic attribute exp
each containing the corresponding CSP equation after translation. Moreover, we
need a semantic attribute extBeh, since the external behaviour is inherited from
the superstate. The graph part of the attributed translation rules consists of
identical pattern rules for the meta model pattern shown in Figures 3 and 4 in

the previous section. Consider e.g. the sample rules (2) and (5) in Figures 5 and
6.

=10l x]

W=
> : extBeh_comp of transSc

1:5tate 2:5tate 1:5tate 2:5tate
name =comp X » name=s name =comp __3.' name=s
kind="composite” kind=k kind="composite” kind=k

extBeh=b exp=CS5P extBehie, s h)

|
|
|
|
| extBeh=h exp=e
|
|
|

ﬁ Transformation of =transSC= is finished

(4] | ¥

Fig. 6. Mapping rule (5) as attributed graph rule

In rules (1) - (3) the attribute computation is rather easy. After testing that
the semantic expression is not yet computed the rules just create CSP equations
for the state machine and its states. Rules (4) - (7) contain the context-free
replacement of non-terminals of the target language. Thus, we have to test the
occurrence of non-terminals on the left-hand side and replace this occurrence by
the target’s right-hand side expression.

AGG [ERT99] is a graph transformation engine that allows to attribute graph
objects by Java expressions. We use AGG to formulate the sample mapping rules
by attributed graph rules. While the graph part description is straight forward
we focus on the attribute computation in the following. To apply rules (4) -
(7) the existence of non-terminals has to be tested. E.g. for mapping rule (5)
attribute conditions

— e.index0f (¢ ‘extBeh(‘‘+s+’?)??) = -1 and
— 'k.equals(‘‘pseudo’?)

are added. The proper attribute computation is encapsulated in a separate Java
class. Each translation rule refers to a method of this class which computes the
new CSP expression. Since the target language is rather simple we implemented
its context-free replacement rules directly in Java. Consider the following section
of class CSP to understand how the computation can look like. For complex target
languages the usage of a parser generator like JavaCC ([Jav01]) can be helpful.
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public class CSP {

public static String addcomp(String exp, String
comp, String name){
String s = "State("+comp+") = State("+name+");";
exp = exp + s;

return exp;

X

public static String extBeh(String exp, String name,String b) {

String searched = "extBeh("+name+")";
int 1 = searched.length();
int i =

exp.index0f (searched);
String pre = exp.substring(0,i-1);
String post =
exp.substring(i+l);
if (name.equals("top"))
exp = pre + "STOP" + post;
else exp = pre + " directBeh("+name+ ") []1 " + b + post;
return exp;

}

Mapping rule (6) in Figure 4 contains multi objects which would be for-
malized by rule schemes in attributed graph transformation for any number of
transitions and events. Since AGG not yet supports rule schemes rule (6) has
to translated into three rules iterating through the set of event objects. The
full AGG grammar for the translation of our sample statechart in Figure 1 to
CSP can be found at http://tfs.cs.tu-berlin.de/agg/examples/statecharts. Since
this grammar is conflict-free, i.e. no two rule applications are parallel depen-
dent, the translation does not need further application control. It leads always
to a unique result without backtracking. (See also the work on reserved graph
grammars. [ZZ97])

Tool support. To use AGG in a larger tool chain translating (parts of) UML
models to semantic domains and analyze them, the following steps have to be
performed: A UML model is defined in any CASE tool that supports the storage
of UML models in the XML Metadata Interchange (XMI) format ([XMIO1]).
Then, the Extensible Stylesheet Language (XSL) [W3C01] can be used to trans-
form a UML model in XMI format into a graph in GGX format which is the
input format for AGG. Applying the translation rules described above as long
as possible to this graph creates the semantic expressions. Stored in a file they
provide the input to further tools offering semantic analysis. E.g. translating
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statecharts into CSP expressions offers the possibility to check consistency by a
model checker like the FDR tool (mentioned in Section 1).

3 Translation by Pair or Triple Graph Grammars

In this section, we shall briefly review two alternative approaches to the specifi-
cation of translators between graphical and textual languages and discuss their
applicability to our problem. Both pair- and triple graph grammars are based
on a coupling of the production rules for the source and target language, which
allows derivations in the source language to be translated into derivations of the
target language. Both approaches are symmetric, that is, the role of source and
target grammars can be exchanged.

Pair and triple graph grammars. Pair grammars [Pra71] are based on context-
free graph grammars of which context-free Chomsky grammars form a special
case. This restriction is motivated by the fact that the translation of a given
source structure involves the problem of finding a derivation of this structure
using the source grammar, that is, an efficient parser is required. Unfortunately,
most interesting diagram languages, like statecharts, class diagrams, etc. have
an arbitrarily complex graphical structure, that is, they are not context-free.

This is one of the motivations for triple graph grammars [Sch94] which allow
for non-context-free source and target graph grammars.! In fact, in the mean-
time, efficient graph parsers are available also for more general classes of graph
languages. In particular, in the case that the graph grammars are monotonic,
the triple graph grammar approach can be used to generate graph translators
automatically from the mapping specification. The overall strategy is still the
same, that is, parsing the source graph and playing the resulting derivation back
to construct the target graph.

Application to sample mapping rules. Let us try to understand this in terms of
our example, the mapping of statechart diagrams to CSP. The mapping rules in
Figures 3 and 4 consist of two parts: a pattern for the source graph (the meta
model presentation of a statechart diagram) and a context-free production for
generating CSP expressions. The relation between the two parts is implicit in
the names of the states, which are used as parameters of process names. In order
to view such a mapping rule as a triple (or pair) grammar rule, we could follow
the idea of the previous section considering the meta model pattern as an idle
production (where left- and right-hand side coincide). However, since according
to the application strategy described above, the source productions should be
used to generate statechart diagrams, such idle productions are not very useful.

Rather, we have to designate for each pattern P the left-hand side L of the
corresponding source production p : L < P. The resulting source grammar

! The name triple graph grammar refers to a third grammar in between source and
target which produces a mapping structure to keep track of the relation between the
source and target structures.
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Fig. 7. Generalized pair grammar rules for mapping rules (2) and (7)

Src should then generate a superset of the source language, that is, we assume
that we are already given syntactically legal source graphs. In our example, this
would mean that the triple/pair grammar presentation of the rules (1) and (2)
have empty left-hand sides. The presentation of rule (2), shown in the upper left
of Figure 7, promotes a State instance to a CompositeState instance. This does
not violate the monotonicity of the rule because CompositeState is a subclass of
State, i.e., migrating to the latter means to add additional structure while pre-
serving the identity of the object. The production rule for (6) in Figure 7 selects
a source state and an event and adds a “dangling transition” which is completed
by rule (7) by the target state. The production rule (5) generates a subvertex
link between a given CompositeState and StateVertex. This creates a potential
conflict with rule (2) which also generates subvertex links. A deeper analysis of
the structure of statecharts shows that we can omit in rule (2) the subvertex
link between the default State and the CompositeState, while an application of
rule (5) to pseudo states is not needed.

The target grammar productions shown on the right are already context-
free and can thus be left untouched. The resulting rules constitute a mix of
pair and triple grammars, with monotonic graph production for the source and
context-free Chomsky grammar productions for the target structure.
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4 Conclusion

Motivated by the need to translate UML models into semantic domains, we have
outlined two approaches to formalize mapping rules from graphical into textual
languages. This special case of mapping graphical languages is particularly inter-
esting because most formal methods and programming languages are based on
textual syntax. Next, the two approaches shall be compared w.r.t. their structure
of rules, their application strategy, the tool support required, and the additional
effort necessary for converting informally stated rules like the ones in Figure 3
and 4 into the respective rule format.

With respect to rule structure, attributed graph rules are apparently simpler
than pair/triple graph grammar rules because the latter consist of two or three
separate (but connected) rules. However, if we regard the attribute computation
of an attributed graph rule as a separate part, we obtain a similar structure.
The structural difference is, in fact, a matter of syntax since both rule formats
consist of a part working on the source structure (graph transformation rules
in both cases), a part generating the target structure (attribute expressions in
attributed grammars and textual rewriting rules in our version of pair/triple
graph grammars), and a (more or less explicit) connection between the two.

The application strategies of the two approaches are fundamentally different.
Attributed graph rules have to be designed in such a way that the resulting
rewrite system is confluent so that every computation leads to the desired result.
Triple graph grammars are usually applied by first parsing the source structure
and then using the resulting derivation for controlling the creation of the target
structure. Here, more flexibility is given by the potential non-determinism of the
parsing process.

This difference results in different requirements for tools implementing the
two approaches. While attributed graph grammars can be evaluated by nearly all
implementations of graph transformation accommodating attributes, the pair/triple
graph grammar approach requires more specialized tools, like a graph parser and
a mechanism for controlling the generation process.

Most interesting for the usability of the approach is the question, how big
is the effort of converting the informal mapping rules into rules following one
or the other approach. In both cases, this requires additional information, like
the distinction between preserved and to-be-generated items in source rules of
pair/triple graph grammars, or the association of semantic attributes to model
elements in the case of attributed grammars. The impression is that the latter
can be done in a more systematic way, whereas the design of the graph part of
the pair/triple graph grammar rules requires more insights in the structure of
the problem: Different parsing grammars for statecharts may exist which leads
to the problem of deciding which one to choose and how to adapt the right rules
to fit to the parsing grammar.

Altogether, we feel that the attribute rules are closer to the original intuition
of our mapping rules as declarative specification of meta model mappings, while
triple graph grammars force us to think in terms of a generation process for the
source structure. In particular, the application of triple graph grammars forces
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a complete parsing of the structure even to provide only a partial translation of
the model into a semantic domain. Considering e. g. the translation of timing
constraints of a sequence diagram into a system of linear inequalities, the appli-
cation of triple graph grammars therefore seems to be rather inefficient. A more
formal comparison of the approaches and their expressiveness will be subject to
future work.
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Abstract. AToM? is a tool which supports multi-formalism modelling
and meta-modelling to facilitate computer assisted analysis and design
of complex systems. To enable the automatic generation of modelling
tools, the formalisms themselves are modelled at a meta-level within an
appropriate meta-formalism. The generated tools are able to process (cre-
ate, edit, simulate,... ) models expressed in the corresponding formalism.
AToM? relies on graph grammars and graph rewriting techniques to per-
form the transformations between formalisms as well as for other tasks,
such as code generation, model optimization and simulator specification.
As a case study, we describe the syntax and operational semantics of
Causal Block Diagrams (CBD). The animation of such operational se-
mantics results in the actual simulation.

Keywords: Modelling & Simulation, Meta-Modelling, Multi-Formalism Mod-
elling, Graph Grammars, Operational Semantics.

1 Introduction

AToM? is a visual Meta-Modelling tool developed by the authors, which sup-
ports modelling of complex systems. Complex systems are characterized by com-
ponents and aspects which, in addition to being numerous, have structure and
behaviour which cannot be appropriately described in a single formalism. Ex-
amples of commonly used modelling formalisms are Differential-Algebraic Equa-
tions (DAE), Causal Block Diagrams, Petri Nets, Entity-Relationship diagrams
(ERD), and State Charts.

From the meta-specification of a modelling formalism, AToM? is able to pro-
duce customized tools to process models specified in the described formalism.
Both syntax and semantics of a formalism are modelled. Some of the model
manipulations in which we are interested include transformations to other for-
malisms, simulations, optimizations and (textual) code generation for other
tools.
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Causal Block Diagrams (CBD) are a general formalism used for modelling
of causal, continuous-time systems. The simulation of such systems on digital
computers requires a discrete-time approximation. There are several approaches
to this simulation problem. One interesting solution is to describe CBD syn-
tax in an appropriate CBD meta-model and to provide a specification of the
operational semantics of such diagrams using graph grammars. The animation
of such operational semantics will result in the actual simulation. We can thus
regard the graph grammar as an executable specification. This approach is de-
sirable for its generality, since it can be applied to a wide class of formalisms
besides CBD. There is, however, a tradeoff made between generality and effi-
ciency. As a general rule, customized, hand-coded, formalism-specific simulation
algorithms are more efficient. The approach of relying on graph grammars is
expensive due to the nature of the graph matching algorithm. However, there
are other motivations, both theoretical and practical:

— Explicitly defining the operational semantics of any formalism should be
considered as part of the design of the actual simulator, providing a specifi-
cation, from which a more efficient implementation could be built.

— The specification also provides a framework (a reference implementation) for
verifying and testing different implementations.

— It provides a portable simulator, since it is more abstract than a hand-coded
implementation.

— It allows for reasoning about the described systems. For example, it allows
for the definition of general algorithms for bisimulation.

The rest of the paper is organized as follows. Section 2 describes the motiva-
tions for meta-modelling. Section 3 relates graph-grammars to meta-modelling.
Section 4 gives a brief description of AToM?®’s architecture. Section 5 describes
the specification (meta-model) of the CBD formalism. Section 6 provides the
definition of CBD’s semantics in terms of graph grammars.

2 Meta-Modelling

One of the characteristics of complex systems is the diversity of their compo-
nents. Consequently, it is often desirable to model the different components using
different modelling formalisms. This is certainly the case when inter-disciplinary
teams collaborate on the development of a single system. Flexibility is also re-
quired as different teams may prefer slight variations of a particular formalism.
A proven method to achieve the required flexibility for a modelling language
that supports many formalisms and modelling paradigms is to model the mod-
elling language itself [4][10]. Such a model of the modelling language is called a
meta-model. It describes the possible structures which can be expressed in the
language. A meta-model can easily be tailored to specific needs of particular
domains. This requires the meta-model modelling formalism to be rich enough
to support the constructs needed to define a modelling language. Taking the
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methodology one step further, the meta-modelling formalism itself may be mod-
elled by means of a meta-meta-model. This meta-meta-model specification cap-
tures the basic elements needed to design a formalism. Table 1 depicts the levels
considered in our meta-modelling approach.

Level Description Example

Meta-Meta-Model Model describes a formalism Description of Entity-
that will be used to describe Relationship Diagrams, UML
other formalisms. class Diagrams

Meta-Model Model describes a simulation Description of Deterministic
formalism. Specified under the Finite Automata, Ordinary dif-
rules of a certain Meta-Meta- ferential equations (ODE)

Model

Model Description of an object. Speci- f'(z) = —sinz, f(0) = 0 (in
fied under the rules of a certain the ODE formalism)
Meta-Model

Table 1. Meta-modelling levels.

Formalisms such as ERD are often used for meta-modelling. To be able to
fully specify modelling formalisms, the meta-level formalism may have to be
extended with the ability to express constraints (limiting the number of mean-
ingful models). For example, when modelling a Determinsitic Finite Automaton,
different transitions leaving a given state must have different labels. This cannot
be expressed within the ERD formalism alone. Expressing constraints is most
elegantly done by adding a constraint language to the meta-modelling formal-
ism. Whereas the meta-modelling formalism frequently uses a graphical notation,
constraints are concisely expressed in textual form. For this purpose, some sys-
tems [6], including AToM? use the Object Constraint Language OCL [8] used in
the UML.

Fig. 1 depicts the structure we propose for a meta-modelling environment.
AToM? was initialized using a hand-coded ERD meta-meta-model. As the ERD
formalism can be described as an ERD model, the environment was subsequently
bootstrapped. Meta-formalisms are described by meta-meta-models. Although
it is possible to describe a meta-formalism mf; using another meta-formalism
mf> we consider both as meta-formalisms as no more capabilities are added by
going to higher meta-levels.

3 Graph grammars and Meta-modelling

Graph-grammars play an important role in our approach to the modelling of
complex systems. We represent models as Abstract Syntax Graphs (as a logi-
cal generalisation of Abstract Syntax Trees), and therefore model processing as
graph grammars. Some of the manipulations we are interested in are:
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Fig. 1. Proposed working scheme for a meta-modelling environment.

— Formalism transformation: Given a model in a certain formalism, these trans-
formations convert it into a model, but expressed in another formalism. For
Modelling and Simulation, possible transformations are given in a Formalism
Transformation Graph [11].

— Model optimization: These transformations do not change the formalism in
which the model is expressed. Their application results in a reduction of the
model complexity.

— Code Generation: These transformations produce a textual representation
of the model (subject to syntactic constraints).

— Simulator specification: These graph grammars specify the operational se-
mantics of the model. We will present an example of this kind of graph
grammar in section 5.

All these tasks depend on the formalisms of interest. However, since models
determined by some meta-model are graphs (subject to the constraints given by
the meta-model), these tasks can be performed by a generic graph-transformation
algorithm. Therefore it makes sense to combine meta-modelling and graph-
grammars in a unifying framework. Meta-models determine the classes of graphs
that are allowed on the LHS and RHS of a graph-grammar rule. Furthermore,
the rules themselves, and the grammars, can be viewed as models in the graph-
grammar formalism, which itself can be described in a meta-model.

There are tools for specifying graph-grammars and tools for meta-modelling,
but to our knowledge no tool combines them in a unified framework. AToM? was
conceived to fill this gap.
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Fig. 2. Graph-grammars in Modelling and Simulation.

We would like to emphasize the role of graph-grammars in Modelling and
Simulation. As mentioned before, graph transformations can be regarded as
models, which can process models of other formalisms (Fig. 2 (a)). This ba-
sic paradigm can be applied to the general process of simulation. In order to
simulate a model, one must first provide values to the model’s parameters, and
feed these, with the actual input, to the simulator ([12]). Each of these processes
can be specified by graph grammars (Fig. 2 (b)). In transformations T; and Ts,
the given model is enriched with additional structure (parameters and input).
Transformation T3 is the actual simulator, which can also be specified as a graph
grammar, based on the operational semantics of the model’s formalism. Input
as well as output, can themselves be regarded as models in a formalism of traces
(time-segments) of the values of interest.

4 AToM3

AToM? is a Meta-Modelling tool written in Python [9]. Its main component is
the Kernel, which is responsible for loading, saving, creating and manipulating
models (at any meta-level), as well as for generating code for customized tools.
Both meta-models and meta-meta-models can be loaded when AToM? is invoked
(see Figure 1). The first kind of models allow construction of valid models in a
certain formalism, the latter are used to describe the formalisms themselves. In
AToM? all models, irrespective of meta-level, have the same internal structure
(a graph).

The ERD formalism extended with constraints is available at the meta-meta-
level. Constraints can be specified as OCL or Python expressions, and the de-
signer must specify when (pre- or post- and on which event) the condition must
be evaluated. Events can be semantic (such as editing an attribute, connecting
two entities, etc.) or graphical (such as dragging, dropping, etc.)
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When modelling at the meta-meta-level, the entities which may appear in
a model must be specified together with their attributes. AToM? supports two
kinds of attributes: regular and generative. Regular attributes are used to identify
characteristics of the current entity. Generative attributes are used to generate
new attributes at a lower meta-level. The generated attributes may be generative
in their own right. In this way a meta-formalism, such as the ERD can be used
to describe other meta-formalisms, such as the UML class diagrams. Both types
of attributes, regular and generative may contain data or code for pre- and post-
conditions.

The meta-meta-information is used by the Kernel to generate some Python
files (see upper-right corner of Fig. 1), which, when loaded by the Kernel, allows
the processing of models in the defined formalism. These files include a model of
the user interface presented when the formalism is loaded. This model follows the
rules of the “Buttons” formalism, and by default contains a button to create each
object found in the meta-model. For the case of the Petri-Nets formalism ([7]), it
would contain buttons to create Places, Transitions, and the connections between
them. This model can be modified using AToM? to for example add buttons to
execute graph grammars on the current model or delete unwanted buttons. When
a formalism is loaded, the Kernel interprets this user interface model, to create
and place the actual widgets and associate them with the appropriate actions.

The functionalities of the generated tools include creating models under the
rules of the specified formalism, verifying that these models are valid, loading,
saving, and producing a Postscript file with its graphical representation. Further
model manipulations can be obtained by defining appropriate graph grammars.

For the implementation of the Graph Rewriting Processor, we have used an
improvement of the algorithm given in [5], in which we allow non-connected
graphs in LHSs. It is also possible to define a sequence of graph grammars that
have to be applied to the model. This is useful, for example to couple gram-
mars to convert a model into another formalism, and then apply an optimizing
grammar. For clarity and efficiency reasons graph grammars are often divided in
independent parts. In our tool, rules are ordered based on a user-assigned prior-
ity, and the rewriting system iteratively applies matching rules in the grammar
to the graph, until no more rules are applicable.

Rule execution can either be continuous (no user interaction) or step-by-step
whereby the user is prompted after each rule execution. As the LHS of a rule
can match different subgraphs of the host graph, we can also control whether
the rule must be applied in all the subgraphs (if disjoint), whether the user
can choose one of the matching subgraphs interactively, or whetherthe system
chooses a random one.

As in grammars for formalism transformations we have a mixing of entities
belonging to different formalisms, it must be possible to open several meta-
models at the same time. Obviously, the constraints of the individual formalism
meta-models are meaningless when entities in different formalisms are present in
a single model. Such a model may come to exist during the intermediate stages of
graph grammar evaluation when transforming a model from one formalism into
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another. It is thus necessary to disable evaluation of constraints during graph
grammar processing (i.e. all models are reduced to Abstract Syntax Graphs). At
the end of the execution of a graph grammar for formalism transformation, the
Kernel checks if the resulting model is valid in the active formalism. Formalisms
used for intermediate processing are closed appropriately.

5 Meta-Modelling CBD’s with AToM?3

As an example of AToM?®’s capabilities to model syntax and operational se-
mantics of formalisms, we present Causal Block Diagrams (CBD). CBD are
commonly used in tools such as MathWorks’ Simulink (tm).

CBDs have two basic entities: blocks and links. Blocks represent transfer func-
tions, such as arithmetic operators or integators. Links transmit signals between
blocks. Signals are functions of time. We meta-model CBD syntax by means of
an ERD model'. Our representation consists of an entity called block with an
attribute that represents its type? (e.g. constant generator, or addition). Links
are modelled as a relation between such entities. Links have an attribute repre-
senting the value of the signal at the current time of simulation. We also include
other elements in our ERD meta-model, called blinks, point, and focus. They will
not represent syntactic elements of the CBD per se, but structures necessary to
simulate them. This is explained in more detail below. Fig. 3 shows AToM? with
the CBD meta-model (on the left) and the generated tool to process CBD models
(on the right).

ES] ATOMS us E e taMe taModel I X — 3 1 X
File  Model Transformation | File  Model Transfonmation
- genarator] =
Facus
» Points Tmes 3 delay Tires B )
; | v [ o @ % L@ % .@. §
:
s
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©
w0 W [
@ Generato]
M [generator] AN
‘- 023
N I - «
T e
insert Mode! edit entity expand model connect. detete exit insert Model edit entity expand mode! connect. delete exit
new Entity | new Relationship J | J new block | new link | new biink |
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Fig. 3. ER metamodel of CBD (left), and generated tool to process CBD (right)

1 A meta-meta-model for the ERD formalism is present in AToM?>
2 AToM? has a meta-model of Types.
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When simulating CBDs, unless a parallel machine is used, with a processor
for each block, where all the processors work in perfect synchronization, one
must choose a strategy for propagating information in a way which does not
create inconsistencies. This means that there needs to be an ordering in evalu-
ation of dependent nodes. Subgraphs that are independent could be evaluated
concurrently, but only before any block that is influenced by them.

The solution is simple: 1) order the nodes by a topological sort of the graph
(done by a standard depth-first traversal) 2) evaluate each block following this
ordering. In section 6.1 we present such an algorithm by means of a graph gram-
mar. For this we require an additional type of link between blocks, which we
call blink. A blink between a block B; and a block B> represents the relation
“evaluate By before evaluating By”. After the topological sort has finished, there
will be a hamiltonian path over the blocks where the blocks will be connected
by edges of type blink. The other entity, the focus is a pointer to the block being
processed. Only one focus entity is created by the graph grammar, since our
approach is purely sequential.

5.1 CBD Denotational Semantics

Here, we provide an informal description of the denotational semantics of block
diagrams (Figure 4 on the left). This description simply associates each block
diagram to a set of equations representing the values of the links between blocks
as signals. More precisely, the denotation of a block diagram is the set of signal
functions corresponding to every link in the diagram 3.

In order to simulate CBD on a digital computer we need to discretize the
signals, i.e. use the natural numbers as the time-base for the signals. The in-
terpretation of the delay block adopted here is only for a discrete time-base.
The other blocks have the same interpretation for both discrete and continuous
time. The denotation for the delay block in continuous time has to take a time

segment as initial condition, instead of the point value h, shown here.

6 Processing CBD’s models

By having the natural numbers as our time base, we can view signals as streams,
i.e. unbounded sequences of the values that the signals take at the discrete points.
This allows us to see the block diagram as a dataflow network. Here we present
an approach based on [1]. One way to model this is by providing each link with
an attribute that represents the complete stream computed so far. By doing
so, the definition of the operational semantics of CBDs by means of a graph
grammar becomes straight-forward. Certaintly this is space-expensive but, as
we mentioned in the introduction, the goal of this approach is not to achieve

% In our treatment of causal block diagrams we require the explicit use of delay blocks
whenever there is a feedback loop. The reason is that otherwise, the denotational
semantics given here would produce inconsistencies in the presence of such loops.
Furthermore we require there to be at least one constant generator in the model.
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Fig. 4. Denotational (left) and Operational (right) semantics of CBD’s.

efficiency, but to be able to define an executable specification of the operational
semantics.

A first, stream-oriented approach to the operational semantics is straightfor-
ward. We observe the following conventions: uppercase letters represent streams,
explicit streams are written as lists with square brackets, e.g. [zo, %1, %2, ...].
Stream concatenation is done with the # operator. If we have a finite stream
X, then X#[e] represents the stream resulting from appending e to X. The
operational semantics are defined then as shown in figure 4 (right).

This matches the denotational semantics: The constant generator simply gen-
erates an infinitely long stream: X = [¢, ¢, ¢, ...]. Hence X (¢) = cfor all t > 0. The
rule for an arithmetic operator block * guarantee that if X = [z, 21, Z2,...] and
Y = [y0,¥1,Y2,...] then Z = [zo*yo, 21 *y1, T2 %Yo, ...], that is, Z(t) = X (¢)*Y (¢)
for all ¢ > 0. Finally, for the delay operator we have that if the input is
X = [zo,21,%2,...] then the output is Y = [i,z0,21,22,...], i.e. Y(0) = 1,
Y (1) = X(0), Y(2) = X(1), etc. Hence Y (¢) = X (¢t — 1) for all ¢ > 0.

6.1 Topological Sort

The problem with these rules is that they do not take into account the issue
of evaluation order. This might be enough to reason about CBDs, but not to
produce an “executable specification”. In order to deal with this, we introduce a
set of rules which will sort the blocks. This set of rules is to be evaluated before
the actual operational semantics rules.

The general idea of this set of rules is based on a depth-first search of the
graph [3]. Here we explicitly construct the evaluation path, i.e. we create blinks
between the blocks. First we find some root block*, a block without parents, and

4 In the CBD presented here there will always be at least one root node, since we
require to be at least one constant generator.
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visit all its children recursively, marking with a colour blocks already visited.
When a node has not been visited, it is white. When it has been visited but
not all its decendants have been explored, it is gray. Otherwise it is black. We
also keep a pointer to the node currently visited, which we call the focus. As
the focus goes from parent to child, a blink edge is created between them, and
a blink coming out of the parent is transferred to the child. When backtracking
after finding a dead-end (i.e. a gray or black node, already visited), blinks are
left unchanged. When a branch has been completely explored, a new root is
searched for and the process is repeated until all nodes are coloured black.

Given the space limitations only some representative rules are shown (for
details, we refer to the AToM?® web-page [2]). Blocks will have a counter rep-
resenting the number of immediate children being explored. The rule in Fig. 5
shows the rule representing the discovery of a node that hasn’t been visited, as
described above. (Dashed arrows are blinks.)

3 =]

A color=gray | color=white A color=gray color=gray
cc=n cc=0 cc=n+l cc=0

c--mm——m- == 1

y

Fig. 5. Topological sort of a CBD: new non-terminal discovered

Another important rule is shown in Fig. 6, depicting the backtracking when
a loop is detected or when all the children have been visited.

A
color=gray color=gray — color=gra; color=black -
cc=n cc=0 color=black o raray P color=black

et e

i

Fig. 6. Topological sort of a CBD: loop detected or children completed.

The graph-grammar implementing the topological sort, adds a blink between
the last node and the first, making it a loop.
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6.2 Operational Semantics

We need to adapt the rules shown in Fig. 4 so that blocks are evaluated in the
correct order. This is implemented by focusing on one block, evaluating it, and
follow the blinks created by the topological sort. An example of one such rule is
shown in figure 7.

—> [ ]

where Z=[X(t) op Y(t) for t>=0]
Fig. 7. A representative rule for evaluation of a CBD.

Since the topological sort returns a loop covering all nodes, evaluation pro-
ceeds following the described scheme until some termination criteria is met. To
specify termination, we add two global attributes to the meta-model of CBD:
an iteration counter, and a maximum number of iterations attribute. Models
in AToM? can also have user-defined constraints, making it easy to define the
termination criteria in terms of these atributes.

6.3 Simulation Results

The specified CBD simulator was tested on the harmonic oscillator equation
2

(also known as the “circle test”): ‘fi% =—z,z(0) =1, ‘fi—f(O) = 0. Full results can

be found on the AToM3 homepage [2].

7 Conclusions

In this article we have presented our approach to modelling complex systems,
which is based on meta-modelling and multi-formalism modelling, and is im-
plemented in the software tool AToM?. This code-generating tool, developed in
Python, relies on graph grammars and meta-modelling techniques.

We have demonstrated how both syntax and operational semantics of the
commonly used formalism Causal Block Diagrams formalism can be modelled.
When doing so in AToM?, a tool for modelling and simulating CBD is automat-
ically obtained.

Our main contribution is the unification of meta-modelling (formalisms —
classes of models — may be modelled in their own right) and graph transformation
based on graph grammar specifications.

The advantages of using an automated tool for generating customized model-
processing tools are clear: instead of building the whole application from scratch,
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it is only necessary to specify —in a graphical manner— the kinds of models we
will deal with. The processing of such models can be expressed at the meta-level
by means of graph grammars.

AToM?, with meta-models for modelling with Entity-Relationship, Data Flow
Diagrams, Structure Charts, Petri-Nets, Statecharts, GPSS, DEVS and Finite
State Automata and some transformations is available at [2].
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1 Aims and Introduction

The main aim of this contribution is to give an overview concerning applications
of graph transformation techniques to the area of Petri nets achieved by the
team of TU Berlin within the APPLIGRAPH Working Group and the DFG
Researcher Group on Petri Net Technology.

Since about 10 years the strong relationships between the areas of Petri nets
and graph transformation systems have been studied especially as part of the
cooperation of the groups in Pisa and Berlin, while it was observed by Kre-
owski already in the early 80s how Petri nets can be considered as a special case
of graph transformation systems. The main aim of the Pisa-Berlin cooperation
was to transfer the well-known constructions leading to a truly concurrent event
structure semantics from Petri nets to graph transformation systems. Vice versa
the concept of high-level replacement systems, short HLR-systems, by Ehrig,
Habel, Kreowski and Parisi-Presicce in [EHKP91] was the starting point to ob-
tain new concepts and results for the area of Petri nets by application of graph
transformation techniques. In fact the concept of HLR-systems in [EHKP91] is
a generalization of the double pushout approach from graph transformation to
HLR-systems in a categorical framework.

The instantiation of HLR-systems to Petri nets leads to the concept of net
transformation systems [PER95], which will be discussed in Section 2. In order to
study property preserving transformations, the concept of HLR-transformations
was extended by Padberg in [Pad96] to Q-transformations leading to safety
and liveness preserving transformations in [PGE98,GHP99] and [GPUO01] respec-
tively reviewed in Section 3. In Section 4 we discuss in which way the module
concept for graph transformation systems developed by Simeoni [Sim00] has
been transferred to Petri nets [PHBS02] and to a generic component concept in
[EOBKPO02]. In Section 5 we discuss the modeling of open systems, where the
concept of open graph transformation systems developed by Heckel [Hec98] has

* This work is partially supported by the project APPLIGRAPH (ESPRIT Basic
Research WG), GRAPHIT (CNPq and DLR) and by the joint research project
“DFG-Forschergruppe PETRINETZ-TECHNOLOGIE” between H. Weber (Coordina-
tor), H. Ehrig (both from the Technical University Berlin) and W. Reisig (Humboldt
University Berlin), supported by the German Research Council (DFQ).
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influenced the development of open nets in [BCEHO1]. Finally in Section 6 we
briefly mention other topics, where the areas of graph transformation techniques
and Petri nets have influenced each other.

2 Net Transformation Systems as Instantiation of
High-Level Replacement Systems

The general idea of high-level replacement (HLR) systems is to generalize the
concept of graph transformation systems and graph grammars from graphs to
all kinds of structures which are of interest [EHKP91]. This generalization has
been done categorically and can be applied to all kinds of high-level structures,
especially also different kinds of Petri nets. Several results from graph grammars
have been reformulated in the framework of high-level replacement systems and
can be applied to other high-level structures without the necessity to be proven
again. The theory of HLR systems is based on the double pushout approach,
which has been widely investigated in the area of graph grammars (see [Ehr79]).
The HLR framework is suitable for many high-level structures. The concept of
transformations has been applied to several classes of Petri nets (P /T Petri nets,
colored Petri nets, AHL nets), yielding the idea of net transformation systems
first introduced in [PER95].

The next definition introduces rules, transformations and net transformation
systems formally for a given category NET of low or high level nets. More about
the underlying theory can be found in [PER95] and in [Pad99).

Definition (Rules, Transformations and Transformation Systems).

1. Arule p= (L PR QN R) in a category NET consists of the objects L,
K and R, called left-hand side, interface (or gluing object), and right-hand

side, respectively, and two morphisms K 5 L and K 5 R with both
morphisms l,r € M, a suitable class of injective morphisms in NET.

2. Given a rule p = (L LI N R), a direct transformation G == H from
a net G to a net H is given by two pushout diagrams (1) and (2) in the
category NET as shown below.

l T

L<~—K R
ml ) % (@) ln
G<7—C——H

The morphisms L — G and R — H are called occurrences of L in G and

R in H, respectively. By an occurrence of rule r = (L LI -GN R) in a
net G we mean an occurrence of the left-hand side L in G.
In fact, the occurrence morphism m has to satisfy a specific condition, called
gluing condition, in order to apply the rule p to the net G.

3. Given a category of nets NET together with a suitable class of injective
morphisms M, a net transformation system H = (S,P) in (NET, M) is
given by a start net S € INET|, and a set of rules P.



37

The idea of net transformation systems is the basic idea behind the stepwise
development of communication based systems in the framework of Petri nets.
Each transformation step can be formally depicted as a rule-based transforma-
tion according to an appropriate rule in a specific net transformation system.
The transformation sequence then provides a transformation from the initial net
G to the final net H as shown below.

G=Go 2 =& . . . £aG,=H.

Several results concerning horizontal structuring for net transformation sys-
tems have been adopted from HLR systems. The two basic structuring con-
structions for nets are union and fusion. Union allows a construction of larger
nets from smaller ones with shared subpart, while fusion is a construction which
allows to identify distinguished subnets.

Especially the concept of fusion is more general then the concept of fusion
of places often cited in the Petri net literature. The fusion introduced in net
transformation systems is not restricted to the fusion of places, but covers also
fusion of subnets.

In a view of software development methodology it is important that hor-
izontal structuring based on fusion and union is compatible with transforma-
tions. This means that — under certain compatibility conditions — the result is
the same whether we apply first union/fusion and then transformation or vice
versa. For more details about horizontal structuring and transformations see e.g.
[Pad96,Pad99).

This net transformation technique including horizontal structuring has been
successfully applied in the case study of a larger medical information system
summarized in [EPE96].

3 Property Preserving Net Transformations

Although the net transformation framework is a suitable concept for stepwise
development of systems, very often there is a need to consider in addition more
general morphisms for refinement or abstraction. The main idea is to enlarge the
category of nets by Q-morphisms in the sense of [Pad96] in order to formulate
refinement /abstraction morphisms.

More precisely, another category of nets QNET with a distinguished class
of morphisms Q, called Q-morphisms, is employed. The category NET of nets
from the previous definition in Section 2 has to be a subcategory of QNET. The
class of Q-morphisms is the class of refinement/abstraction morphisms. This
class of morphisms has to satisfy additional requirements called Q-conditions
(see [Pad96]) to be adequate for refinement or abstraction.

Then, a single transformation step is formally given by Fig. 1. The squares
(1) and (2) represent a transformation in the category NET (as in definition
in Section 2). A morphism ¢ is the refinement/abstraction morphism in QNET,
such that ¢ € Q. When the Q-conditions are satisfied then there exists an induced
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Fig. 1. Transformation step

Q-morphism ¢’ € Q in QNET, which is a morphism between the original and
the transformed net.

The idea of Q-morphisms for net transformation systems has also been intro-
duced for HLR systems in general. It is a powerful formal technique for design
of complex systems. However, it has been applied up to now only in the domain
of Petri nets. The application to graph transformation systems is certainly also
of interest and a point of future investigation.

The concept of Q-morphisms is important in order to study whether the
transformation of nets is property preserving. During the transformation pro-
cess, a net may become too large to check some properties of this net efficiently.
If this property could be checked or stated for an initial net before the transfor-
mation starts and then preserved during the transformation process, a tedious
investigation of properties for the final net can be omitted.

The idea of property preserving transformations has been investigated in
[GHP99,PG00,PGE9S] for safety properties and in [GPUO1] for liveness. Safety-
properties for Petri nets are stated as propositional logic formulas upon the
actual marking of Petri nets. Morphisms preserving safety properties have been
investigated for several types of Petri nets, see [GHP99] for P/T Petri nets,
[PGOO] for colored Petri nets and [PGE98] for a class of algebraic-high level
nets. This class of morphisms has been applied also in a case study of a med-
ical information system in [Pad99] in order to prove relevant properties of the
information system.

Liveness preserving refinement is based on the standard notion of liveness
as used in Petri net theory. Liveness means that no deadlock or even livelock
can occure. In [GPUO1] it is shown that a special type of transition refinement
preserves liveness in Petri nets. The idea is based on abstracting morphisms,
which are related to vicinity respecting morphisms (introduced in [DM90]). A
certain subclass of abstracting morphisms, called a class of collapsing morphisms,
allows a description of a transition refinement as collapsing of a subnet to one
transition. The preservation of liveness has been proven for collapsing morphisms
and demonstrated on an example in [GPUO01].

Both types of property preserving transformations give an oportunity to cut
the cost of verification of system properties for large systems.
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4 Module and Component Concepts

A variety of modularity concepts has been introduced for graph transformation
systems in the literature. An overview and classification is given in [HEET99].
In the following we consider the concept of M. Simeoni introduced in [Sim00]
which has been adapted also to Petri nets.

Modules of graph transformation systems in the sense of [Sim00] are based
on refinement morphisms exp between export EX P and body BOD of a module
and injections imp between the import IM P and the body (cf. Fig. 2). It is im-
portant to notice that IM P, EX P and BOD are graph transformation systems
rather than single graphs. The refinement morphism represents the elaboration
of certain aspects of the graph transformation system in the export interface to
greater detail in the body. The import interface contains the parts of the body
to be further refined.

EXP

exp
IMP"" BOD

Fig. 2. Module with ezp-refinement and imp-inclusion

It is shown in [Sim00] that the category consisting of typed algebraic graph
transformation systems as objects and refinements as morphisms has pushouts
if at least one of the morphisms is an inclusion. This means that refinements of
the import of a module yield corresponding refinements of the body.

In [PHBSO02] this approach is applied to Petri nets leading to Petri net mod-
ules. In this case IM P, EX P and BOD are Petri nets. Refinement morphisms
are defined as a more general kind of Petri net morphisms allowing transitions
not only to be mapped to transitions, but also to whole subnets of the target
net. As in the case of graph transformation systems composition of modules can
be defined by lifting of a refinement from the import to the body.

Abstracting the ideas in [Sim00] and [PHBS02] a concept of components for
generic modeling techniques is introduced in [EOBKP02], which allows arbitrary
kinds of transformations between the export and the body of a component. The
only property that must be satisfied by the chosen transformation concept is the
extension property, which requires that transformations can be lifted along an
inclusion.

Moreover, a transformation semantics is proposed which is suitable for semi-
formal modeling techniques like the UML, as well as for formal modeling tech-
niques with tight semantics like Petri nets. This semantics is a function, yielding
for every transformation of the import of a component a corresponding trans-
formation of the export. The transformation semantics is shown to be compo-
sitional, i.e. the semantics of a composed component can be obtained from the
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semantics of its parts. These results of [EOBKPO02] can be transferred back to
Petri nets as well as graph transformation systems.

5 Modeling of Open Systems

In the double-pushout (DPO) approach, a graph derivation G 2R His uniquely

determined up to isomorphism for a rule p = (L P R) by an occurence
morphism m: L — G and the requirement that (1) and (2) in Fig. 3 are pushout
diagrams. Similar to other graph transformation systems this can be considered
as a tight semantics assigned to rules.

L K R
ml (1) % (2) ln
G<7—C——>H

Fig. 3. Double pushout resp. double pullback diagram

The modeling of open systems, however, requires a kind of loose semantics,
because in addition to the changes specified by the rules, unspecified changes
can occur due to interaction of the system with the environment or a user. In
[Hec98] this loose semantics is achieved by a double-pullback (DPB) approach

leading to graph transitions G M) H. In contrast to the DPO approach, the

requirement that (1) and (2) in Fig. 3 are pullback diagrams leaves changes to
the environment of the occurence unspecified. Therefore a graph transition is not
uniquely defined by a morphism m: L — G but only by a triple of morphisms
d = (dy,,dk,dR), determining the implicit changes to the environment.

A second important concept of [Hec98] is the explicit frame condition, re-
stricting the parts of the graph on which interaction with the environment can
take place to output and input sorts O~,0" and requiring transitions to be
direct derivations for the remaining parts. This approach is applied to Petri nets
by the notion of open Petri nets [PJHE98]. An open net consists of an ordinary
Petri net N and sets of output and input places O—, 0%, on which tokens can
be exchanged with the environment. This concept has been formally introduced
in [BCEHO1] where open nets are used to model two workflows interacting with
each other by a common interface. The open places in either of the nets for the
two workflows represent the environment through which communication with
the other one is possible.

As a main result in [BCEHO01] a Goltz-Reisig process semantics is introduced
for open nets. For these processes an amalgamation much like the amalgamation
of algebras (see e.g. [EM85]) is developed, which can be used to achieve com-
positionality of the semantics of open nets. It seems promising to transfer these
results back to graph transformation systems. This, however, is future work.
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The concept of inclompete information in open systems leads to the frame-
work presented in [EHLOPRO0O0] for generic rule-based modeling techniques,
which is instantiated on one hand by the graph transitions mentioned above,
on the other hand by open Petri nets, where rules correspond to net transitions
t: pre(t) = post(t), transformations to the firing of a net transition and transi-
tions to the firing of a net transition with unspecified output and input on the
open places.

6 Further Recent Developments

In [Hof00,Hof01] we have introduced the concept and formal definition of Alge-
braic Higher Order Nets where the data type part is extended by higher order
types, sorts and functions. This allows to have functions as data items on places,
such that different functions may be activated and applied during run time.
As far as we can see it is possible to extend analogously the data type part of
attributed graph transformation leading to higher order attributed graph trans-
formation. As part of ongoing work we will describe on one hand the theory of
higher order attributed graph transformation and on the other hand the appli-
cation domain where this feature of flexible modeling is especially useful.

A further recent development based on transformations for arbitrary specifi-
cation techniques in the sense of high-level replacement systems is the description
of architecture evolution. The architecture of specifications is represented by a
graph that is used as a diagram over the specification. These diagram functors
can then be transformed in the usual double-pushout approach. The formal foun-
dation is given in [Pad01]. An informal version where an extensive example and
its implementation in GENGED is discussed can be found in [BEQO02].

7 Conclusion

In this paper we have presented four main topics where techniques from the area
of graph transformation systems have influenced new developments in the area
of Petri nets. The most promising ones for further development are the property
preserving transformations in Section 3 and the module and component concepts
in Section 4, because they support stepwise construction and verification of large
systems from small components in the framework of Petri nets. An additional
topic discussed in another overview paper [BEEQWO02] are visual modeling tech-
niques based on attributed graph transformation systems [1] which have been
applied to Petri nets leading to an interesting new concept of animation of Petri
nets [7,BEEQW02].
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1 Introduction

Graph Relabelling Systems (GRS) have been introduced in [4] as a suitable tool
for encoding distributed algorithms, for proving their correctness and for un-
derstanding their power. In this model, a network is represented by a graph
which vertices denote processors, and edges denote communication links. The
local state of a processor (resp. link) is encoded by the label attached to the cor-
responding vertex (resp. edge). A relabelling rule is a rewriting rule which has
the same underlying fixed graph for its left-hand side and its right-hand side,
but with an update of the labels. According to its own state and to the states
of its neighbours, each vertex may decide to realize an elementary computation
step. After this step, the states of this vertex, of its neighbours and of the corre-
sponding edges may have changed according to some specific computation rules.
Thus they satisfy the following requirements:

(C1) they do not change the underlying graph but only the labelling of its com-
ponents (edges and/or vertices), the final labelling being the result,

(C2) they are local, that is, each relabelling changes only a connected subgraph
of a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the rela-
belling only depends on the local context of the relabelled subgraph.

For such systems, the distributed aspect comes from the fact that several rela-
belling steps can be performed simultaneously on “far enough” subgraphs, giving
the same result as a sequential realization of them, in any order. A large family
of classical distributed algorithms encoded by graph relabelling systems is given
in [2, 3].

The power of relabelling systems can be increased using priorities (PGRS)
or forbidden contexts (FCGRS). A priority relation (see [4,8,9]) is a partial

* This work has been supported by the TMR research network GETGRATS and by
the “Conseil Régional d’Aquitaine”
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order on the set of relabelling rules. In PGRS systems, the priority relation
determines the order in which rules have to be applied if they overlap. In FCGRS
[10], relabelling rules are equipped with forbidden contexts, that is graphs which
disable the application of the corresponding rule if they are included in the
context.

In this paper, we deal with relabelling systems for named networks. Proces-
sors are assumed to have distinct identities. We show that relabelling systems
can be applied for those networks. We consider the examples of computing span-
ning trees in such networks. By applying various types of relabelling systems,
we capture various paradigms of the distributed computation of a spanning tree.
These paradigms include sequential or distributed computation, local detection
of the global termination, and correctness of computation.

One fundamental problem in distributed computing is the termination de-
tection property [14]. That is, the existence of a vertex which decides whether
the algorithm is globally terminated. In fact, it is not trivial for a processor to
have an up to date knowledge on the global state of the system, and to decide
whether a distributed computation has finished. There are two types of termina-
tion. In an implicitly terminating algorithm, each execution is finite and in the
last state of the execution each node has the correct result. However, the nodes
are not aware of the global termination. Termination is said to be explicit in a
process if that process is in a terminal configuration and its state indicate the
termination of the algorithm. There were many proposals for termination detec-
tion algorithms: such algorithms transform implicitly into explicitly terminating
algorithms. Several conditions were found to allow such algorithms and for each
of these conditions a specific algorithm was given (see [14]). In this paper, by
termination we mean explicit termination.

On one hand, we will give examples of relabelling systems which have the
termination detection property, on the other hand we will give a method which
transforms a relabelling system which is initialized by exactly one vertex into
another one with the termination detection property. For the latter, we will
use the well-known Dijkstra-Scholten algorithm [6] to detect termination. Such
an algorithm fits in our framework, and can be encoded by a graph relabelling
system. Moreover, by combining the relabelling system encoding the Dijkstra-
Scholten algorithm with another representing a given distributed algorithm, we
obtain a graph relabelling system encoding the latter algorithm which has the
termination detection property. We illustrate this method by an example which
computes a spanning tree.

We base our examples on the computation of a spanning tree in a network,
because it is among the important problems in distributed computing. Trees are
essential structures in various communication protocols (synchronization, dead-
lock resolution, information broadcasting). This problem is also closely related
to the election problem. The aim of an election in a network of processors is
to choose exactly one element in the set of processors: this element is called
elected or leader. The leader can be used subsequently to make decisions or to
centralize some information. In fact, the problem of finding a leader is reducible
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to the problem of finding a spanning tree. For anonymous networks, computing
spanning trees by graph rewriting techniques has already been investigated in
[8]. We focus in this paper on networks with processor identities. Let us note
that all algorithms presented in this paper have been implemented and tested
[3,12,2].

Among models related to our model there are local computation systems as
defined by Rosenstiehl and al. [13], Angluin [1], Yamashita and Kameda [7] and
Boldi and Vigna [5]. In [13] a synchronous model is considered, where vertices
represent (identical) deterministic finite automata. The basic computation step
is to compute the next state of each processor according to its state and the
states of its neighbours. In [1] an asynchronous model is considered. A basic
computation step means that two adjacent vertices exchange their labels and
then compute new ones. In [7] an asynchronous model is studied where a basic
computation step means that a processor either changes its state and sends a
message or it receives a message. In [5], networks are directed graphs colored on
their arcs; each processor changes its state depending on its previous state and
on the states of its in-neighbours. Activation of processors may be synchronous,
asynchronous or interleaved.

The paper is organized as follows. Section 2 presents relabelling systems
by giving examples of computing spanning trees in a network with processor
identities. In Section 3, we show how to add termination detection property to a
relabelling system which is initialized by exactly one vertex. A detailed version
of this paper with proofs and other examples can be found in [11].

2 Computation of a Spanning Tree in a Network with
Processor Identities

2.1 Techniques for Proving Distributed Computing

Graph relabelling systems provide a formal model for expressing distributed
algorithms. The aim of this section is to show that this model is suitable for
studying and proving properties of distributed algorithms.

An L-labelled graph is a graph whose vertices and edges are labelled with
labels from a possibly infinite alphabet L. It will be denoted by G(V, E,\),
where G is a graph and A : V(G) U E(G) — L is the labelling function. The
graph G is called the underlying graph of G(V, E, ), and A is a labelling of G.
The class of L-labelled graphs will be denoted by Gr,. A graph relabelling system
R is noetherian if there is no infinite R-relabelling sequence starting from a
graph with initial labels in Z. Thus, if a distributed algorithm is encoded by a
noetherian graph relabelling system then this algorithm always terminates. In
order to prove that a given system is noetherian we generally use the following
technique. Let (S, <) be a partially ordered set with no infinite decreasing chain
(that is every decreasing chain zy > 9 > --- >z, > ... in S is finite), we say
that < is a noetherian order. It is compatible with R if there exists a mapping
f from Gr, to S such that for every R-relabelling step (G, A) — (G, \’") we have
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f(G, ) > f(G,X). It is not difficult to see that if such an order exists then the
system R is noetherian: since there is no infinite decreasing chain in S, there
cannot exist any infinite R-relabelling sequence. For our examples, the set S
will be the set IN? where p is an integer and the ordering relation is defined by
(z1,-..,2p) >p (Y1,--.,Yp) which means that there exists an integer j such that
T1 =Y1,...,Tj—1 = Yj—1, and T; > y;.

In order to prove the correctness of a graph relabelling system, that is the
correctness of an algorithm encoded by such a system, it is useful to exhibit
(1) some invariant properties associated with the system (by invariant property,
we mean here a property of the graph labelling that is satisfied by the initial
labelling and that is preserved by the application of every relabelling rule) and
(i) some properties of irreducible graphs. These properties generally allow to
derive the correctness of the system. Let us illustrate these techniques for the
computation of a spanning tree in a network with processor identities.

2.2 Distributed Computation of a Spanning Tree

Let G be a graph with n vertices. Each vertex has a unique identity; for simplicity
we assume that it is a unique integer from 1 to n. Consider a labelling function
A: VUE — [0..n], which is initialized to the identities for vertices and to 0 for
edges. In order to compute a spanning tree, consider the algorithm encoded by
the graph relabelling system Ry = (L1, I1, P1), defined by Ly = [0..n], I; = [0..n],
and P, = {R} where R is the following relabelling rule:

(3 (3 7 ]

R: e * @ ° o ;ifj<i

We prove now that this rewriting system computes a spanning tree. We show
that it terminates and is correct.
Termination: Let f be the mapping from Gy, to the set of natural integers IN

which associates with each Li-labelled graph the sum ) ,cy, (n—k). Observing
A(v)=k

that this nonnegative number strictly decreases when we apply the relabelling

rule Ry we get that (IN,>) is a noetherian order compatible with the system

R1. Thus, we have the following lemma:
Lemma 1. The relabelling system R1 is noetherian.
Correctness: It is obtained by the following lemma:

Lemma 2. Let G(V,E,)\) be a connected labelled graph such that every ver-
tez is labelled by its identity (unique integer of [1,n| where n is the size of
the graph), and every edge is labelled 0. Let G'(V,E,\') be a graph such that:

G(V,E,\) —— G'(V,E,X). Then the graph G'(V' E', \') satisfies:
R1

1. All edges incident to an i-labelled vertex have labels lower or equal than i.
2. All vertices labelled n are connected by edges labelled n.
3. The subgraph induced by the i-labelled edges has no cycle (i > 0).
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4. If G' is an irreducible graph obtained from G, then all vertices are labelled
n.

With all these properties, we have the following result:

Theorem 1. The relabelling system R1 given above encodes a distributed algo-
rithm generating a spanning tree.

Note that, although the algorithm finishes, it does not have the local detection
property. That is, at the end, every vertex is labelled n and hence computation
has terminated, but no one can decide whether the global algorithm is finished.
We shall present in the following subsections two other relabelling systems which
have such property.

2.3 Sequential Computation of a Spanning Tree (using priority
relation)

In this subsection, we will present a relabelling system to describe a distributed
algorithm computing a spanning tree in a network with processor identities. We
will show that it has the termination detection property: i.e. there is at least one
vertex who detects the global termination.

Let G be a graph with n vertices. Each vertex has an unique identity; i.e.
a unique number between 1 and n. Consider the labelling function A, where
AV) .V - {A,M,N,F} x [1.n] and A(P) : E — [0..n]. Initially all edges are
labelled 0 and each vertex is labelled (A, i) where i is its identity.

At each step of the computation, the (A, 7)-labelled vertex, say u, will act as
follows:

1. If w has a (X, j)-labelled neighbour v, where j < i and X € {4, M, N, F},
then u will activate this neighbour: u becomes marked (with label (M, 1)), v
becomes active (with label (A,7)) and the edge {u,v} becomes i-labelled.
If u has a (X, j)-labelled neighbours with j > i then u becomes neutral.

3. If w has no (X, j)-labelled neighbour, where j < i and X € {A, M, N, F},
and has a (unique) (M,i)-labelled neighbour w then u will reactivate this
neighbour: u enters a final state (with label (F,7)) and w becomes (A,1)-
labelled.

N

The computation stops as soon as none of the above computation rules may be
applied (in that case, all the neighbours of the (A, n)-labelled vertex are (F,n)-
labelled). The spanning tree is then given by the set of all n-labelled edges.

In order to reach a satisfactory expressive power, we introduce some local
control mechanisms. These mechanisms allow us to restrict in some sense the
applicability of relabelling rules. The first mechanism is obtained by introducing
some priority relation, denoted >, on the set of relabelling rules. A relabelling
rule R is applied if there exists no occurrence of a relabelling rule R’ with R’ > R
which intersects R (i.e. R and R’ are applied on subgraphs having vertices in
common).
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For the computation of this subsection, it means that u will try to apply : first
step 1 then step 2 and finally if it can not apply neither 1 nor 2 then step 3. The
algorithm may be encoded by the graph relabelling system with priorities (PGRS
for short) Ro = (L2, I, P>, >) defined by Ly = {{A,M,N,F} x [1.n] U [0..n]},
I, = {{A} x [1.n] U {0}}, P» = {Ri,Rs, Rs} where Ry, R and R3 are the
following relabelling rules:

(A,i) o (X;J) (M,Z)Z (A,Z) jif gy <id

R,: e ° [ ® ;Xc{A MN,F}
(A,9) o (VLK) (N,i) o (Y k) 5ifi<k

Ry: e ® [ ® ;Y c{AMN}
M,i) ; (A, Ajd) ; (Fyi

Ry - (.) (.) (.) (.)

with the priority relation : R;, Ra > Rs.

The proofs of termination and of correctness are obtained by the following lem-
mas, where n is the size of G.

Lemma 3. The relabelling system Ro is noetherian.

Proof : This system is noetherian because executing a rewriting step implies

that (3. wev, (n —k),|G|a,|G|nm) is decreasing for >3, where |G|a (resp.
A(v)=(Ak)
|G|ar) is the number of vertices with the label A (resp. M) in G.

Correctness is stated by the following lemma:

Lemma 4. Let G(V,E,\) be a connected labelled graph such that every vertex
has a unique identity ident belonging to [1..n] and is labelled (A,ident) and

every edge is labelled 0. Let G'(V, E, X') be a graph such that: G(V, E, \) R—*>

G'(V,E,X') and let X € {A,M,N,F}. Then the graph G'(V,E,X') satisfies:

(I1) The labels of the edges incident to an (X,1)-labelled vertex are less or equal
than i.

(I2) There exists at most one vertez labelled (A,1i), for a fized i > 0.

(I3) There exists at least one vertex with the label (X, j) neighbour of a (N,i)-
labelled vertex with j > 1.

(I4) A (F,i)-labelled vertex has no (X, j)-labelled vertex as a neighbour, where
j#i

(I5) All the (X,n)-labelled vertices are connected by n-labelled edges.

(Ig) The subgraph of G(V, E) induced by the i-labelled edges has no cycle (i > 0).

(I7) The (M,n)-labelled vertices form a simple path which edges are labelled n.
Moreover, one of the endvertices of this path is connected to a vertex labelled
(A,n) by an edge labelled n.

(Is) Let G' be an irreducible graph obtained from G, only one vertex has (A,n)
as label and all the others are labelled (F,n).
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Theorem 2. The system Rs computes a spanning tree. This algorithm detects
locally the global termination.

With the properties (14), (I5), (Is) and (I7), we deduce that at the end, we have
a spanning tree with (A4,n) as root and all the other vertices are labelled with
(F,n). The edges of this tree are labelled n. Indeed the (A,n)-labelled vertex
having all neighbours labelled (F,n) knows that the algorithm is terminated.
Remark :

In this algorithm, many trees are computed distributively. However, each of these
trees is computed in a sequential way.

2.4 Distributed Computation of a Spanning Tree with Local
Detection of the Global Termination (using forbidden context)

Now, we present a relabelling system encoding an algorithm computing a span-
ning tree which has both properties: distribution and local detection of the ter-
mination. We use the forbidden context local control mechanism.

Let G be a graph with n vertices. Each vertex has a unique identity; i.e.
a unique number between 1 and n. Consider the labelling function A, where
AV) vV 5 {A A F} x [1.n] and AF) : E — [0..n]. Initially all edges are
labelled 0 and each vertex is labelled (A,7) where i is its identity.

The main idea is that the unique initially (A,n)-labelled vertex will keep
its label until the end of the computation, while other activated vertices will
be (A’,n)-labelled. As soon as an (A’,n)-labelled vertex is no longer “useful”
for the growing of the tree, it will reach its final state (with label (F,n)). More
precisely, we will use the following computation rules:

At each step of the computation, an active vertex (with label (A,7) or (4’,17)),
say u, will act as follows:

1. If u has a (X, j)-labelled neighbour v, where j < i and X € {A, A’, F'}, then
u will activate this neighbour: u keeps its label, v becomes active (with label
(A',7)) and the edge {u, v} becomes i-labelled.

2. If u is (A4',i)-labelled, has no (X, j)-labelled neighbour, where j # i and
X € {A, A", F}, and is such that all its neighbours to which it is linked by
an i-labelled edge except one of these neighbours are (F,i)-labelled, then u
becomes (F,i)-labelled.

At any time, the subgraph induced by the n-labelled edges and the (A4,n)- or
(A',n)-labelled vertices is a tree. Intuitively speaking, the second rule means
that the vertex u is a leaf in this tree.

Thus, this algorithm runs in two phases (that may overlap): in the first phase,
the tree is growing until all vertices are reached; in the second phase, it will
decrease (by loosing its leaves) until it is reduced to the initially (A,n)-labelled
vertex. This vertex is then able to detect that the algorithm has terminated since
all its neighbours are (F,n)-labelled.

Here we use another local control mechanism : forbidden contexts. A rela-
belling rule with forbidden contexts may be applied on some occurrence if and



52

only if this occurrence is not included in an occurrence of some of its forbidden
contexts.

The algorithm may be encoded by the graph rewriting system with forbidden
context (FCGRS for short) R3 = (Ls, I3, P3) defined by Ly = {{4, A", F} x
[1.n] U [0..n]}, Is = {{A} x [1.n] U {0}}, P3 = {R1, R2, R3} where R;, R> and
R3 are the following relabelling rules with forbidden contexts:

;X €{A, A, F}
o — 0 —— 06— 0

(4,6 (X,9) (4,9), (A9 | x e {a, A", F} { }
1 I 0—e — 0—0 ;ifj < i 7
A’ (X,5) (A',0). (A'0)
Ry : ° ° { I,ifj<i ./'\"{ } }
A',9) (Fi) (@D (A3
@ ‘ Y € {A, A"}

(X, 7) (v,i) (4,9

Rules R; and Rs have not forbidden contexts: there is no restriction for the
applications. Rule R3 has 3 forbidden contexts (the subgraphs between brackets
on the left-hand side). The unique vertex of the left-hand side of the rule R3
is associated with the top vertex of its forbidden contexts. We will show that
this rewriting system terminates and is correct. Termination is expressed by the
lemma:

Lemma 5. The rewriting system R3 defined above is noetherian.

Proof: consider this couple (> ,ev, (n—k),|G|ar), where X € {A, A", F'}.
A(v)=(X,k)
It is decreasing for >4, so this system is noetherian.
Correctness is given by:

Lemma 6. Let G(V,E,)\) be a connected labelled graph such that every vertex
v is labelled (A,i) and every edge is labelled 0, where i € [1..n] is the identity

of v,n is the size of G. Let G'(V, E,\') be a graph such that: G(V, E, \) R—*>
3
G'(V,E,\') and let X € {A, A, F}. Then the graph G'(V,E, X') satisfies:

(I1) The labels of the edges incident to an (X,1i)-labelled vertez are less or equal
than i.

(I2) There exists at most one vertex labelled (A,i), i > 0.
(I3) There is exactly one vertex with the label (A,n).
(I4) A (F,i)-labelled vertez has only (X,i)-labelled vertex as neighbours.

The (A,n) and (A',n) labelled vertices are connected by n-labelled edges.
The subgraph of G(V, E) induced by the i-labelled edges has no cycle.

Let G' be an irreducible graph obtained from G, only one vertex has (A,n)
as label and all the others are labelled (F,n).

)
)
)
(Is) All the (X,n)-labelled vertices are connected by n-labelled edges.
)
)
)

Finally, we have:

Theorem 3. The system Rs3 encodes a distributed algorithm which computes a
spanning tree. Moreover, it has the termination detection property.
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3 Termination Detection of a Graph Relabelling System

In this section, we give a solution to make a graph relabelling system detect
locally the global termination. We use the well-known Dijkstra-Scholten [6] ter-
mination detection algorithm. More precisely, We show how to transform a graph
relabelling system into another one which has the termination detection prop-
erty. The method we present can be applied for any relabelling system which is
initialized by exactly one vertex. We start by a description of the termination
algorithm [6]. Then, we express it by a relabelling system, and finally we use it
as a tool to detect locally the global termination.

3.1 The Dijkstra-Scholten Termination Detection Algorithm

Consider a network of processors modeled by a graph. Each processor is either
in the state active or in the state passive. The processors communicate solely by
messages (which are assumed to be transmitted instantaneously: synchronous
message passing). Some of these messages are referred to as activation messages;
they may set the receiver into an active state. An active processor maintains a
count of the number of activations it has sent which have not yet been acknowl-
edged. Initially, exactly one processor is active; then it activates some neighbours.
The set of active nodes form a dynamic tree; where the root is the initial ac-
tive node, and a node is the father of the nodes it activates. For each node, the
transition from the active state to the passive state is an internal transition. A
leaf node is deleted from the tree if it is passive and has no active descendants;
i.e. it has received acknowledgments for the activation messages it has sent. In
this case, it sends a signal to acknowledge the activation to its father who will
decrease its own count of active sons. Note that the tree may grow and shrink
dynamically. We will call this tree the control tree. The computation terminates
when the root becomes passive and has no active descendants.

We give now a relabelling system to encode the Dijkstra-Scholten algorithm.
To do so, we equip each vertex of the graph with a counter (say sc) and with a
flag describing its activity status (say a value in {Ac, Pa}). Hence, a vertex will
be labelled by a triple (X, Y, sc), where X is its label N, A, or A'; Y is its status
activity, and sc the counter described above. An edge will be labelled by a label in
{Ac, Pa} indicating whether on not it belongs to the control tree. Initially, each
edge is labelled Pa and each node is labelled (N, Pa,0); a distinguished node is
labelled (A, Ac,0) which will be the root of the control tree. This node initializes
the algorithm. Let R4 = (L4, I4, Py) be the relabeling system defined by Ly =
{A, A", N} x {Ac, Pa} x [0.n]U{Pa, Ac}, I, = {(A, Ac,0) U (N, Pa,0) U{Pa}},
and Py consisting of the following relabelling rules:
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(X, Ac, sc) (X, Ac,sc+1)

R; : Pa Ac ; X € {A A"}

(N, Pa,0) (A, Ac,0)
(X, Ac, sc) (X, Pa, sc)
[ ] [

Ry : . X € {A, A"}
(X, Ac, sc) (X, Ac, sc)
;1 X,Y € {A, A
R : Pa Paq € }
3 - ;8¢ #0
(Y, Pa, sc') (Y, Ac, sc’)
(Xansc) (X,Y,sc—l)
; X e {AA"}
. A P
Ry : ¢ .Y e{AcPa}
(A', Pa,0) (N, Pa,0)
(A, Pa,0) End
Rs: e °®

Note that R3 allows an internal node of the control tree which is in a passive state
to be activated by one of its active neighbours. This is a part of the Dijkstra-
Scholten algorithm.

Theorem 4. The relabelling system R4 encodes the Digkstra-Scholten algorithm.
If the label End appears, then each vertex is passive. Conversely, if each vertex
15 passive then eventually the label End will appear.

Proof: The proof follows from the invariants given below.

(I) sc+1 is the number of edges labelled Ac incident to the vertex labelled
(X,Y, sc), where X € {A'",N} and Y € {Ac, Pa}. sc is the number of edges
labelled Ac incident to the vertex labelled (A,Y, sc), where Y € {Ac, Pa}.

(I2) All edges incidents to a (N, Pa,0)-labelled vertex are labelled Pa.

(I3) A (A')Y, sc)-labelled vertex has at least one Ac-labelled incident edge, where
Y € {Ac, Pa}.

(I4) The subgraph induced by (X,Y, sc)-labelled vertices is connected by Ac-
labelled edges, where X € {4, A’} and Y € {Ac, Pa}.

(I5) The subgraph induced by the Ac-labelled edges has no cycle.

Remark. Encoding the Dijkstra-Scholten algorithm by a graph relabelling sys-
tem makes it easy to read, to understand and particularly to prove in a unified
and simple way as we showed for the previous algorithms. Moreover, expressing
this algorithm in form of a graph relabelling system will be useful to apply the
Dijkstra-Scholten termination technique to an algorithm encoded by a graph
relabelling system. In fact, this turns out to be a combination of two graph
relabelling systems as we will illustrate this idea by the following example.
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3.2 Adding the Dijkstra-Scholten Termination Detection Algorithm
to a Graph Relabelling System

Now, we consider a relabelling system encoding a distributed algorithm which
is initialized by one vertex. To detect termination by the previous technique,
one has to embed the relabelling computation into the control tree. We have
just to combine the graph relabelling system with the previous one. A node will
be passive if it has locally terminated (no rule can be applied on its context).
The rules of the relabelling system are mapped using the new triple labelling. In
order to keep up with the control tree of the termination algorithm, a relabelling
rule encoding local termination and acknowledgment must be added. As an
illustrative example, consider the following relabelling system Rs = (Ls, I5, Ps)
defined by Ls = {N,A,0,1}, Iy = {N,A,0}, and P; = {R} where R is the
following relabelling rule:

A N A A
R: o 2 o — ——e

This relabelling system computes a spanning tree in an anonymous network,
but does not have the termination detection property (similarly to the rela-
belling system of section 2.2). By combining it with the Dijkstra-Scholten al-
gorithm, we obtain the following relabelling system with forbidden contexts
Re = (Lg, Is, Ps), defined by Lg = {A, N} x {Ac, Pa} x [0..n]U{0,1} x { Ac, Pa},
Is = {(A, Ac,0) U (N, Pa,0) U{(0,Pa)}}, and Fs consisting of the following re-
labelling rules:

(A, Ac,sc) (A, Ac,sc+1)

-

(N, Pa,0) (A',Ac,0)

Ac'l

(A', Ac,sc) (A, Ac,sc+1)

Ry : P40

(N, Pa,0) (A',Ac,0)

Ac| 1

(A', Ac,0) (A, Pa,0)

(A, Ac,0
R3:A‘{1 P{l ;{ } , X €{A,A"}

Pq0
(X, Ac,s¢) (X,Ac,s¢c—1)
(N, Pa,0)

Note that we give here a simplified system of the combination of the relabelling
system Rj with that of the Dijkstra-Scholten relabelling system. It is a rela-
belling system with forbidden context. Rule R;, which is similar to the original
rule, maintains the count and the status of activated vertices. However, rule R3
is added to collect information about nodes who locally terminated, and has re-
ceived acknowledgments from all activated descendants (sc = 0). A node locally
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terminates if it has no neighbour labelled N which has not been yet active. Such
a node, will be set in the passive status, and will send an acknowledgment to its
father if its counter is null. In the relabelling rule, we just decrement the counter
sc of the father. The whole computation terminates if the root becomes passive
and has no active descendants.

Theorem 5. The relabelling system R¢ encodes a distributed algorithm which
computes a spanning tree. This algorithm has the property of local detection of
the termination.

Proof:

The proof is similar to the previous systems. We give the invariants to prove
correctness and termination. Let G(V, E, \) be a connected labelled graph such
that a distinguished vertex is labelled (A, Ac,0), all other vertices are labelled
(N, Pa,0) and every edge is labelled (Pa,0). Let G'(V, E,X") be a graph such
that: G(V, E, \) %) G'(V,E,X). Then the graph G'(V, E, \') satisfies:

1. All edges incident to a (IV, Pa,0)-labelled vertex are labelled (0, Pa).

2. A (A, X, sc)-labelled vertex has at least (1,Y)-labelled incident edge, (sc # 0,
X,Y € {Ac, Pa}).

3. The subgraph induced by the edges labelled (1,X) has no cycle, (X €
{Ac, Pa}).

4. The (A, Ac, sc) and (A’, Ac, sc') labelled vertices are connected by (1, Ac)-
labelled edges.

5. More generally, all the (A, X, sc) and (A’,Y,sc’) labelled vertices are con-

nected by (1, Z)-labelled edges, (X,Y, Z € {Ac, Pa}).

A (A, Pa,0)-labelled vertex has no (N, Pa, 0)-labelled neighbours.

7. If G’ be an irreducible graph obtained from G then all vertices are (A, Pa, 0)-
labelled.

&

The detection of termination of the algorithm occurs as soon as the counter (sc)
of the root becomes zero (0).

Let us note that all the algorithms presented in this paper have been imple-
mented and tested in ViSiDiA [3,2]. ViSiDiA is a tool to simulate, visualize and
animate distributed algorithms. It is based on graph relabelling systems.
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Abstract. This paper introduces the concept of a unified graph comput-
ing environment based on the GRACE graph transformation language.
An overview about design and implementation issues and how they are
solved is given. One issue is that the implementation allows multiple ap-
proaches to be mixed in one program. At last a graphical user concept
that allows to freely switch between different representations of a graph
is presented.

1 Introduction

A graph computing environment is introduced, based on the language GRACE
which is developed by an European research group. GRACE combines concepts
of existing systems (PROGRES [5], AGG [6]) along with new features into a
unique high level specification and graph transformation language.

GRACE is a theoretic concept with a sample implementation. In GRACEland
[2] many of the features were implemented with a Virtual Reality frontend.
The aim of this project is to provide a convenient and easy to use interface for a
common graph computing environment (GCE). GCE can be seen as the successor
of GRACEIland building a uniform platform for a graph rewriting language. The
design process has been guided by the following aspects:

— Support of all features of GRACE,
— Approach independence,
— Graph class independence,

— Independence of any graphical interfaces and
— Availability under the GNU Public License.

The idea is, to create a collection of object-oriented software-components offering
the base functionality under a model-view-controller (MVC) paradigm. This
concept is adapted from the MVC concept that was introduced in Smalltalk [8]
back in 1980s. The graph is the model. It is changed by a GRACE program
which controlls the modifications with flow control elements. The view is the
graphical user interface.

One advantage of this architecture is that multiple views (graphical fron-
tends) of the same data are possible. The object-oriented approach makes it
easier to reuse common components because of its inherent methods like sub-
classing.
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Encapsulates State
Graph
"4, -
Renders the Models wity | Defines Behaviour

=
User Interface - " GRACE

/' Change

Fig. 1. The adapted Model-View-Controller paradigm

The graph computing environment is structured in three levels:

1. Abstract interface for graphs, rules, graph transformations,... ,
2. GRACE language working on top of the abstract interfaces and
3. User interface.

The first level defines basic classes and operations required from GRACE.
Classes for nodes, links, graphs, rules and matches are building the abstract
graph class description. Concrete graph classes (e.g. directed graphs) need to
extend these classes and implement the virtual methods. Two operations can be
identified as the common base needed from the second level:

1. Find a match m for the rule r under the approach a and
2. Apply rule r on graph g under a given match m and approach a.

These functions are bound to the selected approach, which defines the proper-
ties for the match and how a rule modifies a graph. The Single-Pushout (SPO)
approach for example removes all dangling edges after the rule was applied. The
functions are building the abstract approach class. The last functionality pro-
vided by this layer is the ability to load and save graphs and rules.

The second level consists of the language GRACE with its structuring and
flow control elements. GRACE relies on the abstract operations and is not aware
of any features of concrete graph classes. The lowest level of GRACE is the ap-
plication of a rule in order to modify the graph. Methods for this operation are
provided from the abstract graph class implementation. All other structs are
high level elements that deal with structuring or controlling the flow.

The third level is the user interface for graph visualization and program edit-
ing. GCE is not restricted to a specific kind of user interface thus being flexible
to meet the requirements of many users. The user interface depends on various
aspects and for embedded systems it may be reduced to a minimum.



61

The rest of this paper is organized as follows. In chapter 2 the structure of
the implementation is described. The GRACE language and it’s embedding into
GCE is outlined in chapter 3. Chapter 4 reveals some thoughts on graphical
interfaces.

2 Implementation

In the introduction we already made some assumptions about the implementa-
tion which restrict us to object-oriented languages like C++ or Java. Java from
Sun Microsystems was choosen as the programming language. Java’s biggest as-
set is its capacity to run on various computers without recompiling. Also the
good support for graphical user interfaces (using the Java Foundation Classes,
Java2D/3D), database access, network and built-in security were the determin-
ing factor. The structure of the implementation reflects the introduced levels:

— Package gce defines the abstract interfaces
— Package gce.grace implements the GRACE transformation language
— Package gceUI implements one possible user interface

Package GRACEIland implements a GRACE runtime infrastructure
Package dg implements a directed graph class
— Package ex2 implements an expression language

2.1 Basic package

This package defines the abstract interfaces for graphs, nodes, links, matches,
approaches, graph classes and input/output handling. I am not going into detail
about the concrete implementation instead I will focus on two important design
decisions.

The input/output class (gcelO) gives the user the possibility to load and save
graphs and rules of any graph class. This is realized through the use of XML and
the Document Object Model (DOM, [10]). gcelO loads XML files as a DOM tree
into memory and extracts the required handler from the tree. The name of the
handler is stored as an attribute of an element node. The Java class is loaded
and creates the rule or graph from the tree.

This is a very powerful mechanism and has several advantages. First of all
the handling and implementation of load and save functionality is straight for-
ward. Many features can be integrated into the base class and doesn’t need to
be rewritten by each new graph class package. This concept is also open for
extensions and /or modifications of the file format without changes to the basic
functionality. An important feature is the possibility to embed a rule definition
of arbitray graph class within a GRACE source code file (this will be discussed
in chapter 3). However this is not a global file format [9] as currently developed
by researchers. This file format will be supported in future releases.
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Each rule has an application condition and a script which both may be empty.
The condition controls the application of the rule and is evaluated at the search
for a match. The script is used to compute values of attributes and is executed
after the rule was applied. The language for these expressions is not defined
by GCE. Instead I'm using an abstract interface to an expression handler. One
possible implementation is outlined in chapter 2.3.

2.2 Graph classes

Graph classes are not part of the basic gce package. Each graph class has its
own Java package. The name of the Java package is used by GRACE to identify
the different graph classes.

To create a new graph class the user has to extend six classes only:

gceNode|gceLink gceGraph
gceRule [geceApproach |geelO

A graph class can have multiple approaches and not just one. Each approach
must be implemented in its own Java class. Which one is used is decided by
inspecting the name of the approach given in the GRACE module (see chapter
3). This does not conform to the GRACE specification but has practical and
theoretical advantages. First of all it is easier to implement than the GRACE
definition where the graph class is bound to the approach®. On the other hand
it is now possible to easily mix different approaches for the same graph class in
one GRACE program. A Single-Pushout module may be used to delete nodes
because dangling edges are implicitly deleted and a Double-Pushout for the rest.
So far only directed graphs (dg) with a Double-Pushout are implemented.

2.3 Expression Language

As an example implementation of an expression handler a lightweight language
(ex2) was created. The design of this programming language followed Wirth [1].
It should be self readable and contain only the most important features.

The elements of the expression language?:

— Local/External variables

— Assignments

— if E then S [else S] end

— forall v of {nodes, links}: {E, S} end
— exist v of {nodes, links}: {E, S} end
— break

— return E

— Operators and comparators

! In GCE the approach is bound to the graph class. Therefore the difference is not
that big.
2 E=Expression, S=Statements, v=Variable, a=Attribute
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Local variables store intermediate results of boolean, integer, float, string, vec-
tor or handle types. Handles are references to nodes or links in graphs®. For
the communication with the environment external variables are used. External
variables can be named nodes/links or data given by the user. In an assignment
a value is assigned to a variable or to an attribute of a handle. Break escapes
from the current block.

The most important features are the forall and exist elements. They allow
to test if all handles fulfill a requirement or if at least one handle with a special
property exits. The forall and exist operator can be used as an expression (re-
turning true or false) or as a statement. The context is defined by the rule and
the match:

forall n of nodes: E end is interpreted as
Vz € {rule;s.nodes} : n = match(x) = evaluate(E).

In an application condition n is assigned to each node of the rule’s left-hand side
under consideration of the current match. Within a script n is assigned to each
node of the rule’s right-hand side.

If this language is used as an application condition the last statement is the
return statement with a boolean result. In scripts the return statement is not
used and omitted.

This lightweight language does not contain any advanced features like func-
tions or classes. Nevertheless it allows to write quite complex expressions. A
planned feature is to add the possibility to call Java methods. This offers the
possibility of user interaction through dialogs, even more complex computations
or using multimedia features like playing sounds. With external variables we
have the possibility to define template rules. Templates are parameterized rules.
With this construct we can write one rule that fit into various situations instead
of writing one for each situation.

Example 1. A template rule for renaming nodes
A template rule for renaming the name of a node looks like this:

<rule name="rename'>

<node var="x"/>

<script>x.name := newName;</script>
</rule>

Before the rule can be applied the external variable newName had to be defined,
otherwise an exception is thrown. The definition is done when referencing the rule by
adding a param attribute:

<rule name="rename" param="newName=’unnamed’"/>
3 Within the language it is not distinguishable between nodes and links by inspecting

the variable type only. It seems that there is no case where someone would need this
feature.
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3 GRACE

The graph and rule centered language GRACE is implemented as a subpack-
age of gce. Because the language doesn’t restrict itself to any kind of control
elements this Java package provides only an abstract interface. Common to all
GRACE language derivates are the module and transformation unit concept.
They are described in detail in chapter 3.1. Figure 2 gives an overview about the
compilation process and which packages are used. In order to execute a GRACE

Abstract interface

Package goe.grace Package goe Package GRACElend  Package dg Packa ge ex2
qracelnterpreter goeXML  geelO giRTI oo ex2ExpressionHandler

compile
- -

EeiDOM ol
org wic dom. Node
il - L

load class and compile(DOM Tree)
T — e load expression handler

load grapherule

from DOM tree

e add module(s) to interpreter

Fig. 2. Compilation of a GRACE program

program first an interpreter must be created. This is automaticly done by calling
compile on the abstract gracelnterpreter class. From the DOM tree the attribute
interpreter(here GRACEland.gIRTI) is extracted and the Java class is loaded.
This class creates the runtime infrastructure. Afterwards the program can be
executed.

The GRACE implementation is completly independent of any special ex-
pression/control languages and graph classes. An application can use different
GRACE derivates without changing one line of code. All needed classes are
loaded on demand.

3.1 GRACEland

GRACEIand is a sample implementation of a GRACE interpreter and runtime
environment. GRACEland programs are built from the following language ele-
ments:
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|Structure |C0ntrol ‘Computation4 ‘
transformation units|while E do S end apply once {R, T}
modules repeat S until E apply n times {R, T}

if E then S [else S] end|apply as long as possible {R, T}
apply as long as one likes {R, T}

A module is a collection of private and public rules and/or transformation
units. It provides functionality to other modules. In order to access the public
elements the module must be imported first. Each module can have it’s own
graph class, approach and expression language. The mixture of different ap-
proaches and expression languages is supported but not between different graph
classes. The current implementation supports a main transformation unit, which
comparable to the ”begin end.” block in PASCAL. This main block is the entry
point for the interpreter when executing a module.

Transformation units are abstractions from graph transformations. A unit
has four elements: initial and terminal condition, local rules and a body.
Although the terminal condition still exists it is not used as an stop criteria
as in [3]. Their understanding corresponds with the repeat—until concept. The
semantic of a transformation unit regarding the terminal condition depends on
the implementation. Here the terminal condition acts as a guard that tests if the
graph has the expected property.

While, repeat and if are building the control conditions. Which expression
language is used is specified at module level. In this paper I will use the expression
language introduced in chapter 2.3 with one extension. The names of rules and
transformation units may be used in an expression with the following semantic:

true , dmorphism

rule = .
name {false , otherwise

and

true , initial condition is true

transformation unit = :
name {false , otherwise

With apply the graph is modified. The parameters are a set of rule and/or
transformation unit names. Beside the shown modifiers that specifiy how often
the command should be executed the user defines an order. The order influences
how the interpreter selects the actual element. Selection is done randomly or
sequentially where the first element is choosen that can be applied (see extension
above). Random selection of a parameter provides a non predictable behaviour.

3.2 Example

The following example shows different aspects of the GCE design concept. GRACE-
land and the forehand introduced ex2 language is used as the GRACE runtime

1 R = Rule, T = Transformation Unit, as long as one likes = The interpreter rolls the
dice to find out if he continues or stops.
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infrastructure. This example provides an transformation unit that calculates the
fibonacci number. The fibonacci number is defined by:

The rule fExpand expands the fib(n) node into two nodes as defined in equation

(1). fSum calculates the sum of two nodes. The other cases are handled implicitly
by fExpand.

Exzample 2. A GRACE XML file for calculating Fibonacci numbers

<?xml version="1.0" encoding="utf-8"7>

<module name="fibonacci" # The name of the module

class="dg" approach="dgDP0" # The graph class and approach
expression="ex2" # The expression handler
grace="GRACEland.glRTI"> # The GRACE virtual machine

<interface> # Declaration of public elements

<transformation_unit name="fib"/>
</interface>
<implementation>

<comment>Calculates the fibonacci number</comment>
<transformation_unit name="fib">

<local> # Two local rules
<rule name="fExpand"> ... </rule>
<rule name="fSum"> ... </rule>

</local>

<initial/> # No initial condition

<body> # The calculation

<apply mode="as long as possible'"><rule name="fExpand"/></apply>
<apply mode="as long as possible"><rule name="fSum"/></apply>
</body>
<terminal/> # No terminal condition
</transformation_unit>
</implementation>
</module>

Each GRACE program starts with the definition of a module. The module tag
is the only one that is common to all GRACE derivates. class defines the graph
type that is used inside this program by specifing the name of its Java package.
The approach to be used is given by approach and references a subclass of the
Java graph package. expression specifies the expression language. All rules and
GRACEIland control elements of this module use this language. grace identifies
the GRACE runtime environment that can interprete this progam. An instance
of the interpreter compiles the file and creates the runtime structure (compare
with figure 2).
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Within the interface block all public elements are defined. These are accessi-
ble from other modules. The calculation of the fibonacci numbers is implemented
by two locally defined rules that are used in the body of the transformation unit.
GRACEIland does not know how the rules can be parsed but knows that they
are rules because of the rule tag. This information together with the specified
graph type is passed to the base input/output class which calls the loader of
the graph class. Rule tags outside the local section are references to unit local,
module local or external rules.

4 Graphical User Interface

The editor is not part of the graph computing environment. It is up to the user
to define an interface for editing GRACE programs. This decision is based on
the assumption that representation issues are depending on the gaph class, the
application and the users wishes. This makes it difficult if not impossible to find
the one and only one graphical user interface. But nevertheless under certain
constraints it is possible to have one common framework for the graphical user
interface.

There are two kinds of editors that are comming into mind: a mixture of
text and graphic elements and a complete graphical based approach. Figure 3
a) shows the visualization of example 2 being a mixture of text and images.
The concept behind the framework is to leave the visualization of GRACE XML

module fibonace:

class: dg
approach: dgDFO
expression: =x_

grace: GRACEland glRTI

interface
transformation unit fib

implementation

# Calculates the fibonacci number
transformation unit ib
initial:
body:

apply as long as possible

apply as long as possible | |

terminal:
end
end.

Fig. 3. Possible GRACE program visualizations

files up to individual implementations but provide common tools for editing
and visualization of rules and graphs. Therefore only few components have to be
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rewritten. To deal with the different possible visualizations of a graph the concept
of a design class is introduced. Figure 4 shows three different representations of
directed graphs: If you compare the figures you will find out that the topologic

O

xczl\ /
| O
LS
.
/ d
=

O

TE

c)
Fig. 4. Different design classes a) Standard b) Bond ¢) UML

information in a) and b) is the same but different attributes and drawing styles
are used. A complete different drawing style is shown in c¢), where an UML
drawing class was used. The idea is to associate a design with the graph by
setting an attribute of the graph. It is up to the user which design he wants for
a graph. According to the design attribute the corresponding drawing class is
loaded. The editor is still the same only the drawing has changed.

What information is displayed is left to the special design classes. The stan-
dard design class recognizes only the label attribute. The bond drawing class
recognizes the attributes label, effort, low and causal. This concept of design
classes is powerfull because the graph can be represented and visualized in a
way, the user expects it.

5 Conclusion

With the graph computing environment a step towards a common platform for
graph transformation is done. GCE does not try to create a new graph transfor-
mation theory but relies on a well known and proven theoretic framework. It tries
to map the features from GRACE into a practical development environment.
GCE defines new concepts for the representation issues. The concept of differ-
ent designs supports the expressiveness of graphs. The user is now able to freely
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choose the representation that is suitable for him. No mental transformation
between two representations must be done.

The availibility under the GNU Public License gives researchers and devel-
opers the possibility to enhance and/or adapt the framework.

There are many things left that need to be examined in more detail, e.g.
the possibilities and restrictions of mixing different approaches in one GRACE
program. Also the notion of parallel and distributed computing need to be inte-
grated into GCE.

Currently (at the time of writing) the implementation of the graph computing
environment is in a pre-alpha state. All basic packages are done but the GRACE
runtime infrastructure and the graphical user interface need some work. The
implementation showed that the XML/DOM concept is efficient and helps to
manage the handling of different graph classes.

For more information regarding GCE visit http://www.e56.de/projects/gce/.
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Abstract. This contribution gives an overview about the current con-
cepts of GENGED, an environment for the visual definition of visual
languages (VLs). From the visual definition, a VL specification is ob-
tained that serves as a configuration of a VL-specific environment, i.e.,
the configuration is dependent on the parameters available in a VL spec-
ification: GENGED allows for the visual specification of syntax-directed
editing, parsing, and simulation as well. In addition to these features, we
show how to define an animation view for a certain VL model.

All GENGED features are based on the formal concepts of algebraic
graph transformation and graphical constraint solving. Hence, we have
a well-defined theory which serves as a basis for proper extensions of
GENGED.

Keywords: visual languages, visual specification, editing, simulation,
animation.

1 Introduction

The use of visual modeling and specification techniques today is indispensable
in software system specification and development, so are corresponding visual
environments. As the development of specific visual environments is expensive,
generators for visual environments have gained importance, especially in the field
of rapid prototyping. Most existing generators like DIAGEN [10] rely on a textual
specification of a visual language instead of a visual one. However, because of
the at least two-dimensional character of visual representations the description
by one-dimensional texts is not always adequate.

In this contribution we briefly present the current state of GENGED, devel-
oped at the TU Berlin, for visually specifying visual languages (VLs) and corre-
sponding environments [1]. We start with a review on the underlying structure,
namely alphabet and grammars based on graph transformation and graphical
constraint solving. These structures form the basis for the specification of syntax
and behavior of visual models (diagrams over a specific VL, such as statecharts,
automata or Petri nets). The resulting specification is the basis for the config-
uration of a visual environment for (syntax-directed or free-hand) editing and
simulation. The different components of GENGED are only loosely coupled to
allow the user as much flexibility as possible. Thus, it is not necessary to define
a parse grammar if the user wants to have a syntax-directed editor.
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Syntax and parse grammars are needed for editing whereas simulation gram-
mars describe the dynamic aspects of the specified system. The simulation of
the system’s behavior is defined by the means of the VL, e.g. the different states
of the system are still given by diagrams over the VL, such as an active state
of a statechart or an automaton, or a Petri net with an initial marking. Yet, in
order to have an intuitive understanding of a model, it is even better to have
an animation view which shows the dynamic behavior directly in the applica-
tion domain. We sketch our ideas concerning an extension of GENGED towards
allowing domain specific animation based on the formal simulation grammar.

The editing, parsing and simulation features are now implemented in the
GENGED tool environment, whereas the extension concerning animation is still
work in progress. All GENGED concepts are illustrated by the specification of
a VL for automata comprising features for simulation and animation.

The paper is organized as follows: In Sect. 2 we briefly review the GENGED
concepts which are illustrated by the specification of automata. The automata
specification is extended in Sect. 3, where we discuss the specification of syntax-
directed editing, parsing and simulation. In Sect. 4 we sketch our ideas for defin-
ing animation views of visual models.

2 Review of GENGED Concepts

GENGED is based on the well-defined concepts of algebraic graph transfor-
mation. Diagrams are represented by attributed graph structures covering the
abstract syntax (the logical language elements) and the concrete syntax (the
layout). A graph structure is given by disjoint sets, called vertices and unary
operations from a source vertex to a target vertex, also called edges. Each vertex
is typed over a type graph (the VL alphabet defining the vocabulary of a VL)
such that the operations are structure preserving. The concrete syntax extends
the abstract syntax by graphics defining the layout for each symbol type given
by the abstract syntax. A graphical constraint satisfaction problem (CSP) over
positions and sizes of the graphics defines the spatial relations between differ-
ent symbols by restricting the scope of constraint variables. The CSP has to
be solved by an adequate variable binding in each instance diagram over the
alphabet. Thus, the CSP defines layout conditions for diagrams of a VL.

Using syntax-directed editing available in a VL-specific editor, a diagram is
edited by applying the graph grammar rules to a given start diagram. The start
diagram and the rules are part of the corresponding VL syntax grammar. In
the following we illustrate the concepts VL alphabet and VL grammar by the
specification of a VL for automata, our running example.

2.1 VL Alphabets

A VL alphabet establishes a type system for symbols (vertices) and links (edges)
of a specific VL, i.e. it defines the vocabulary of a VL. The VL alphabet is rep-
resented by an algebraic graph structure signature and a constraint satisfaction
problem [1].
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A conceivable alphabet for automata is illustrated in Fig. 1. In the upper part
of the figure, the abstract syntax of the alphabet is shown, namely the symbols
State, Trans (short for Transition), and a Start (resp. Final) marking for a state.
Both a State and a Trans symbol are enhanced with data attributes, namely
a state name (short SN) and a transition label (short TL). We also introduce
already the symbol Active which is used for the simulation (cf. Sect. 3.3). The
links are indicated as arcs in the abstract syntax part of Fig. 1.

Abstract
Syntax

Concrete (V)
Syntax

Fig. 1. VL alphabet for automata.

$z String ¢ #A @ -String
Helv,lZpt Helv.,12pt

In addition to logical vertex attributes, symbol graphics are represented as
a further kind of attributes. In Fig. 1, e.g., the graphic for the symbol type
State is given by a circle. Thus, each State symbol (instance of the State type)
in a diagram is represented by a circle. In general, the position and size of all
instances occurring in a diagram depend on graphical constraints (illustrated
by dotted arrows in Fig. 1). The condition that each start and end point of a
transition arc must touch the boundary of a state circle is one example for a
layout condition defined by constraints in our alphabet for automata.

Fig. 2 depicts the abstract and the concrete syntax of an instance over the
automata alphabet modeling a process of the well-known producer/consumer
system.

The states of the automaton represent the states of the system: A producer
can be idle or busy and deliver a product to a buffer. A consumer can order
a product, remove it from the buffer and consume it. The automaton verifies
strings of the form (pdro)"pdrc where each character corresponds to a possible
state transition (p: produce, d: deliver, r: remove, o: order, c: consume).

2.2 VL Grammars

Given a VL alphabet, a VL grammar over the VL alphabet consists of a start
diagram and a set of rules. Usually, a rule consists of a rule name, optionally
a set of parameters, and two graphs, namely a left-hand side (LHS or L) and
a right-hand side (RHS or R), which are combined via a rule morphism (a
graph structure morphism on the abstract syntax level). Moreover, a rule may
be extended by negative application conditions (NACs) and attribute conditions
that are boolean expressions over variables and parameters of a rule.
Graph transformation defines a rule-based manipulation of graphs. In GENGED

we follow the Single-Pushout (SPO) approach to graph grammars [11] as well as
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Abstract
Syntax

Concrete

Syntax

Satisfied

Consumer,

Fig. 2. Automaton modeling the Producer/Consumer system

we support the dangling condition well-known from the Double-Pushout (DPO)
approach [6] 1. The application of a rule r to a graph G (derivation) requires a
mapping (total graph structure morphism) from the abstract syntax level of the
rule’s LHS to the abstract syntax level of this graph G. Due to the derivation
result, the corresponding graphical attributes and constraints are instantiated
from the alphabet. The positions and sizes of the graphical objects are calculated
by a constraint solver (cf. [9]).

Insert_State (sn: String)
VM bsad=Gso=a) ] _[[esad-Gesis
L& ey

Fig. 3. Syntax-directed editing rule supporting the insertion of a state symbol.

Fig. 3 illustrates a syntax rule for the insertion of a State symbol. This rule
contains a rule parameter, namely a state name indicated by the variable sn of
type String. The left-hand side L of this rule is empty, i.e., nothing is required for

! In contrast to the SPO approach where all dangling edges are deleted implicitly, the
dangling condition of the DPO approach forbids the rule application if the trans-
formed graph H contains dangling edges.
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applying the rule. By the right-hand side R a state symbol is generated together
with a state name. The NAC states that the state names have to be unique in
a diagram.

3 VL Specification

In GENGED algebraic graph transformation and graphical constraint solving
techniques are combined to support the definition of VL specifications which
configure a VL-specific visual environment. Each VL specification consists of a
VL alphabet and some kinds of grammars, respectively specifications; cf. Fig. 4.

Syntax Grammar } 01

‘ Alphabet }% Parse Grammar H Parse Specification }% VL-Specification ‘

Simulation Grammar i *

Fig. 4. Workflow for the visual definition of a VL specification.

If only a syntax grammar is in the focus of a VL specification, it should be
defined in a way such that it expresses the correct syntax of the VL. Moreover,
it should not cover only language-generating rules but additionally language-
manipulating rules for comprehensive syntax-directed editing. Unfortunately,
such a rule set can be very detailed and large, and an end user 2 may be ir-
ritated because of many rules doing more or less the same. Therefore, free-hand
rather than syntax-directed editing is conceivable in a VL-specific visual envi-
ronment. In this case a parse grammar should be available. In order to define
complex VLs (like Statecharts in [2]) we propose the combination of a simple
syntax grammar together with a parse grammar. A parse grammar may be ex-
tended by the definition of a layering function and a critical pair analysis in
order to optimize the parsing process. The parse grammar together with these
extensions result in a parse specification. Similar to the syntax definition via
syntax grammar and parse grammar, the simulation is defined by a simulation
grammar.

3.1 Syntax Grammar

Each rule of the syntax grammar provides an editing command. The grammar’s
start diagram serves as a template for new diagrams to be created. Usually, the
editing process begins with an empty start graph. The syntax rules presented in

2 We distinguish two kinds of users, namely users defining a VL (language designer),
and those who use a VL specific environment (end user).



76

Fig. 5 are language generating; the rules for modification and deletion of elements
work analogously. Fig. 5 illustrates three of four rules of the syntax grammar for
the automata example — the first one, Insert_State(), was already given in Fig. 3.
Insert_Transition() inserts a labeled transition between two states, Mark_Start() and
Mark_Final() make a state the start respectively a final state by attaching the
corresponding symbol. The Mark_Final() rule contains an NAC to avoid attaching
the Final symbol twice. A similar NAC could be added to Mark Start() as well,
but since our parsing grammar covers this case, we omit it here.

Insert_Transition (tn: String)
TN

Mark_Start ()
mad G| _[[ym] s G
ol

Mark_Final ()

NAC R
G, | oG
‘y:FinalH x:State Hx:StaIe L

& W

Fig. 5. Syntax grammar for automata.

3.2 Parse Grammar

Using the rules of the parse grammar the parser tries to reduce a given diagram
to the grammar’s stop diagram. If such a derivation exists then the diagram
is accepted, otherwise rejected. An optional layering function assigns an integer
number (a layer) to each rule. The parsing algorithm considers only those deriva-
tions consisting of rule applications of ascending order. Another optional feature,
the critical pair analysis, is used to optimize the parsing process. Usually each
possible order of applications of rules (of the same layer) has to be considered.
Therefore for each pair of rules it is analyzed whether or not their matches might
interfere with each other. In the latter case their application order does not play
a role and thus only one single (arbitrary) order needs to be checked.

The parse grammar for the automata example (see Fig. 6) does not require
layering. It is quite simple, since the only condition to be checked is whether
the given automaton has exactly one start state. The rules Remove_Transition(),
Unmark_Final() and Remove_State() resemble the respective inverted syntax rules
(not requiring any NACs, if the dangling condition is used). They reduce the
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Remove_Transition ()
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Unmark_Final ()
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Fig. 6. Parse grammar for automata.

— 20

diagram by removing the Trans, Final and State symbols. The only symbols that
cannot be removed are State symbols with attached Start symbols. Thus what
should remain reducing a correct diagram is the start state, just as given by the
grammar’s stop diagram.

3.3 Simulation Grammar

In order to visualize which state is the active one, the automata alphabet (Fig. 1)
contains an Active symbol, a colored circle. We want to simulate how an au-
tomaton reacts to a given input string. Therefore in each step the Active mark
should move to the succeeding state. The Active symbol has an In attribute which
contains the remainder of the input string still to be processed. Since we do not
exclude nondeterministic automata, more than one transition might be triggered
at a time. Fig. 7 illustrates the simulation grammar for automata.

The simulation grammar contains only two rules, Init() and Trigger_Transition().
The first one adds an Active symbol to the start state of a diagram. The rule
parameter in, the input string, is stored as In attribute of the Active symbol. The
second rule moves the Active symbol from the source to the target state of a
transition. The attribute condition ensures that the transition label is indeed a
prefix of the remaining input string. After the rule application the prefix has
been removed.

Given the string to be processed, the simulation grammar calculates a state
at which the automaton may terminate, if Init() is applied exactly once and then
Trigger_Transition() is applied as long as possible.
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Init (in: String) *eaAcuve .%

‘yStartHxState
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Trigger_Transition ()
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Fig. 7. Simulation grammar for automata.

The concepts of VL specification presented so far are the basis to generate
a VL environment supporting editing and simulating specific diagrams (e.g. au-
tomata). In general, simulation grammars capture the behavior of formal visual
models whose VLs allow the description of dynamic state transitions (like e.g.
Petri nets, Statecharts or automata). Each simulation step (the application of a
simulation rule) models a state transition.

However, the simulation process is still visualized by sequences of formal VL
diagrams, i.e. specific automata or Statecharts are shown. In order to support an
intuitive understanding of system behavior, especially for non-experts in the spe-
cific formal model, it is desirable to have a layout of the model in the application
domain.

4 Defining Animation Views for Visual Models

In order to support an intuitive understanding of system behavior, especially
for non-experts in the specific formal model, it is desirable to have a layout of
the model in the application domain. In the GENGED approach it is possible
to define a relationship between the formal system model and a corresponding
layout of the model as icons from the application domain. Such an animation
view directly shows the states and dynamic changes of the system.

Fig. 8 a) shows a certain state of the producer /consumer automaton from Fig.
2. The Buffer is highlighted as active here. For the animation view we choose the
application domain of a kitchen. Producing is visualized as baking and consuming
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as eating cakes®. Fig. 8 b) shows a snapshot of the active system state in the
animation view where the consumer has removed the product from the buffer.

a) b)

ot Satisfied A
roducer Consumer

Fig. 8. Automaton and Animation View Snapshot of a state of the Producer/Consumer
System

Within the GENGED framework, we suggest a generic approach how to vi-
sualize the animation of a system based on a VL specification, a VL model (VL
diagrams for the different states of a system), and a VL simulation grammar. The
transformation from the layout of the formal model to the layout of the animation
view is called view transformation. Naturally this view transformation is formal-
ized as a visual grammar based on the VL alphabet which is extended by the new
graphics and constraints needed for the domain-specific layout. The simulation
rules are transformed into animation rules for the animation view defining the
state transitions in the new animation layout. We enforce compatibility between
animation and simulation rules by applying the view transformation rules to the
LHS and the RHS of each simulation rule instance.

Simulation Rule Instance

d e deliver d e
L (er

®)

View Transformation

T T
I 1
] I
I 1
s X - 1
v Animation Rule v

3

"a

J el | A

2 /)

~

Fig.9. View Transformation from Simulation to Animation View

3 This is not meant to be discriminating: Also men bake cakes!
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The simulation rule in the upper part of Fig. 9 models the state transition d
(for deliver) from the state Busy Producer to the state Buffer by highlighting the
current state. The animation rule in the lower part of Fig. 9 shows the same state
transition in the application domain oriented layout. The dashed arrows from
the simulation rule to the animation rule indicate the formal view transformation
between both views.

The implementation of these concepts in the GENGED environment is work
in progress and sketched in [7].

5 Conclusion

In [1] GENGED is proposed for the visual definition of visual languages (VLs)
and graphical editors supporting syntax-directing editing. Meanwhile, GENGED
has been extended in different fields as presented in this contribution. Not only
syntax-directed editing may be defined visually but a parse specification and
a simulation grammar as well. These specifications based on algebraic graph
transformation allow comprehensive editing and analysis as well as they support
the visualization of behavioral aspects of VL models.

Apart from the animation concepts, all the proposed concepts are imple-
mented in the GENGED environment (see http://tfs.cs.tu-berlin.de/genged). The
development of the animation approach is also joint work in the area of applying
graph transformation techniques to Petri nets [5]. More details can be found in
[3, 7] where different types of Petri nets (i.e. Elementary nets, Place/Transition
nets and Algebraic High-Level nets) have been specified as VLs in GENGED .

Future directions concern the development of animation modules for different
views of system behavior [4]. The specification of model evolution [8,12] based
on two different VLs modeling two layers of abstraction (architecture and com-
ponents) is an example for the integration of views in one specification. Both
VLs are coupled via distinguished (abstract) vertices. This may serve as basis
for integrating several VLs in a way that it is possible to handle different kinds
of views which are standard practice in the software specification process.
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1 Introduction: Conceptual Authoring Support

This is a report on our experiences of applying graph technology in the applica-
tion area of creating and maintaining structured digital documents during the
last four years.

Our aim is to contribute to the development of tools for authors of documents
with an inherent content structure, such as scientific articles or textbooks, that
help building and maintaining that structure. One goal of structural integrity
is, for example, referring to terms only after they have been defined and then
referring to them consistently with the definition. Another goal is for each section
and subsection to play a clear and discernable role in the document.

The data from the document we need to help achieve these goals are the
location and content of definitions, as well as the location of references. More
data may be used to offer more functionality, for example the intended style of a
presentation (inductive or deductive as prime alternatives), which would have to
be consistent with the relationships of terms and the order of their occurrences
in the text.

We call the general structure of content in the document the content struc-
ture. In the aforementioned form, it consists of concepts that may have various
relationships among each other, for example one being a part of another, or be-
ing required for the understanding of another concept. Elements of the content
structure may be connected to the visible parts of the document, for example as
being defined or referred to. We call these visible parts the presentation. This
corresponds to the level current word processors regard a document: a hierarchy
of sections with typographically marked-up text and other media elements. We
call these constituent parts the document hierarchy of divisions on the one hand
and the media content on the other.

Our tools provide means to construct documents containing content structure
as well as the presentation and to check them according to rules of readable
structuring. They are to provide technology, not policy in the sense that the

* This work has been funded by the noneDeutsche Forschungsgemeinschaft (DFG)
in its “Schwerpunktprogramm V3D2” (noneVerteilte Verarbeitung und Vermittlung
digitaler Dokumente, Distributed Processing and Exchange of Digital Documents),
http://www.cg.cs.tu-bs.de/dfgspp.VVVDD and Grant No. NA 134/8-1.
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author should be free to work with or without content-structural support solely
at his discretion.

Divisions, concepts, definitions, references and concept relationships natu-
rally form a graph. We have therefore used a graph database and a graph-based
programming language to develop our tools. In doing so, we have approached the
same problem with different emphasises and different tools of implementation,
giving rise to a comparison of the results and implementations.

In this article, we first present the two projects in chronological order. This
begins with rwe, an early prototype implemented in an imperative program-
ming language and storing the document in a graph database. The follow-up is
CHASID, which is implemented chiefly as an executable PROGRES specifica-
tion. In each presentation, the functionality, implementation structure, notice-
able technicalities and some results are mentioned. The last section compares
the results and implementations before concluding with some notes on further
plans.

2 rwe: Graphs and imperative programming

The first prototype, rwe (for Reader- Writer Environment) [2], aims at being an
environment for authors and readers to add structure to an existing document. In
the implementation, this existing document may be imported as media content
from FrameMaker text files in MIF (Maker Interchange Format). The author
marks up up parts of the imported media content (for example, paragraphs or
chapters, but also arbitrary discontinuous parts) as playing a structural role,
such as defining something or being defined. From these basic markups more
comprehensive structures like definitions or Toulmin-style arguments [13] are
built. In doing this, the author directly manipulates the graph structure. This
graph is displayed using boxes and lines connected to the text columns.

Fig. 1 shows a screenshot of rwe displaying a cut-out of such a graph. The
term “Software crisis” is marked up as being “Introductorily Occurring”, which
means that this is an occurrence of the term in which it is introduced. That
mark-up has then been used in creating a “Definition”. Other nodes represent
the document hierarchy.

rwe allows to export HTML-files that use definitions to create an hyperlinked
index. A branch of the development features variants of a document to be edited
together. Variant Documents are nodes in a tree of descendants, with changes
from parents being promoted to children, unless the parts of the document they
affect are redefined there.

The allowed documents are constrained by the graph schema. It defines the
assignable node types, subtype relationships and edge cardinalities. For example,
a markup node such as the “Introductorily Occurring” above, must refer to a
media content node.

The author may, however, deviate from the content structure’s graph schema
in controlled ways. When inserting a node, its edge cardinalities are satisfied by
inserting placeholder nodes, which may later be instantiated or merged with real
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Fig. 1. Screenshot of rwe.

nodes. The author may also extend the schema between runs to accommodate
personal structuring needs or preferences.

2.1 Implementation

The skill profile of the project participants led to the decision to implement
rwe based on the IPSEN architecture [8]. The graph part was largely constrained
to the persistent data storage in GRAS3 [1], a graph database implemented in
Modula-3.

We used GRAS3’s graph types directly to define the schema of rwe’s doc-
uments. Every node type defined in the content structure part of the graph
database schema is available to the author for structuring his document. Most
restrictions on the content structure are left for the database to check. Conse-
quently, edge cardinalities and node types are the primary structural constraints
checked by this prototype. On the other hand, adding new markup types or
specialised content structures require only an extension of the declarative graph
schema. This is possible between runs of rwe. The existing and newly added node
and edge types are then available to the author through a GeneralEditTool.

This GeneralEditTool offers commands to insert arbitrary allowed edges
by querying the schema for all edge types that may be inserted between the
currently selected nodes. Nodes are created independent of the selection, but
with the obligatory context (as determined by querying the schema) inserted
automatically in the form of placeholders. Placeholders may be merged at any
time with existing nodes using the PlaceholdingTool, if edge cardinalities and
type constraints permit. All edges occurring at the placeholder are redirected to
the remaining node.
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To implement tool support for special structures, like those created by the
MIF import or used by the HTML export, some parts of the schema are fixed as
the compiled code relies on them. We call these parts the well-known schema.

We designed a domain-specific schema containing 44 concrete node types
and 19 additional abstract classes. These schema entities include types for the
document hierarchy like PARAGRAPH or SECTION, technical types like CHAR-
ACTERFORMAT or INTERNALLISTINCREMENT as well as the above-mentioned
structural elements like ARGUMENT or DEFINITION. 21 of these schema entities
constitute the well-known schema.

As the author directly manipulates the graph database’s schema, consistency
between the schema demanded by compiled code and the schema provided at
run-time is of great concern to us. We generate type-safe encapsulation classes for
the well-known schema. These classes check the existence of required node types
at start-up time. Consistency between the implementation and the well-known
schema is then provided by Modula-3’s compile time checks.

Only very limited editing operations have been implemented for the media
content. It is also stored in GRAS3. This allows direct references to it from
the content structure through regular graph edges. The reference problem of
referring to already deleted parts of the media content from the content structure
is therefore avoided.

2.2 Results

Maintaining the entire document, including the media content, in a graph da-
tabase and implementing the presentation and all editing operations in a new
application proved to be even beyond research prototype feasibility. To begin
with, the presentation response time was simply insufficient for interactive work.
Media support needed to be extended to at least cover figures if not general
multi-media content. Missing convenient editing operations for media content,
powerful constraint checks for the content structure as well as parameterised
extended export functionality to various formats, make rwe not the authoring
environment it tried to be. It has not been used for any serious modelling activity.
In our second approach we therefore concentrated solely on the content structure,
leaving presentation issues to established applications (see section 3).

As for imperative graph-based implementation, some general experiences
have been made:

— Generating type-safe interfaces from a subset of the schema description has
proven to be a useful compromise between compile-time checks and runtime
flexibility.

— The limited scope of cardinality-based schemata necessitates maintaining
consistency of subgraphs in the application. Another layer of specialised
generated wrapper classes can provide this for frequently used patterns like
lists.

— The generic operations of the GeneralEditTool and PlaceholdingTool are
fairly straightforward to implement.
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Fig.2. A main window of a running CHASID prototype

— Subgraph matching, closure calculation and similar graph operations are
frequently inadequately described in textual imperative languages.

3 Chasid: Specifications and Integration

CHASID (consistent high-level authoring and studying with integrated docu-
ments, [3,4]) addresses rwe’s usability problem by working as an extension to
existing authoring environments (called conventional applications here)®. In this
setup, authors create the media content in the environment they know, while the
CHASID extensions keep track of the content structure. The document hierarchy
is used as the interface between the conventional document and the content
structure. The document the author edits now has, technically, two parts: one
that the conventional application maintains, called the conventional document,
and the other one in the extension, called the document graph.

The screenshot in figure 2 shows the extension while the author works on
the structure of an article about an analysis process of content structures. On
the right, the document hierarchy is presented in a tree view, repeated in the
document graph view with the nodes with a dark background. Nodes from the
content structure appear brighter and to the right.

! Currently, limited Asymmetrix ToolBook integration is available, and XEmacs psgml
DocBook integration is being developed.
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In CHASID, concepts of the content structure represent topics discussed in
the document. So, this specific CHASID content structure is called a topic map?.
To the user, it looks like a conceptual graph [11], but does not offer the full
modelling and inference power. Operations are available to modify this graph
generically by adding topics and drawing relations.

However, rwe has shown that constructing a sufficiently detailed content
structure by way of such atomic operations requires more effort of the author
than the content structure is likely to repay. CHASID thus offers templates, proven
substructures to be instantiated en bloc in the document graph. Examples for
templates are the advance organiser, the full-fledged presentation of a figure or
the overall Introduction-Methods-Results-Discussion structure of an article.

Each template comes with a preview and a description of its content and
usage. Within the context of a template, the nodes and relations are weighted:
they may be optional, important or crucial. The weights serve as a hint to the
user, but are also used to check the consistency of the document.

When a template is instantiated, it is usually connected to the existing doc-
ument graph through nodes that become parts of the template instance, too. To
support this, two primary means of instantiation are offered: the fully flexible
interface offers a way to name a match for every node of the template, while the
so-called pragmatic instantiation offers only the nodes that are expected to be
matched.

If a node is part of a template instance (by instantiation, match or manual
addition), the weight of the node in this context is recorded. For each template
instance, the analysis part of CHASID checks whether the instance still has all
the components it requires: If crucial or important components are removed,
a warning message is issued, with the tone of the message depending on the
weight of the missing component. Removal of an optional component triggers no
user-visible action.

Other analyses are done on relationships known to CHASID: If a topic has
parts to it, then each of the parts should be discussed if the topic as a whole is
to be discussed. If it is not, a warning is attached to the topic, the missing part
and the division where that part of the topic should be addressed.

Such “addressing” is recorded in import and export relationships between
divisions and topics. A division is said to export a topic if reading this division
contributes substantially to understanding this topic. Conversely, a division is
said to import a topic if at least a working knowledge of the topic is required to
understand the division.

3.1 Implementation

Figure 3 gives an overview of the sub-graphs in a CHASID document graph. Each
rectangle represents a sub-graph with an identifiable purpose. The core sub-
graphs are framed with a thicker line. Arrows indicate distribution of knowledge

? There are some similarities with XML topic maps [12], but we were unaware of that
activity when choosing this name.
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about other sub-graphs. For example, the analysis subgraph may be removed
without affecting the document hierarchy, but removing the topic map would
affect the analysis.

On the left side, the external documents subgraphs contain reproductions
of the conventional documents, specific to each conventional application. The
purpose of these sub-graphs is to allow integration code with the conventional
application to concentrate on communication and change propagation, so they
abstract very little from the document model provided by the conventional ap-
plication.

That abstraction is provided through the document hierarchy sub-graph. It
consists of simple ordered trees of division nodes.

The topic map sub-graph contains nodes for the topics and relations, with
edges connecting them. Types of topics are differentiated in the type system,
but with only little consequences.

The analysis sub-graph contains the warning nodes generated by the analysis
patterns. They may be attached to any other sub-graph, as any node may be of
relevance to a detected problem.

The template sub-graph contains traces of template instances. As templates
may include all types of nodes (excluding template and analysis nodes), this
sub-graph is connected to all other sub-graphs, except analysis.

The modifications of this entire CHASID document graph are implemented
as a programmed graph rewriting system written in PROGRES [10]. From this
so-called specification, a C library is generated that contains functions for each
operation defined in the specification. Applications based on this code are then
developed by plugging the generated code into a framework that allows interac-
tive execution of operations. Figure 4 shows a simplified overview of UPGRADE
[5], the framework used here. It is also being developed at our department and
used by several other projects [6, 7].

The framework offers a configurable user interface (“UI”) with menus and
buttons to invoke operations and determine parameters for them. The opera-
tions may also be invoked programmatically through an interface from Python
scripts (“Scripts”). The C library generated from the specification (“Generated
Code”) then uses the PROGRES graph code library (“PGCLibrary”) as its
runtime environment. This in turn stores its state in the gras graph database
(“gras”). Changes in the database cause change events to be sent to the UP-
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GRADE filter stack (“Filter”). The lowest filter chiefly communicates with the
data base, while further filters perform various filtering and transformation tasks.
For example, an EdgeVisibilityFilter filters out events pertaining to edges
of certain types, while an EdgeNodeEdgeFilter translates triples of two edges
and an intermediate node to one attributed edge. The top-level filters are finally
used to drive unparsers (“Unparser”) that produce the visualisation, consuming
change events and querying the filters for more information from the database.
The framework defines table, tree and graph displays (“Display”). These are
widely configurable without programming effort. Several displays may exist at
the same time, each with its own filter stack.

Framework issues CHASID uses this framework for the execution of the code
generated from the specification. The specifics of the implementation of CHASID
are distributed across the following places:

Document model PROGRES graph operations are used to implement the
document manipulations requested by the user (through the UI or document
modifications in the conventional application), as well as the analysis checks.
Layout information dependant on specific graph patterns is also defined here.
These calculations profit most from the expressive power of graph rewriting
systems.

Filters We use the filter stack parameterisation of the UPGRADE framework
to create simplified views on the graph for display. Parameterised filters also
hide complexity from Integration Unparsers.

Intrusion Plugins These add-ons to or modifications of the conventional ap-
plication watch for changes in the conventional document, generating change
notifications in the one direction, and modify the conventional document ac-
cording to change requests received from integration unparsers in the other
direction. They communicate with the extension’s core over proprietary TCP
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protocols and are implemented in whatever language is most conveniently
connected to the conventional application.

Unparsers Specific display unparsers within the UPGRADE framework con-
trol the display of subgraphs by inserting layout information into the graph
view (figure 2). Integration unparsers interpret update events and emit cor-
responding change requests to the intrusion plugins.

Parsers Integration unparsers have parser counterparts that in turn interpret
change notifications from intrusion plugins and invoke document graph op-
erations. Integration parsers and unparsers are together responsible for spot-
ting and breaking echo loops. Such loops may occur if the intrusion plugin
detects a change in the conventional document, notifies the parser, which
modifies the document graph, triggering update events, causing an integra-
tion unparser to send change requests to the intrusion plugin, which modifies
the conventional document, which is detected by the intrusion plugin, and
so forth.

Scripts Templates are instantiated by executing scripts, allowing the user to
extend his library of templates at runtime.

Specific Modules Import of XML documents conforming to a specific DTD
is implemented in additional modules calling operations of the generated
code, thus playing a role comparable to the script module. Export modules
to several file formats query top-level filters.

3.2 Results

The step from the purely imperative programming environment used for rwe
to a mixed one with a large declarative graph rewriting part yielded noticeable
benefits. Especially analysis checks are much more concisely described declara-
tively. Figure 5 shows an operation that inserts a warning node for all document
hierarchy divisions that have only one son.

An equivalent imperative implementation would have to define an iteration
over all division nodes, check three context conditions (has one child, no further
children, no messages for this condition attached already, which includes an
iteration over all messages at the division), before it can create the new message.
In a reasonable layout, this amounts to more than twenty lines of code.

This difference increases as the complexity of the conditions grows. While
the graph operations do get denser and harder to read, the imperative imple-
mentation scales noticeably worse and becomes unmaintainable fast.

Apart from complex pattern matches, derived attributes and automatically
calculated relations are useful features missing from imperative languages. The
syntax-driven PROGRES editor is a further benefit, as it checks the context-
sensitive syntax at editing time and allows graphical programming.

By separating the logic (specified as graph operations) from its presentation
(specified through parameterised displays) we profit from developments of the
flexible and reusable UPGRADE framework.

The runtime environment for this prototype includes the proprietary graph
database gras, the PGCLibrary, various java libraries and the java runtime.



92

production  DSA_AddSingleChild * =

“1 - DS_DIVISION k A_Reference }‘4 - DSA_SingleChild

DS_First |/

DS_Next
‘ ‘2 :DS_DIVISION ‘% ‘3 :DS_DIVISION

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

A_Reference } 3’ :DSA_SingleChild

transfer  3'.aeText := "Divsion with a single child.";
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Fig. 5. Sample operation from the specification

These prerequisites restrict the prototype to specific Unix systems and cause high
hardware requirements. Faults in any supporting product often impact CHASID.
This clearly marks CHASID as a scientific prototype. Projects are underway to
improve performance and to allow usage of more generally available object bases.

4 Comparison

rwe as well as CHASID allow the author to model the content structure of docu-
ments. The expressive power of a graph model is needed to describe such models.
We have used both imperative and declarative ways to handle these graphs, al-
lowing us to compare results and implementations.

4.1 Results in Structured Document Processing

While rwe can be used to model the structure of documents a posteriori, it is not
useful for authoring new documents. CHASID with its integration of conventional
applications uses the modelled content structure to also support the author in
creating a consistent document. Both systems have mainly been used to ex-
periments with various ways to build content structures and offer functionality
based on it. As an experimentation field, graph-based application development
has proven useful.

4.2 Developing graph-based applications

However, some specific issues are to be solved when applying graph technology
in the development of medium-sized interactive applications.

Type safety is a desirable property of any larger piece of source code. It
arises here as the problem of maintaining type safety across implementation
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languages. It has been provided in rwe through the use of generated encapsula-
tion classes that enforce schema correspondence with the database. In CHASID,
the specification shares the schema with the database. The PROGRES editor’s
analysis ensures local type safety here.

Yet in CHASID there are parts outside the specification that depend on spe-
cific graph structures and thus the schema. The filter parameters use schema
identifiers (strings) to define views on the database. Unparsers filter change
events for specific schema identifiers to create layout information and inform
the intrusion plugins about model changes. Parsers transform the change events
from intrusion plugins into generic operation calls. All these dependencies are
not type-checked. There are also no generated encapsulation classes. This is a
shortcoming of the new system design that necessitates expensive testing to find
errors at runtime that were automatically found by the compiler in rwe.

A database-based application like rwe may be expected to cope with schema
evolution gracefully. This has been achieved for rwe in that the author was able
to extend the schema between runs and could keep his document graphs. If loss
of documents is acceptable, further kinds of modifications were possible, unless
they affected the well-known schema. This was checked at startup-time. CHASID,
however, allows no modifications any more, as PROGRES needs to know the
schema at editing time. If we were to allow schema extensions in CHASID we
would have to store, implement and check our own type system. The specification
would then contain chiefly meta-types. Types would be checked at runtime only.
We prefer the safety of static checks, but other projects [6] at our department
do implement dynamic type systems.

The user interface of rwe was completely under the control of rwe. This
gives freedom, but is prohibitively expensive. In CHASID, we leave the presen-
tation of the media content to an conventional application and use the generic
display capabilities of UPGRADE to display the graph structure. This allows
us to concentrate on the content structure and experiment with different models
easily specified in PROGRES.

4.3 Conclusion and plans

Our applications serve as research prototypes and are sufficiently usable for
that purpose. Most kinds of operations are specified graphically quicker than
implemented imperatively. The stronger type safety enforced by the specification
environment makes generic operations harder to achieve. Even when using a
flexible framework, providing an user interface usable with only little training
still requires a lot of effort.

In the near future, Emacs integration, template libraries and user interface
issues are our main concerns. The content structure parts of the specification
have reached a state where the remainder of the prototype needs to catch up for
some real-world tests.
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Abstract. MPEG-7 is a standards activity of the Moving Picture Ex-
pert Group which aims to provide standardized tools and methods to
define ways for associating and exchanging data related to a multime-
dia content. Therefore, MPEG-7 is not about compression, such were
MPEG-2 or MPEG-4, but rather about metadata. A central concept in
MPEG-7 is the notion of description, used to organize data about the
multimedia content according to their mutual relationships. This natu-
rally leads to complex graph-based constructs for which graph-rewriting
techniques are seen to be of great interest. The aim of this paper is to
give an overview of the MPEG-7 standard as well as an idea of the use of
graphs and graph rewriting techniques related to it. We hope in this way,
to introduce MPEG-7 to the graph grammar community, and seek the
involvement of researchers in the development of architectures or tools
devoted to the creation, the management, the access or the interoper-
ability of MPEG-7 descriptions.

1 Introduction

MPEG-7 is a standards activity of the Moving Picture Expert Group to provide
”a multimedia content description interface”. It consists of a standardized set of
tools and methods for construction and exchange of (object-oriented) descrip-
tions of multimedia content features, with the aim of allowing interoperability
among applications and devices for searching, indexing, filtering and access of
audio-visual content. Multimedia must be understood here as any form of audio
or visual (or both) document. MPEG-7 is not aimed at any particular applica-
tion but rather at standardizing tools that will support as larger applications as
possible. This standard offers uniform ways to describe elementary pieces of in-
formation, related to the content, linked together according to their relationship
in the context of the multimedia document. That can be either (but not only) :

— specific features of a content (color, shape) linked together by their spatial
relationship (east, over);

— (meta)data related to the multimedia document(such as author, information
about rights management);
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— radically high level information contained or suggested by the content itself:
soccer players linked by the action depicted by the audio-visual segment
(on-the-left, gives-the-ball-to) entraining a spectators’ reaction (happiness,
angriness) detected from the audio.

Such uniformity needs a high level of abstraction when dealing either with the
definition of the basic building blocks or when establishing the useful tools to
construct descriptions. Due to their ability in providing an expressive, flexible
and visual (and also popular) data representation, graphs can be seen as an
omnipresent underlying structure in several part of the MPEG-7 standard. On
the second author’s initiative, the graph-rewriting paradigm was proposed as
a useful tool for the construction and the manipulation of those graph-based
descriptions. It has been accepted and is part of the normative elements called
Graphical Term Definition and Graphical Classification Scheme (see [1]).

The next section gives a brief presentation of the MPEG-7 standard with an
emphasis on part 5, the Multimedia Description Scheme (MDS), which defines
the set of tools needed to construct graph-based descriptions. The third section
specifically discusses the part of the standard in which graphs grammars have
been introduced. The fourth section gives a formal presentation of the MPEG-7
graphs as well as a brief presentation of the current graph rewriting methods
which are part of the standard. Finally, in the conclusion, we discuss the reasons
why we believe that the keys to the use of graph rewriting mechanism in relation
with future MPEG-7 based applications, are, in part, “in the hands” of the graph
rewriting community.

2 An overview of the MPEG-7 Standard

Experts, in MPEG-7, come from disparate subjects with separate backgrounds
(databases, signal processing, knowledge management, digital libraries), and
from diverse circles with specific needs (electronics companies, universities, con-
tent owners, web based application providers etc.). As a matter of fact, features
of multimedia content can be understood as low level features (color, shape), in-
formation about the content (creation date, creator) as well as semantics (what
represents the content) but also about the access to the content (user pref-
erences). In other words, MPEG-7 tools must reconcile all the shapes that a
description of multimedia content can take, and be adapted to many kinds of
multimedia applications. In addition, to satisfy those primary goals, the main
challenges for this new content description format are to ensure a minimal com-
mon understanding that is crucial for interoperability, and to provide efficient
solutions for storage and fast transport. The standard MPEG-7 is divided into 8
parts : the complete architecture of the standard is described in [12]. For the rest
of this paper, we will essentially focus on the description tools and particularly
on the Multimedia Description Scheme(part 5).
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2.1 MPEG-7 normative elements

The standard specifies four types of normative elements divided into two kind
of tools : the first kind is related to the description tools (and covers part 2
to 5 of MPEG-7 activities, and the second is related to the systems tools (part
1 of MPEG-7 activities) whose aims to support delivery of descriptions, mul-
tiplexing of descriptions with multimedia content, synchronization, file format
and so on. The description tools specify how to construct complex (graph-based)
descriptions using the following fundamental blocks :

— The Descriptors (D) are the basic units to describe features, attributes,
or groups of attributes of multimedia content. They are designed primarily
to describe audio-visual features (color, texture) or attributes of the content
(location, time, quality).

— The Description Schemes (DS) describe entities or relationships per-
taining to multimedia content. The DSs are graph-based descriptions used to
define higher-level features related to the content and produce more complex
descriptions of the content (regions, segments, objects, permanent metadata
related to the creation, rights, etc.). Components of DS may be Descriptors,
or datatypes as well as DS themselves.

— The Datatypes are the basic reusable datatypes employed by Description
Schemes and Descriptors.

Finally, the Description Definition Language (DDL) (defined in the part 2 of
the MPEG-7 standard) specifies the syntax of the Ds and the DSs: to insure a
wide interoperability, DDL is a variant of W3C XML Schema Language.

2.2 Multimedia Description Schemes (MDS)

The MPEG-7 MDS set of tools provides a way to associate to a multimedia
document a triple Description-Package-Metadata (see also [13]). The Description
is a structured set of information about the content, descriptions can be either
complete or partial. A complete description provides a standalone description of
the content for an application. A partial description, also called a Description
Unit, is an independent piece of description dedicated to part of the content, or
to a “view” of the content. A partial description can be added to a complete
description, or it can be used by an application as partial information about
the content. The Package contains information about the internal organization
of the description, allowing, for example, specific searches into the description.
Metadata contains information related to the description such that date of the
creation of the description, usage of the description, confidence on the description
and so on. A Description is a graph-based representation that starts with a root
element. The root element essentially indicates if the description is complete or
partial. If the description is complete, the root element is followed by a top-level
element that gives information about the task of the description. Basically, a
description is related either to the content itself or to the management of the
content and can describe the nature of the content (video, images, etc.) as well
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as the semantics of the content (i.e. what represents the content) or information
on the usage of the content.
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Fig. 1. A structural description of two successive video-segments.

Figure 1 shows a possible graph-based description of two video-segments
called Dribble and Kick and Goal Score: it describes the structure of the content
with three “moving regions” (identified by the terms Ball, Player, Goalkeeper)
and the spatial relationship between them (Right of, Move toward), then the
same three “moving regions” plus a “still region” (Goal) in the next action. In
the left most segment, the player is moving toward the goalkeeper while staying
on his left: the ball and the player are staying close together. In the second
segment, the player is now on the right of the goalkeeper and the ball is moving
toward the goal. The dashed edges establish the correspondence between the
moving regions on the two video-segments. Here, this description is not related
to the semantics of the content, but is merely a structural description. Actually,
the real elements of the description are “moving regions” (that is physical shapes
that can be detected into the content) and relations between them are mainly
physical. One expects that some parts of such a structural description may be
automatically extracted from the content it-self.

3 Introduction of graph rewriting in MPEG-7 standard

In the previous example, we said that the description is merely structural, and
suggested that the words are just used to denote regions of the content without
involving any semantics. In other circumstances, and because the current state
of the technology is far away to be able to infer meaning from only low level
descriptors, one may wish to introduce higher level of information about the
semantics of the content. MPEG-7 provides several tools to introduce semantic
information in a description. This ranges from simple key-words added as at-
tributes to a segment in order to add meaning, to the possibility of constructing
complex descriptions related to the semantics suggested by the content. In order
to guarantee a minimum agreement on the meaning, and to be able to exchange
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such descriptions, MPEG-7 proposes to control the vocabulary used in any part
of a description, by means of Terms and Classification Scheme.

3.1 Terms and Classification Schemes

MPEG-7 provides a set of "normative terms” (essentially those that are used to
define the MPEG-7 format itself), as well as a set of tools to define vocabulary
that can be used in the descriptions. Those tools are :

— A format allowing the definition of new Terms : each Term possesses a name,
a unique identifier, a definition setting its meaning, and, possibly a set of
relations with others Terms. A term is always defined in reference to a context
or a domain represented by a Classification Scheme.

— A Classification Scheme is a hierarchical organization of Terms related to a
particular domain. This can be seen as an ontological representation, or a
thesaurus (in reference to knowledge representation and language processing
fields respectively). The default relation between a term and it subordinates
is “narrower in meaning than” but other kinds of relations can be used as
well as user-defined ones.

Figure 2 shows (a piece of) the definition of a Classification Scheme estab-
lishing the possible spatial relations between segments: it’s extracted from the
MPEG-7 standard and expressed in the XML-based DDL language. This Classi-
fication Scheme defines several terms that should be used in descriptions : here,
Binary, Directional, Left, Right, Topological and Equal are defined.

<ClassificationScheme uri="urn:mpeg:mpeg7:cs:SpatialSegmentRelationCS">
<Definition> Spatial relations among segments </Definition>
<Term termID="binary">
<Definition> Spatial relations between two segments </Definition>
<Term termID="directional">
<Definition>
Spatial relations that describe how two segments are placed and relate
to each other in space
</Definition> [...]
<Term termID="left">
<Definition> If segment B is left of segment C, B.x.e <= C.x.s </Definition>
</Term>
<Term termID="right">
<Definition> Inverse relation of left </Definition>
</Term>[..]
</Term>
<Term termID="topological">
<Definition> [...]
<Term termID="equal">
<Definition>If segment B equals segment C, B = C </Definition>
</Term>[..]
</Term>
</Term>
</ClassificationScheme>

Fig. 2. Part (11.8.2.1) of MDS - Definition of SpatialSegmentRelation CS.
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An implicit relation between those terms is also induced by the tree struc-
ture of the definition’s syntax : for example, the term Left is a specialization of
Directional and Directional itself, is a specialization of Binary.

3.2 From Classification Scheme to Graphical Classification Scheme

In the definition of SpatialSegmentRelation (cf Figure.2), each term of the classi-
fication scheme inherits of the definition of its ancestor. In addition it possesses
its own definition that gives it a meaning and that constrains its usage. To allow
more complex ways of defining and adding constraints on the use of terms in
accordance with the Classification Scheme it refers to, MDS introduces the no-
tion of Graphical Classification Scheme. In a Graphical Classification Scheme, a
term is defined by a Graphical Term Definition that is none other than a graph
structure together with rules setting its use and its possible ways of being re-
placed.

Let us take the example of the term “Left-of ” defined in the previous classifi-
cation scheme. According to the definition given by the scheme on Figure 2, this
term is used to qualify a spatial relation between two segments that carries an
information about their mutual direction and that verifies a particular property.
It means therefore that it can be used in a description involving two segments
B and C to replace a relation Directional if the attributes of the two segments
B and C verify the property B.x.e < C.z.s. As B and C are certainly part
of a bigger description, this change would certainly have some consequences on
the whole description. For example, the transitivity of the Left-of relation would
induce that each segment on the left of B would then be on the left of C. In a
similar manner, as Left-of is the inverse relation of Right-of, it also means that
each segment that was on the right of C' is now on the right of B and so on.

Left-Of Left-Of

( B Directional C
— »¢ )

Fig. 3. Replacing Directional by Left-of with a graph rewriting rule

This may be translated in graph formalism by representing the description
with a graph where nodes are complex attributed objects standing for segments
and edges are relations (binary, directed here) between them. For this example,
we are only concerned with labels on the edges whose are terms used to qualify
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the relation. The replacement of the Directional relation by Left-of may be ex-
pressed by a graph production with application conditions (on the attributes of
the objects), and an embedding mechanism which specifies ways to create new
edges in the derived graph. Such a production is represented in an informal way
on Figure 3 : the grey part of the production represents the neighborhood of the
nodes B and C' in the mother graph while the dotted edges stand to describe the
connection relation after the rewriting step. It means that each node T (respec-
tively T") that was linked in the mother graph to B by a Left-of (respectively
Right-of) edge would be linked to C by a Left-of (respectively Right-of) edge after
the rewriting step. The same kind of embedding is described for the neighbors of
C. The result is that, in a description conforming to the Graphical Classification
Scheme where the term Left-of is associated to this Graphical Definition, one
would be allowed to replace a Directional relation by a Left-of relation according
to the production established in Figure 3.

As MPEG-7 standardizes descriptors for low level feature of a multimedia
content but do not aim to standardize how they must be used for, CBIR (Con-
tent Based Image Retrieval) for example, MDS here introduces via the graphical
term definition, the ability to use graph rewriting for the manipulation of com-
plex descriptions, without imposing any obligation or ways to use them. With
a little bit of imagination, we can see that there are situations where the abil-
ity of rewriting graph-based descriptions may be helpful: refining descriptions
as the above example, gluing descriptions together, controlling or validating the
structure of a description, restructuring a description, simplifying a description,
going from the Dribble and Kick video segment description to the Goal Score
description, and so on.

3.3 About the motivation for using graph rewriting in MPEG-7

Graph grammars have been specifically introduced into MPEG-7 with objective
to cope with high level semantic description of content! and are indirectly in-
spired by works in relation with algebraic semiotics. Without entering into the
details, semiotics is an important contribution to the understanding of cognitive
process for knowledge, communication and exchange influenced by the Pierce’s
sign theory. This approach is gaining popularity in several fields of computer
sciences and, particularly, when dealing with user interaction concerns. We refer
the reader to [6] for a detailed information.

Generally speaking, a sign can be seen as “whatever drives basic information
to construct meaning”. Three kinds of signs are commonly admitted to exist:
scons, that convey ideas of the things they represent, then indications, or indices’
which show something about things, and symbols, or general signs, which have
become associated with their meanings by usage.

! We have already mentioned that MPEG-7 propose tools to describe content accord-
ing to many aspects : semantic meaning of the content is one of them.
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In [7], Goguen et al., establish a category for sign systems suitable to capture
the following important ideas :

— Signs appears as members of signs systems, not an isolation.

— Most signs are complex objects, constructed from other lower level signs.

— Signs systems are better viewed as theories - that is, declarations for symbols
plus sentences, called “axioms”, that restrict their use - than as (set-based)
models.

— Representations in general are morphisms (mappings) between signs sys-
tems.

In [6], G. Fauconnier et al, reveals that an important mode of composition
of signs system called blending is directly involved into the construction of supe-
rior knowledge, understanding and communication. Goguen et al. show that this
operation may be mathematically defined by the operation of amalgamate sum,
also called pushout, in the category for sign systems. ;From then, it appeared to
the people involved in the MPEG-7 effort that allowing tools for the composition
of graph representations? may be of particular interest for the construction of
elaborated descriptions of the semantic of the content. The importance of the
notion of mapping in semiotics as well as the huge need of formalizing abstrac-
tions, explain by itself the fundamental reasons for the introduction of graph
grammars methods in MPEG-7 via the use of approaches known as algebraic.
We will briefly present those approaches in the next section.

4 Graphs and Graph Grammars in MPEG-7

More than just their ability on describing complex datastructures, graphs are
used in the MPEG-7 standard for their capacity on representing relations (in the
mathematical sense) between entities. Actually, the notion of relation is central
in the set of tools developed by MPEG-7 as they allow the construction of higher
level of information by putting together basic pieces of information.

To cover the wide range and variety of graph-based representation involved
into the standard, a generic definition for graph have been chosen by the stan-
dard committee : MPEG-7 graphs are labeled polyadic graphs according to the
definition [8].

Definition 1. A polyadic graph is a system G = (Va, Eq,s¢ : Ea = Vi, ta :
Eqg — VCJ{) where Vg is a set of nodes, Eg a set of edges, sg is a map called
the source map and tg the target map. By convenience, we will call sources of
e the images of an edge e by sg and targets of e its images by tg.

A labeled polyadic graph is a triple (G,l,,l.) where G is a polyadic graph,
lp : Vg — A, is a mapping form the nodes of G to a set of nodes labels and
le : Eq = A. is a mapping from the edges of G to an set of edges labels.

2 Graph descriptions, when used to describe the semantic of the content, may be seen
as a simplified form of signs system.
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It results from this definition that a polyadic graph describes a set of (m,n)-
ary relations e (also called an m + n-ary relation) between nodes, where m is
the cardinality of the set of sources of e and n the cardinality of it set of targets.
In addition, those (m,n)-ary relations are ordered in the sense that there is an
order for the appearance of the sources in the sg(e) sequence and, respectively,
an order for the appearance of the targets in the tg(e) sequence. By convention,
a unary relation is a (0,1)-relation, that is with an empty set of sources. For
those that are more familiar with hypergraphs, a polyadic graph corresponds to
a directed hypergraph with ordered tentacles (as defined, among others, in [10]).
It is also obvious that a polyadic graph with (1, 1)-relations is a binary directed
graph (in the usual sense).

Figure.4 shows ”a” representation of the polyadic graph G where Vg =
{z;,Vi € [1,8]}, Eq = {e}, sg(e) = (x122232425, xex72375) that comprise one
edge e and eight nodes. This polyadic graph is then composed by a unique (5,4)-
relation represented by an (hyper)edge with 5 incoming tentacles and 4 outgoing
tentacles. In Figure 4, the square node stands for this (hyper)edge e, the left-
most nodes and the top one are images of e under the source map, whereas the
rightmost nodes and the top one are images of e under the target map.
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Fig. 4. Representation of a polyadic graph.

4.1 Graph rewriting approaches in MPEG-7

Motivations for the introduction of graph grammars in MPEG-7 have been pre-
sented during the previous sections. Here, we only intend to enumerate the ap-
proaches already inscribed in the standard.

The graph rewriting paradigm essentially finds justification in the MPEG-7
standard in its ability to give a compact, clear, and abstract framework to de-
scribe the dynamical behaviors of graphs. That is, no decision was made about a
“right paradigm” for graph transformation for multimedia description, and sev-
eral approaches were standardized in order to cover graph operations in the most
general sense and allow convenience over a wide range of possible applications.
The graph rewriting approaches that are now part of the MPEG-7 standard are
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those known under the name of categorical (or algebraic) approaches as they de-
fine graph transformation by the way of operations in the graph category (and
more generally in the polyadic-graphs category). We enumerate each of them in
the following and give, for each, their characteristics according to three criteria :

— Are they suitable to describe node, edge and subgraph replacement ?

— Are they defined for graphs, hypergraphs or polyadic graphs ?

— Do they involve an embedding mechanism (edge oriented) or a connecting
mechanism (node oriented) ?

Pullback rewriting in the sense of [2] gives a categorical framework to describe
node replacement in structured graphs. This approach primarily uses a pullback
operation (based on the categorical product) adequately combined with a par-
ticular graph called Alphabet Graph to describe node rewriting in graphs. It has
been extended to hypergraphs (and any kind of graph that has a particular
structure) by viewing hypergraphs as the objects of a category over a structured
graph. The use of the pullback approach for polyadic graphs can be found in [10]
where polyadic graphs are called directed hypergraphs. This approach defines a
connecting mechanism but is able to simulate an embedding mechanism.

Double Pullback rewriting is an extension of the pullback approach for node
oriented sub-graph rewriting in structured graphs. This approach describes the
replacement of a whole subgraph as a double step operation: first the collapsing
of the sub-graph to a single meta-node by construction of a complement (that is,
the inverse operation of the pullback) then, the replacement of this meta-node by
a pullback rewriting step. One must also notice that the existence of the pullback
complement is subject to identified application conditions. A description of this
method for hypergraphs can be found in [2].

Pushout rewriting is used to describe edge rewriting in graphs (or hyper-
graphs). The notion of pushout rewriting refers to the use of the categorical
pushout as an operation to glue together two graphs according to a morphism
that defines the gluing points, while optionally deleting some edges or nodes. The
introduction of the pushout operation in MPEG-7 has been done in reference to
two different approaches.

— First, the single pushout approach for graph rewriting defined in [11] where
a pushout method based on partial graph morphisms is used to describe
hyperedge and hypergraph rewriting. This approach, as all the edge oriented
approaches, involves an embedding mechanism.

— Second, as we already mentioned in the previous section, the use of pushouts
to describe the semiotic operation called “blending”. In [7], a 3/2-category
is stated to give an algebraic framework for semiotics. In this category, the
pushout operation, when it exists, is used to describe a particular gluing of
graphs called blending.
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Double Pushout Rewriting (DPO) as defined in [9] and recently overviewed
in [5]. In the DPO approach, hyperedge (and more generally hypergraph) replace-
ment is described as a cut and paste operation in hypergraphs. It is done in two
steps : the first step removes a part of the hypergraph by constructing an inverse
pushout operation (called pushout complement) while the second step glues a
new hypergraph in place of the removed one. The DPO approach involves an
embedding mechanism : it must also been note that the pushout complement
doesn’t necessary exists, leading then to some well-known application condi-
tions. This formalism has certainly been the most intensively studied approach
over the thirty past years and has been shown as usefully applicable in several
circumstances.

5 Conclusion

In the standard itself, graph rewriting paradigm is proposed as a useful tool to
help the control of the structural aspects of a description. However, no precise
global approach to exercise this structural control is established. The main rea-
son is that MPEG-7 doesn’t aim to give solutions regarding to any particular
application or use of descriptions that could be done. As it is pointed out in [3],
a modern architecture for a multimedia content management would certainly
be strongly dependent (but not only) on the particular domain and application
type. If multimedia description schemes are clearly designed to be a tool tending
toward a better interoperability between multimedia management applications,
the way developers would use this tool is, hopefully, totally open. We think that
graph transformation methods can be helpful to deal with some fundamental
problems suggested MPEG-7 :

— Providing visual, and generic tools to construct, validate and maintain schema-
based MPEG-7 compliant annotations.

— Proposing concepts or methods to insure the interoperability between differ-
ent MPEG-7 based applications, but also with already existing applications
or databases.

— Inventing new architectures for applications that would exploit the whole
informative aspects captured by this new emerging standard.

It is obvious that the graph rewriting community could find interest in play-
ing a role in further development related to MPEG-7 standard. It may lead to
the improvement of recent tools and theories and to the demonstration of the
usefulness of this paradigm. In addition, the application is in a domain, the
multimedia industry, that is expanding. We see two possible issues for the in-
volvement of the graph rewriting community : first, supporting those who might
be interested in developing applications MPEG-7 compliant and that would be
inclined to use graph transformation. This can be done either by providing ac-
cessible information on the ”success stories” and about the available tools, or
by the proposition of inventive solutions. We fully agree with remarks done in
[4] on the difficulties, for a new comer to graph rewriting, on understanding
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its usefulness. In addition, when dealing with multimedia applications, urgency
to provide the market with new tools needs fast answers on the potential ade-
quacy of graph transformation methods to accomplishing precise goals. Second,
proposing changes (through the Appligraph project?) directly to new versions,
or evolution of the standard. Actually, while the first version of the standard is
fixed, there is a process open to further adjustments and ideas.

MPEG-7 home page : http://www.darmstadt.gmd.de/mobile/MPEG7/
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Abstract. Shapely nested graph transformation is the computational
model for DiAPLAN, a language for programming with graphs repre-
senting diagrams that is currently being developed. This model supports
nested structuring of graphs, graph variables, and structural graph types
(shapes), but is still intuitive. In this paper, we show that the construc-
tion of shapely nested graph transformation steps can be reduced to
solving the subgraph isomorphism and variable matching problem for the
components of a structured graph, and devise restrictions of the trans-
formation rules that improve efficiency. Shapes provide useful structural
information about the graphs involved in a transformation step, and may
therefore further improve efficiency.

1 Introduction

D1AGEN [19] is a tool for implementing the syntaxz of diagram languages. The
editors generated by DIAGEN represent diagrams as graphs, perform scanning
and structure editing by graph transformation, and parse their syntax according
to a graph grammar. DIAPLAN [13,15], a programming language that is cur-
rently being designed by the authors, shall complement DIAGEN by a tool for
implementing the semantics of diagrams.

Shapely nested graph transformation [14] has been devised as the computa-
tional model of DIAPLAN. This model is rather intuitive, although it supports
powerful concepts that are not found in other graph transformation languages
like PROGRES [23] and AGG [9]:

— Edges may contain graphs in a nested fashion, for a compositional structuring
of graphs.

— Graph variables allow subgraphs of arbitrary size to be duplicated, compared,
or deleted in a single transformation step.

— The admissible shape of graphs can be specified by syntactic rules that allow
for type checking.

* The second author has been partially supported by the ESPRIT Working Group
Applications of Graph Transformation (APPLIGRAPH).
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In general, graph transformation is difficult to implement. So this paper stud-
ies the construction of shapely nested graph transformation steps. We show that
this construction can be reduced to subgraph isomorphism and variable match-
ing for the components of a graph, and propose restrictions of the transformation
rules that improve efficiency, in particular by cutting down nondeterminism.

We investigate nested graph transformation (without shapes) in Section 2.
Shapes are introduced afterwards, in Section 3, because shapely nested graph
transformation leads to considerably different algorithms. Related and future
work is discussed in Section 4.

2 Nested Graph Transformation

Our notion of graphs follows [14]; it is more general than usual ones: edges may
connect an arbitrary number of nodes, not just two, and they may contain graphs
in a nested fashion. We also distinguish a sequence of interface nodes at which
graphs may be glued together.

More precisely, let L be a ranked alphabet where every symbol | € L comes
with an arity arity(l) > 0. The set G of graphs over L consists of sixtuples

G=(V,E,)lab: E — L,att: E — V* cts: E — G,pe V*)!

with finite sets V of nodes and E of edges, where every edge e € E has a
labelling lab(e), a sequence att(e) of arity(lab(e)) attached nodes, and a contents
cts(e), and where p designates a sequence of points.? It is required that p does
not contain repetitions, and that the same holds for every att(e) (e € E). This
is a well-known normal form which does not restrict the expressiveness of the
concepts defined below.

By () we denote the empty graph; the handle graph (l) of a label [ consists of
an edge e with cts(e) = () that is labelled with [ and attached to arity(/) points.
In a graph G, an edge e is called a frame if cts(e) # (), and plain otherwise; e is
qualified as a k-ary [-edge if it has k attachments and label I. G is called plain
if it contains no frames, and k-ary if it has k points.

The tree-like nesting of frames in a graph G as above defines nested edges

Ag ={e}U{ew|e€ E,w € Acts(e)}

for selecting the subcomponent G/w contained in a nested edge w € Ag, and
assigning a graph U to that nested edge, written G[w < U]. By G(w) we denote
the plain graph at w: the one which is obtained from G/w by replacing the
contents of each frame with ().

Two graphs G and H are isomorphic, written G = H if they are equal up to
the identities of their nodes and edges.

1 v* denotes the set of sequences over some vocabulary V. The empty sequence is
denoted by e.

2 A more precise definition would define graphs by induction over the nesting depth
of edges.
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In contrast to notions of hierarchical graphs that are used for system model-
ing [8], our nesting concept is compositional: it forbids edges between components
so that component assignment is possible. This is important for programming.

Figure 2 below shows three control flow graphs. Their nodes represent exe-
cution states, and their edges represent assignments, branches, and procedure
calls; calls are frames that contain the control flow graph of the called procedure.

Variables. Let X be a ranked alphabet of variable names disjoint with L. A
graph P over LU X is called a pattern if all its nested variables (the nested edges
labelled by X) are plain. By P we denote the skeleton of a pattern P where all
variables have been removed.

Let P be a pattern with a k-ary nested variable we € Ap. The replacement
of e in P/w by a k-ary graph U is then defined by gluing the attachments of e
to the corresponding points of U, removing e, and assigning the result to P/w.

A pattern C with a single nested variable we is called a context. The embed-
ding of a graph U in C is denoted as C[U] and defined by replacing the nested
variable we by U.

A function o: X — G is a substitution if it maps variable names onto graphs
with the same arity.

The instantiation of a pattern P according to ¢ is obtained by the simulta-
neous replacement of all nested variables we in P by the graph o(labg/q(€));
the resulting instance graph is denoted by Po.

Graph Transformation. Using the notions summarized above, transformation
rules and steps can be defined in a similar way as in the area of term rewrit-
ing [16]. In doing so, it seems sensible to apply the same restrictions as for the
rules of a term rewrite system: Their left-hand side patterns must not be vari-
ables, as such rules apply to every graph so that the system diverges, and their
right-hand side patterns must not contain uninstantiated variables, since then
arbitrary substructures have to be created “out of thin air”.

A (transformation) rule P —; R consists of two patterns P and R such that
the left-hand side P is not a variable handle, and only variable names from P
occur in the right-hand side R. Then ¢ transforms a graph G into another graph
H, written G =, H, if t can be instantiated with a substitution ¢, and embedded
into some context C so that G = C[Po| and H = C[Ro].

Ezample 3 (Control Flow Graph Transformation). In Figure 1 we show a rule
l that performs a loop transformation, and a rule u that unfolds the body of a
procedure call. Figure 2 shows two transformations of a control flow graph using
! and u. The context for the first step equals the graph G[f < (D)] (where f is
the frame in G, and (D) is D’s handle graph), and the substitution maps D onto
the handle graph (z := e). For the second step, the context equals the graph
obtained by replacing the frame f by a D-variable, and the substitution maps
D onto H/f.
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Fig. 1. Rules for loop transformation and for procedure unfold

Let [~! and u~! be obtained by interchanging the sides in rules [ and u. Then
u~! is not a rule because its left-hand side is the handle graph (D). Indeed this
rule could always be applied, to fold any control flow graph to a procedure call.
However, 7! is a transformation rule that could transform H back to G.

Note that a single graph transformation may affect arbitrary large subgraphs
of the host graph. Every application of | duplicates the subgraph bound to the
variable name D. Similarly, a rule deletes the subgraph bound to a variable name
in its left-hand side if that name does not occur in its right-hand side. And, a rule
may require to compare arbitrarily large subgraphs: the rule [~! applies only to
a host graph like H, where both D-variables on its left-hand side match isomor-
phic subgraphs. This is a rather complex applicability condition, and therefore
often forbidden in applications based on term rewriting. So implementations of
(shapely) nested graph transformation may also require that rules are left-linear,
i.e. that every variable name occurs at most once on the left-hand side.

Fig. 2. Two transformation steps
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Construction of Transformations. For a graph G and a rule P —; R, every
valid transformation step can be constructed as follows:

1. FIND P’s skeleton P in G, i.e. determine an occurrence graph O such that
P = O C G/w for some nested frame w in G.

2. BIND P’s variable names by a matching substitution o such that Po = G /w.?

3. REWRITE, i.e. determine H as G[w + Ro].

For plain graphs, FIND and BIND together constitute the graph matching
problem studied in [20]. Obviously FIND cannot be solved without solving the
subgraph isomorphism problem, which is NP-complete. BIND is somewhat easier:
Using the techniques presented in [20] it is solvable in polynomial time. Once
this has been done, REWRITE is easy.

A closer look at FIND and BIND reveals that the main difficulty is to match
the plain graph P(u) against G(wv), for nested frames v and wv. From such local
solutions the required global one can be constructed rather efficiently. Thus,
nesting alone makes FIND and BIND more efficient if graphs consist of many
small components, since these can be considered in isolation. (Notice the benefit
of compositionality.)

However, BIND may still produce an exponential number of matching sub-
stitutions for some occurrence. If evaluation is done with backtracking (as in
PROLOG), all of them may have to be tried out, eventually. It is thus important
to cut down the number of matches. Fortunately, rules may be restricted so that
they have at most one matching substitution for any occurrence:

Theorem 1. Let P = O C G/w, where no variable in P(g) is attached to a
point. The BIND step can yield at most one matching substitution o so that
Po =2 G /w, provided that every u € Ap satisfies one of the following properties:

1. The wvariables in P(u) have pairwise disjoint sets of attached nodes and
G(wu) 1is connected,

2. P(u) contains at most one variable,

3. P(u) is a handle graph or contains no variable at all.

The conditions 1-3 are ordered with increasing strength. Rule u in Figure 1 of
Example 3 satisfies condition 3. So do all the rules used for specifying a graphical
version of Quicksort in [5]. (Actually also the right-hand sides of all rules in that
paper satisfy condition 3.) This indicates that even rigidly restricted variable
concepts suffice for many nontrivial programming situations.

Rule /=1 in Figure 1 of Example 3 violates condition 2 since the variables of
its left-hand side share one of their attached nodes. Rule [ in that figure, although
satisfying condition 2, fails as the D-variable on its left-hand side is attached to

3 To be precise, one must extend P by a hole variable h that is attached to P’s
points. Then G[w < o(labp(h))] determines the skeleton of the context C' for the
transformation. Furthermore, substitution o has to be consistent with the occurrence
of P in G which has been found in the FIND step, i.e., the occurrence morphism has
to be a submorphism of the isomorphism Po — G/w.
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Fig. 3. Two loop transformations

a point. Figure 3 illustrates that the occurrence of I’s pattern skeleton may then
be transformed with different instantiations. Our intuition about control flow
graphs may mislead us to believe that [ transforms G’ in just one way, yielding
H'. In that transformation, the subgraph (y := €') in G' is part of the context
wherein the instance of [ is embedded. However, this subgraph may also belong
to the instantiation of I. Then, the transformation yields the graph K’, where
the subgraph (y := €’) is duplicated, but introduced as dead code that will never
be executed.

3 Shaped Nested Graph Transformation

Figure 3 points out an inherent feature of nested graph transformation: All
graphs and pattern over the label alphabets may occur as host graphs, in sub-
stitutions of variables, and in rules. The construction of transformations has to
cope with the general case, even if the graphs that actually occur have particu-
lar properties. (For example, all control flow graphs are connected, and have a
unique start node.) These properties could be used to construct transformations
more efficiently.

Therefore we devise rules specifying the syntax of graphs in a context-free
way so that graphs and patterns can be checked against these rules.

Syntax Graphs. Let NV be a ranked alphabet of nonterminals disjoint with
the vocabularies L and X. Graphs over L U N are called syntax graphs if their
N-edges are plain (as for patterns).

Let X' be a finite set of syntactic rules of the form n ::= R, where n is a
nonterminal, and R is a syntax graph with arity(n) points. A direct derivation
of a syntax graph G to a syntax graph H under X, written G = H, is obtained
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i

Fig. 4. A grammar for structured control flow graphs

by replacing a nested n-edge we in G by R, where n ::= R is a syntactic rule in
%Y. The reflexive and transitive closure of = 5 is denoted by =73,.

Ezample 4 (Grammar for Structured Control Flow Graphs). Figure 4 shows the
rules defining the syntax of structured control flow graphs that are built (from
left to right) over assignment and procedure call by sequential composition,
conditional statement, pre-checked and post-checked loop. In this example, §
is the only nonterminal. We write § ::= R;|---|R, to abbreviate several rules
0 := Ry,...,0 ::= R, for the same nonterminal.

Syntactic rules specify hyperedge replacement, which derives one of the best-
studied classes of context-free graph languages (see [11,4] for details). Such rules
allow to define recursive “algebraic” data types of functional and logical lan-
guages, and sophisticated pointer structures like cyclic lists, or leaf-connected
trees, which cannot be defined in imperative languages (see also [10]).

Membership in these languages is decidable:

Theorem 2. The question “(n) =% G ?” is decidable for all syntaz graphs G.

Shaped Graphs and Patterns. For the rest of this paper, we fix a finite
set X' of syntactic rules over the nonterminals /N, and use it to specify shapes
of graphs. (The term shape analysis is used for inferring properties of pointer
structures in imperative programs [22].) We assume that every variable name
xz € X is typed with a nonterminal type(z) € N.

The shape [P] of a pattern P is the syntax graph obtained by relabelling
every z-variable in P by its type.

A pattern P is shaped by some nonterminal n € N if (n) =3, [P] (or just
shaped if n is not relevant). A shaped context C is called n-context if its unique
variable is of type n € N. (Note that in general, C' may be shaped by another
nonterminal.) A substitution o is shaped if the graph o(x) is shaped by type(x)
forall z € X.
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Shapely Transformation. We now refine graph transformation so that it
preserves shapes.

A rule P —; R is shapely if P and R are shaped by the same nonterminal,
say n. Then t transforms a graph G into another graph H, written G =, H,
if ¢ can be instantiated with a shaped substitution o, and embedded into some
n-context C so that G = C[Po| and H = C[Ro].

Our definition of shapes is consistent, since the result of a shapely transfor-
mation is a shaped graph again (see [14] for the straightforward proof).

Theorem 3. In the situation above, G and H are of the same shape as C.

Altogether, shapes set up a type discipline that can be statically checked:
Theorem 2 allows to confirm whether a set T' of transformation rules is shapely
or not. If the rules are shapely, and a graph G (the “input”) has been checked to
be shaped, Theorem 3 guarantees that every transformation sequence G =* H
will yield a shaped “output” graph H. Type-checking between the steps (“at
runtime”) is not necessary.

Ezxzample 5 (Shapely Control Flow Graph Transformations). The patterns in Fig-
ure 1 of Example 3 are shaped according to &, so the rules I, U, and [~! are
shapely. The contexts of the transformations in Figure 2 are §-contexts, and the
matching substitutions are shaped so that the transformations are shapely as
well.

In Figure 3, the transformation G’ = ;-1 H' is shapely. However, the transfor-
mation G’ =-; K’ is not shapely, because neither the context, nor the substitution
used in it are shaped.

Construction of Shapely Transformations. As pointed out earlier, match-
ing a pattern P against (a subcomponent of) G can be done by computing
matches of the plain patterns P(u) against the plain graphs G(v). The obtained
results can be combined using a top-down or bottom-up procedure. Let us briefly
describe the bottom-up case; the top-down procedure is similar. Assume we are
given a matching algorithm for plain graphs. In the first step we consider all
u € Ap such that P/u is plain. For every v € Ag we use the given algorithm
to determine whether P(u) = P/u matches G(v) = G /v. Next, we consider all
u € Ap such that P/u has nesting depth 1 and repeat the procedure, applying
the given algorithm to P(u) and each G(v) to find out whether P/u matches
G /v (making use of the already computed information). This is repeated until
we reach the root of P.

Obviously, the recursive part of this procedure can be implemented efficiently.
It can be used to find a single matching, but also to enumerate all possibilities
if an evaluation strategy involving backtracking is desired or needed.

Thus, the complexity is mainly determined by the complexity of matching
P(u) against G(v). As mentioned above, this problem generalizes the subgraph-
isomorphism problem and is thus not efficiently solvable unless P=NP. However,
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in the presence of shapes one does not need to solve the problem in all its
generality. Below, we briefly discuss some possibilities to gain efficiency.

Functional languages correspond to the (very restrictive) case where the G(v)
are taken from a finite set. More precisely, a term f(¢1,...,%;) is represented
by a graph consisting of an f-labelled frame containing a graph with & points
and k frames eq,...,e;. Frame e; is attached to the i¢th point and represents,
recursively, the subterm #;. In this case, plain graph matching can be done in
constant time and thus occurrences can be found efficiently.

In more general cases, one can make use of algorithms which compute the set
of all derivation trees of G(v) (with respect to the shape grammar; see [4] for a
discussion of derivation trees). If this can be done in polynomial time, matchings
can usually be found in polynomial time as well. This is because P is also shaped,
and hence each P(u) can be represented by its set of derivation trees. The latter
can be matched against the derivation trees of G(v), which essentially reduces
the problem to the question of tree matching.

Unfortunately, parsing of hyperedge-replacement languages is NP-complete
in general [17], so this approach is not always useful. However, restrictions un-
der which parsing becomes polynomial have been studied by Lautemann, Vogler,
and Drewes [18,24,3]. Let us discuss the way in which the algorithm by Laute-
mann can be used. The algorithm is a generalization of the well-known parsing
algorithm by Cocke, Kasami, and Younger [25]. It can be reformulated in such
a way that it returns a representation of all derivation trees of the (plain) input
graph. Since there may be exponentially many derivation trees, sharing is used to
represent them on polynomial space. In other words, the returned representation
of the forest of derivation trees is a directed acyclic graph (dag).

To explain the structure of this derivation dag let us first discuss a possible
representation of a derivation tree of an n-shaped plain graph H = G(v). Let
n = R be the rule applied to (n) in the first step of the derivation, where R
contains k nonterminal edges ey, . .., ex. Hence, H is obtained from an isomorphic
copy R’ of R by replacing each e; with a graph H; C H which is derivable from
(labg(e;)). To account for this fact, the derivation tree has a root node v that
represents the pair (n, H) and a frame with contents R’ which is attached to
v1,...,Vg,V Where vy, ...,v; are the root nodes of the derivation trees obtained
recursively from the derivations (labg(e;)) =% H;. Now, the derivation dag D
representing the set of all derivation trees of H is obtained by taking the forest of
all these derivation trees and identifying all nodes which represent the same pair
(n', H").* Under the conditions of [18] the algorithm by Lautemann computes D
in polynomial time. In particular, the size of D is polynomial. The mentioned
conditions basically state that the graphs generated by the shape grammar fall
apart into at most a constant number of components by deleting k nodes, where
k is the maximum type of nonterminal edges. The shape grammar for control
flow graphs discussed in Example 4 satisfies this requirement.

1 Here, “the same” really means that the graphs are identical, not just isomorphic,
since we are working with concrete subgraphs of H.
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As mentioned above, the considered component P(u) of the pattern graph
can be turned into a corresponding derivation dag D’ as well, since the allowed
patterns are shaped with respect to the same shape grammar. Then it is not
hard to find all possible matchings by a bottom-up or top-down procedure that
runs in time O(d-d'), where d and d’ are the sizes of D and D’. In fact, it should
be mentioned that this performs even the BIND step discussed in Section 2 since
each matching found in this way associates every variable in P(u) with a node
in D. The graph represented by this node is the one to be bound to the variable.

Even though it runs in polynomial time, from the point of view of efficiency
the procedure just described has the drawback that the derivation dag D' must
be reconstructed after each step. This is because the application of a rule may
invalidate some of the derivation trees represented in D while on the other hand
creating new possible derivation trees. However, the specific derivation tree to
which D' is mapped is, by the shapedness of rules, turned into a correct deriva-
tion tree of the resulting graph by performing the corresponding replacement
on the level of trees. If we have unique derivation trees, we can therefore repre-
sent graphs by their derivation trees throughout and reduce transformation to
the (much more efficient) replacement of subtrees of derivation trees. As such,
this option is not very realistic because the restriction to grammars with unique
derivation trees would be much to strong. However, unlike the class of grammars
considered by Lautemann, those studied in [24, 3] have unique derivation trees
modulo a certain type of associativity and commutativity rules. We do not wish
to go into the details here, but it seems quite clear that the technique sketched
above can be extended in order to work in this, somewhat more realistic case as
well. For instance, the syntax rules in Example 4 have unique derivation trees,
modulo the third rule that expresses associativity of sequencing in control flow
graphs.

It is worth pointing out that implementations may select, for each G(v), the
matching algorithm which is most suitable for its shape. Hence, a mix of different
matching algorithms may be applied to match P against G. For example, if X
contains shapes n and m which satisfy the restrictions of matching algorithms A
respectively B we may use algorithm A for n-shaped components whereas B is
used for m-shaped components. In this way, efficient algorithms can be applied
whenever possible without restricting the language in general.

4 Conclusions

Nested graph transformation is closely related to other ways of graph transforma-
tion. On the one hand, it lifts the substitutive transformation of flat graphs [20]
to nested graphs; on the other hand, it extends hierarchical graph transforma-
tion [5] with respect to the use of variables. Hierarchical graph transformation
has in turn been defined by lifting double pushout graph transformation [6] to
hierarchical graphs (for injective occurrences, as studied in [12]). The paper [8]
defines double pushout transformation of hierarchical graphs where edges may
cross the border of components (called packages), yet without investigating un-
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der which conditions the hierarchy stays intact. A general framework for the
transformation of (many kinds of) hierarchical graphs is developed in [2]. Shape
specifications (for plain graphs) have been considered in Structured Gamma [10].

This paper indicates that nested graph transformation is not only intuitive
and expressive, but may also be implemented in a reasonable way. Nesting helps
for the general case, and Theorem 1 gives reasonable conditions that eliminate
the overhead for binding. Shapes may even improve these results since the con-
ditions on the pattern graphs may be relaxed if the host graphs have structural
properties that simplify the task of finding matchings and bindings. The inves-
tigation of such structural properties is an important and interesting question
for future work.

Several other questions remain to be studied as well. Let us focus our discus-
sion on shapes here. The syntactic rules can be extended by embedding rules [19],
without sacrificing Theorem 2. Then one can also specify non-context-free shapes
like, for instance, general control-flow diagrams (of “spaghetti programs”). The
parsing algorithm explained in [1] allows more general syntax rules. However, it
is unclear how efficient it will be in practice, and more important, whether it is
consistent with the operations of context embedding and variable instantiation
that are fundamental with our way of graph transformation.

Acknowledgment We thank the referees for useful comments.
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Abstract. The paper presents a first case study modeling the Pickup-
and-Delivery Problem (PDP) with structured graph transformation. It
discusses the logistic background of the PDP and describes the structur-
ing concept of transformation units which is employed to model the PDP.
The problem domain of the PDP is visualized by a graph representing
a map with a set of jobs. The distribution of the jobs to transportation
means is performed via the controlled application of graph transforma-
tion rules embodied in transformation units. In a first step the PDP
with maximal load and time windows is modeled. Secondly, the model
is extended to include a limited number of vehicles starting from and
returning to their home depots.

1 Introduction

Traditionally, logistics is concerned on a more or less abstract level with trans-
porting entities. The problem becomes the more concrete the more constraints
have to be satisfied: e.g. maximal capacity of transports, time windows, maxi-
mal number of transporters, depots of transporters, and so on. In the literature,
several variants of the problem are studied and algorithmic solutions discussed
(see e.g. [SS95]). The algorithms must be intelligible, for which visualization is
helpful. This holds especially if some heuristics is employed, such as scheduling
of transports by hand.

In every transport problem, an underlying structure can be found which
is some type of map. Since Euler’s solution to the Konigsberg bridge problem
[Eul36], it is known that a map can be seen as a graph, with nodes representing
locations and edges the links between pairs of locations. This suggests modeling
transport problems and developing algorithms in the framework of rule-based
graph transformation.

Graph transformation is a well-developed field [Roz97,EEKR99,EKMR99]
and has many application domains, such as database systems, abstract data

* This work was partially supported by the ESPRIT Working Group Applications of
Graph Transformation (APPLIGRAPH).
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types, theorem proving, functional programming languages, visual languages,
distributed systems, the unified modeling language UML, etc. The basic idea
of graph transformation is to represent system states as graphs and system
evolution steps as applications of graph transformation rules. In the literature
there exist various approaches to graph transformation. A detailed description
of the major ones can be found in [Roz97)].

For the modelization of dynamic systems with graph transformation, large
sets of graph transformation rules may be involved and have to be managed in a
meaningful way. For this reason various structuring concepts for graph transfor-
mation systems have been developed (cf. [HEET99]) which allow to modularize
large graph transformation systems. One of these concepts is that of transfor-
mation units [KK99,Kus00], which has the advantage of being independent of
the underlying graph transformation approach.

This paper is a first case study modeling the Pickup-and-Delivery Problem
with transformation units. In Section 2, the logistic background of the problem
is detailed. In Section 3, transformation units are recalled. In Section 4, the
pickup-and-delivery problem with maximal load and time windows is modeled
by graph transformation, and in Section 5 this model is extended to include a
limited number of vehicles starting from and returning to their home depots.
The paper concludes with Section 6.

2 Logistic Background

In the modern business landscape, which is characterized by highly competi-
tive, transparent, global markets and over-capacities, logistics as an integrating
discipline is viewed as one of the main potentials to identify and save costs
and thereby gain competitive advantages. Its scope lies on all processes from
the procuring of raw materials to delivering the final product and beyond. The
overall complexity of logistic scenarios can be imagined by having a look at a
somehow naive definition of logistics called the Seven Rs: Logistics is concerned
with ensuring availability of the right product, in the right quantity and the right
condition, at the right place, at the right time, for the right customer, at the
right cost. Such a multi-dimensional problem is of course hard to deal with, even
if we restrict ourselves to smaller subproblems or just compute approximations.

In our case study we concentrate on the transportation domain, an impor-
tant field in logistics research. The objective of the Pickup-and-Delivery Problem
(PDP) is to find a route that enables one to pick up and deliver goods at prede-
termined locations. Shipment centres or courier services are possible examples.
The problem is comparable to the Traveling Salesperson Problem, where all lo-
cations have to be visited on a route. The PDP has the additional restriction
that here pickup places have to precede delivery places. From the applied point
of view such problems were first investigated in [Wil70]. A survey of algorithms
for the class of PDP problems can be found e.g. in [SS95].

Adding to the most rudimentary version of the PDP the constraints of max-
imal vehicle load and time windows (more side constraints are considered in
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Table 1. Specification of the jobs Table 2. Distances between locations
id src dst wt edt Ilat | A B CD
1 A D 5 7 16 A 0 3 4 o0
2 A C 12 8 14 B 3 0 2 o
3 B C 3 10 17 C 4 2 0 3
D oo oo 3 0

Section 5), we have the following characteristics of the problem: There is an
unlimited fleet of vehicles, with the capacity of each vehicle restricted to mazwt.
Furthermore, there is a given finite set (JOBS) of jobs that have to be pro-
cessed. Each job is specified by its identification (id), its weight (wt), a source
(src), and a destination (dst). Moreover, the earliest departure time (edt) and
the latest arrival time (lat) determine a time window in which the transport has
to take place. We assume that loads can be split arbitrarily and transshipment
is allowed, i.e. during a transport some of the freight might change the vehicle.

A sample set of jobs is given in Table 1, which could be an excerpt from a
relational database system. Table 2 states the distances (typically measured as
average travel time) between the locations; the entry oo indicates the absence of
a direct connection. Furthermore, let the maximal load of a vehicle be 10 (tons).

In order to find a solution for this PDP instance, visualizing the topology of
the locations is helpful. A graph represents this information in a natural way,
as Figure 1 illustrates: The nodes stand for the different places, the edges show
which place can be reached directly from a specific place, and the edge labels
store the time it takes to get there. A graph of this kind will be called a map. A
visualization of the jobs is integrated in the next section.

An algorithm solving the PDP with maximal vehicle load and time windows
must find a feasible schedule of the jobs so that the time and load constraints are
obeyed. Additional suitable aims are to minimize the number of vehicles, or the
total distance any of the vehicles has to cover. Although less tangible, one may
also try to maximize customer satisfaction, which is hard to express in figures.

The algorithm presented in Sections 4 differs from the ordinary ones in par-
ticular because we make use of nondeterminism to overcome the complexity. The
results are always feasible schedules, but most of them are not optimal according
to the above-mentioned criteria, i.e. the minimality of used resources. Still, they
may serve as a starting point for further optimization, as input for the k-opt
algorithm (cf. [LK73]) or as first generation for a genetic algorithm as described
in [Mic96].

F—i—0—1—0

Fig. 1. Locations and distances represented in a map
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3 Transformation Units

Transformation units are a modularization concept for graph transformation
systems. A graph transformation system consists mainly of a set of graph trans-
formation rules, which are applied to graphs in order to transform them. In the
following we give an informal presentation of transformation units. For formal
definitions the reader is referred to [KK99,Kus00].

The class of graph transformation rules used in the present case study is based
on the so-called double pushout approach to graph transformation [CEH197]. A
graph transformation rule consists of a left- and a right-hand side graph, where
some subgraph is common to both these graphs. Figure 2 shows an example of
a graph transformation rule.

As we will see below, this rule allows to insert the job with source src, des-
tination dst, identification id, weight wt, earliest departure time edt, and latest
arrival time lat into a map such as the one depicted in Figure 1. The left-hand
side (on the left of the arrow) of the rule insert-job consists of two nodes; one of
them is labeled with the source of the job and the other one with the destination.
The right-hand side (on the right of the arrow) shows a graph that represents
the job with identification id. The additional ok%labeled node is used later to
verify feasibility constraints. The common part of the left- and the right-hand
side is equal to the left-hand side in this case.

The fundamental steps of applying a rule to a graph G are the following:

1. Choose an (identical) image of the left-hand side in G.

2. Remove the image from G up to the image of the common part.

3. Insert the right-hand side into G such that the common part is mapped to
its image.

The rule insert-job allows to insert a graphical representation of a job into a
map. Three applications of this rule to the map of Figure 1, with the variables
id, src, dst, wt, edt, and lat instantiated according to the respective values from
Table 1, yields the map with jobs as shown in Figure 3.

A transformation unit consists of an initial graph class expression, a set of
imported transformation units, a set of rules, a control condition, and a terminal
graph class expression. The initial graph class expression specifies all graphs a
transformation may start with, and the terminal graph class expression specifies
all graphs a transformation may end up with. The set of rules contains all rules

© «©
insert-job: — F{ _m
o

Fig. 2. The graph transformation rule insert-job
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Fig. 3. The map from Figure 1 with the jobs from Table 1

which may be applied by the transformation unit. The imported units may
also be applied in a transformation. The control condition regulates the graph
transformation process, i.e. it serves to cut down the nondeterminism inherent
to rule-based systems. Figure 4 shows two examples of transformation units.

The transformation unit insert-job(id, wt, src, dst, edt, lat) contains the rule
insert-job from Figure 2. The control condition requires that the rule be applied
exactly once. The unit contains no explicit graph class expressions. This means
that all graphs are allowed as initial or terminal graphs. Moreover, the unit
insert-job does not import other transformation units.

The transformation unit schedule(JOBS) accepts all maps as initial graphs,
i.e. all graphs the nodes of which represent places and the edges distances be-
tween the places. It imports the unit insert-job, and a transformation unit with
name compute which is developed in the next section. The unit schedule con-
tains no rule, and the control condition calls the unit insert-job once for every
job in the given set JOBS. Afterwards schedule applies the transformation unit
compute. The terminal graph class expression no ok? requires that the terminal
graphs do not have nodes which are labeled with ok?.

schedule(JOBS)

- Ny wnitial:  map
insert-job(id,wt,src,dst, edt,lat) ] )
Uuses: insert-job, compute
rules:  insert-job conds:  for each id € JOBS:
conds:  insert-job insert-job(i, wt;, src;, dst;, edt;, lat;);
compute

terminal: no ok?

Fig. 4. The transformation units insert-job and schedule
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Semantically, a transformation unit transforms initial graphs into terminal
graphs by applying local rules and imported transformation units such that the
control condition is satisfied. More precisely, the semantics of a transformation
unit is a binary relation on graphs containing a pair (G,G") if

— @ is specified by the initial graph class expression and G’ by the terminal
graph class expression;

— there is a sequence Gy, ... ,G, (n > 0) such that Gy = G, G,, = G', and
for i = 1,...n, G; is obtained from G;_; by applying a rule or an imported
transformation unit;

— the pair (G,G") is allowed by the control condition.

The semantics of the transformation unit insert-job consists of all pairs
(G,G") of graphs where G’ is obtained from G by applying the rule insert-job ex-
actly once. The transformation unit schedule specifies all pairs (G, G') of graphs
where G is a map, G’ does not contain ok?-labeled nodes, and G’ is obtained
from G by first inserting every job of JOBS into G and then applying the unit
compute. Assuming that ok?labeled nodes are only removed if the jobs they
refer to satisfy the feasibility constraints, the unit schedule may be seen as a
specification of an instance of the PDP with capacity and time windows.

As already demonstrated in the examples, transformation units can be pro-
vided with formal parameters, leading to the notion of parameterized transfor-
mation units [Kus01]. Roughly speaking, a parameterized transformation unit
contains a set of typed variables which may be substituted by expressions of the
same type. If the expressions are variable-free, the result is a non-parameterized
unit. The transformation units of Figure 4 are parameterized with the formal
parameters src, dst, JOBS, etc.

4 Modeling the Pickup-and-Delivery Problem

Before studying our algorithm to solve the PDP with capacity and time windows,
let us briefly summarize from the preceding sections the specification of a PDP
instance as a graph.

A map is a simple undirected graph where the nodes have mutually distinct
labels representing locations (e.g. by their names or post-codes), and edges are
labeled with natural numbers representing distances (e.g. in traveling time). In
pictures, maps are drawn with bold lines and round nodes.

A job is represented by four rectangular nodes: Three are labeled with natural
numbers for the weight of the freight, the earliest departure time, and the latest
arrival time, respectively; moreover, they are connected to the first node — labeled
with the identity of the job — by edges labeled w, e, and [, respectively. In
addition, a job has s- and d-labeled edges between the identity node and the
source and destination locations, respectively. Finally, an edge from the identity
node to an ok?-labeled node indicates that the job must be checked for feasibility.

As explained in Section 2, a job is feasible if (a) its weight does not exceed
the maximal load mazwt of the transporting vehicles, and (b) its time window
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check

pl pE

w

S
rules: ooy e if x < mazwt

— e y
d * I d I and y+t <z
e

Fig. 5. The transformation unit check

][]

conds:

is large enough to allow transportation along a known route. These conditions
are verified by the transformation unit check shown in Figure 5, which finds a
job in a graph and removes the ok%labeled neighbor of the job identity node if
the job meets the constraints.

As we assume that loads may be split arbitrarily and transshipment is al-
lowed, a job violating feasibility condition (a) can simply be divided into two (or
recursively more) subjobs, with the same source, destination, earliest departure
and latest arrival time as the original job. The corresponding rule constitutes
transformation unit split-freight shown in Figure 6. It could be applied to job 2 in
Figure 3, splitting it in two jobs of weight e.g. 10 (i.e. mazwt) and 2, respectively.

A violation of feasibility condition (b) can have either of two reasons: no direct
connection between the source and destination of the job, or a too narrow time
window for the distance to cover. Performing first a shortest-path algorithm on
the map (see, e.g., [DKKKO00]) before starting any computation would avoid the
first difficulty, and allow to detect the second. However, adding new connections
between locations would obscure the actual path along which a job is taken.
So, we propose a dual solution, i.e. we allow to split a job from location a to
location ¢ by introducing an intermediary stop in location b as long as the latest
arrival time for the first subjob coincides with the earliest departure time of

split-freight

O TR e O O

e Fii H._; (i
FmE DHY e

conds: r

Fig. 6. The transformation unit split-freight
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split-route
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SmE FE & e x

conds: T

Fig. 7. The transformation unit split-route

the second and lies in between the earliest departure and the latest arrival time
of the original job. This is implemented in the transformation unit split-route
shown in Figure 7.

The possibility to add an intermediate stop to the route a job takes has a
further advantage. Consider jobs 1 and 3 in Figure 3. If job 1 were to be carried
from A to D via B and C, job 3 could be taken care of en route. Transporting
at the same time two jobs with the same source and destination is expressed by
merging the jobs and computing the new weight, earliest departure and latest
arrival time as shown in the transformation unit merge-jobs in Figure 8.

Now all ingredients for a nondeterministic algorithm to compute feasible jobs
from a collection of original jobs in a map are provided: The rules of the trans-
formation units split-freight, split-route, merge-jobs, and check may be applied in
any order and as long as one likes. This is exactly what makes up the transforma-
tion unit compute shown in Figure 9. If we plug it into the unit schedule(JOBS)
given in Figure 4, we obtain the following semantics of that unit.

A pair (M, M") of maps (with jobs) is in the semantics of schedule(JOBS)
if and only if the underlying map of M’ is M and in M', all jobs in JOBS
are subdivided in feasible jobs.

merge-jobs

A e,
l/ i ol Ei @5 il e

conds: T

Fig. 8. The transformation unit merge-jobs
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compute
uSses: check, split-freight, split-route, merge-jobs

conds:  (split-freight | split-route | merge-jobs | check)*

Fig. 9. The transformation unit compute

5 Extension to the multi-depot problem

The PDP with maximal load and time windows is extended to a multi-depot
problem with a limited vehicle fleet by distinguishing some locations as depots,
i.e. in such a location there is a number of vehicles available to execute the jobs.
Moreover, any tour of a vehicle is required to be a circuit, meaning that the
vehicle must start from and return to its home depot. In addition, we assume
that every circuit must be covered within a certain time frame mazt, e.g. a
driver’s maximal steering time.

A representation of a vehicle can be added to a map by applying the trans-
formation unit add-vehicle shown in Figure 10. It is similar to insert-job in that
a vehicle with identity v is added whose earliest departure time is start, but
its final destination is the source location loc (the depot), the vehicle does not
yet carry any weight as the set of loaded jobs is @), and the latest arrival time
automatically computes to start + maxt.

In analogy to the transformation unit schedule, schedule? in Figure 11 spec-
ifies the PDP with depots and limited vehicle fleet: First the available vehicles
are added to the map, then the jobs, and after that a solution is computed.

For the computation of a feasible schedule, the transformation unit compute2
shown in Figure 12 reuses the units split-freight and split-route introduced in
Section 4 to break the original jobs down into feasible subjobs.

An intermediary stop is added to the tour of a vehicle by a transformation
unit add-stop that has a rule analogous to the one from split-route, and a second
rule differing from the first only in that the source and destination of the vehicle
are the same location. This second rule is needed for the technical reason that

add-vehicle(wv,loc,start)

rules: r: — @

conds: r

Fig. 10. The transformation unit add-vehicle
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schedule2( VEHICLES,JOBS)
initial:  map
uses: add-vehicle, insert-job, compute?

conds:  for each v € VEHICLES: add-vehicle(v, loc,, start,);
for each id € JOBS: insert-job(i, wt;, src;, dst;, edt;, lat;);
compute2

terminal: no ok?

Fig. 11. The transformation unit schedule2

our graph transformation approach uses injective matching (cf. [HPMO01]). Using
add-stop means applying one of the rules once.

Replacing the merging of two jobs, a vehicle traveling from a to b loads a job
with the same source and destination as shown in Figure 13: The job is added
to the set of previously loaded jobs, and the total load, earliest departure and
latest arrival time of the vehicle have to be recomputed.

computel
uses: split-freight, split-route, add-stop, load-job, check-vehicle
conds:  (split-freight | split-route | add-stop | load-job | check-vehicle)*

Fig. 12. The transformation unit compute2

Finally, instead of the jobs the loaded vehicles are checked for feasibility. This
is done by a transformation unit check-vehicle analogous to check.

The interested reader may find a solution to the running example with a fleet
of three vehicles U, v, w, with respective home depots A, C, C, start times 8, 6,
and 10, and given maxt and mazwt.

load-job

Qx @-,

w

s e e 5‘ — [90 Iy et
% !
el GY B

conds: T

Fig. 13. The transformation unit load-job
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6 Conclusion

In this paper we have presented a case study which models the Pickup-and-
Delivery Problem with graph transformation units. The problem domain con-
sisting of a map and a set of jobs with certain constraints has been represented
as a graph, and the fundamental operations of the algorithms such as the split-
ting and merging of jobs have been represented as graph transformation rules.
The application of the rules is equivalent to the execution of the corresponding
operations. In this way we have illustrated that graph transformation provides a
means to visualize the PDP. We believe that in general such visualizations may
help to better understand the problem and the functionality of the algorithms.

The algorithm modeled in the case study is highly nondeterministic because
the graph transformation rules can be applied in almost any order and acceptable
solutions are separated from unacceptable ones via graph class expressions. In
this sense the presented transformation units illustrate the basic operations of
the problem solutions, but more sophisticated optimization strategies should be
incorporated in the future. Nevertheless, as mentioned before, the results may
serve as input for the k-opt algorithm (cf. [LK73]) or as first generation for
a genetic algorithm as described in [Mic96]. Moreover, an interesting research
topic is to investigate the suitability of graph transformation for further or more
specific logistic problems. Our case study can be extended in mainly three ways.

1. To make the scenario more realistic, the geographical information can be
enhanced e.g. by one-way streets, tunnels, predefined consolidation centers,
or stocks.

2. Concerning the transportation we can distinguish different kinds of freight,
like containers, hazardous goods, liquids, etc., demanding for different ad-
ditional constraints. Loading and unloading times can be embodied in the
computation. An algorithm might also deal with priorities among the cus-
tomers or destinations.

3. The given transportation modes are of interest. We can consider homogenous
fleets consisting of one type of vehicle, or inhomogeneous fleets. Capacities,
i.e. weight or volume, may be restricted. A difficult problem is to schedule
multi-modal transports, e.g. transports partly by train and by truck.

All these extensions can be implemented by modifying the underlying class of
graphs and the transformation units in a straightforward way. We expect that
similar logistic problems are equally amenable to specification by structured
graph transformation. Therefore our approach may yield a general methodology
for the modelization of logistic problems, which in turn may serve as a basis to
develop a visual language for logistic problems. Another interesting point is the
use of agent systems, which gives us the possibility to describe the algorithms
in a concurrent way. Currently, we are working out a case study which models a
graph transformation-based and concurrent solution of the PDP.



130

References

[CEH97]

[DKKKO00]

[EEKR99]

[EKMR99]

[Eul36]

[HEET99)

[HPMO1]

[KK99]
[Kus00]

[Kus01]

[LK73]
[Mic96]

[Roz97]

[SS95]

[Wil70]

Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Michael Léwe, Ugo Mon-
tanari, and Francesca Rossi. Algebraic approaches to graph transformation
part I: Basic concepts and double pushout approach. In Rozenberg [R0oz97].
Frank Drewes, Peter Knirsch, Hans-Jorg Kreowski, and Sabine Kuske.
Graph transformation modules and their composition. In M. Nagl,
A. Schiirr, and M. Miinch, editors, Proc. Applications of Graph Transfor-
mations with Industrial Relevance (AGTIVE’99), volume 1779 of Lecture
Notes in Computer Science, pages 15-30. Springer, 2000.

Hartmut Ehrig, Gregor Engels, Hans-Jorg Kreowski, and Grzegorz Rozen-
berg, editors. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 2: Applications, Languages and Tools. World Scien-
tific, Singapore, 1999.

Hartmut Ehrig, Hans-J6rg Kreowski, Ugo Montanari, and Grzegorz Rozen-
berg, editors. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 8: Concurrency, Parallelism, and Distribution. World
Scientific, Singapore, 1999.

L. Euler. Solutio problematis ad geometriam situs pertinensis. Comment.
Academiae Sci.l. Petropolitanae, 8:128-140, 1736. Opera omnia Ser.I, Vol.7
(1766), 1-10. German translation in: Speiser, Klassische Stiicke der Math-
ematik. Ziirich 1927, S.127-138.

Reiko Heckel, Gregor Engels, Hartmut Ehrig, and Gabriele Taentzer. Clas-
sification and comparison of module concepts for graph transformation
systems. In Ehrig et al. [EEKR99], pages 639-689.

Annegret Habel, Detlef Plump, and Jiirgen Miiller. Double-pushout graph
transformation revisited. Mathematical Structures in Computer Science,
11:637-688, 2001.

Hans-Jorg Kreowski and Sabine Kuske. Graph transformation units with
interleaving semantics. Formal Aspects of Computing, 11(6):690-723, 1999.
Sabine Kuske. Transformation Units—A structuring Principle for Graph
Transformation Systems. PhD thesis, University of Bremen, 2000.

Sabine Kuske. Parameterized transformation units. In Proc. GETGRATS
Closing Workshop, volume 51 of Electronic Notes in Theoretical Computer
Science, 2001. To appear.

S. Lin and B.W. Kernighan. An effective heuristic algorithm for the trav-
eling salesman problem. Operations Research, 21(9):498-516, 1973.
Zbigniew Michalewicz. Genetic Algorithms + Datastructures = Evolution
Programs. Springer, 3rd edition, 1996.

Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Com-
puting by Graph Transformation, Vol. 1: Foundations. World Scientific,
Singapore, 1997.

M.W.P. Savelsbergh and M. Sol. The general pickup and delivery problem.
Transportation Science, 29(1):17-29, 1995.

N.H.M. Wilson. Dynamic Routing: A Study of Assignment Algorithms.
PhD thesis, Massachusetts Institute of Technology, Department of Civil
Engineering, 1970.



Towards Graph Transformation with Time

Szilvia Gyapay' and Reiko Heckel?

! Dept. of Measurement and Information Systems, Budapest University of
Technology and Economics
H-1521 Budapest, Hungary
gyapay@mit .bme.hu
2 Dept. of Math. and Comp. Science, University of Paderborn
D-33095 Paderborn, Germany
reikoQupb.de

Abstract. Following TER nets, an approach to the modelling of time
in high-level Petri nets, we propose a model of time within (attributed)
graph transformation systems where time stamps are represented as dis-
tinguished node attributes. Corresponding axioms for the time model in
TER nets are generalised to graph transformation systems and semantic
variations are discussed.

The resulting notions of typed graph transformation with time specialise
the algebraic double-pushout (DPQO) approach to typed graph transfor-
mation. In particular, the concurrency theory of the DPO approach can
be used in the transfer of the basic theory of TER nets.

1 Introduction

Recently, a number of authors have advocated the use of graph transformation as
a semantic framework for visual modelling techniques both in computer science
and engineering (see, e.g., the contributions in [CH00,BPT01]). In many such
techniques, the modelling of time plays a relevant role. In particular, techniques
for embedded and safety critical systems make heavy use of concepts like time-
outs, timing constraints, delays, etc., and correctness with respect to these issues
is critical to the successful operation of these systems. At the same time, those
are exactly the systems where, due to the high penalty of failures, formally based
modelling and verification techniques are most successful. Therefore, neglecting
the time aspect in the semantics of visual modelling techniques, we disregard
one of the crucial aspects of modelling.

So far, the theory of graph transformation provides no support for the mod-
elling of time in a way which would allow for quantified statements like “this
action takes 200ms of time” or “this message will only be accepted within the
next three seconds”, etc. However, from a more abstract, qualitative point of
view we can speak of temporal and causal ordering of actions thus abstracting
from actual clock and timeout values. Particularly relevant in this context is
the theory of concurrency of graph transformation, see [Kre77,CMR96,Bal00]
or [BCE*99] for a recent survey.
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It is the objective of this paper to propose a quantitative model of time within
graph transformation which builds on this more abstract qualitative model.
Therefore, we will not add time concepts on top of an existing graph transfor-
mation approach, but we show how, in particular, typed graph transformation
systems in the double-pushout (DPO) approach [CMR96] can be extended from
within with a notion of time. This allows both the straightforward transfer of
theoretical results and the reuse of existing tools.

The following section outlines our approach of the problem.

2 From Nets to Graph Transformation, with Time

When trying to incorporate time concepts into graph transformation, it is in-
spiring to study the representation of time in Petri nets. Nets are formally and
conceptually close to graph transformation systems which allows for the transfer
of concepts and solutions. This has already happened for relevant parts of the
concurrency theory of nets which, as mentioned above, provides a qualitative
model of time based on the causal ordering of actions.

In particular, we will follow the approach of time ER nets [GMMP91]. These
are simple high-level nets which introduce time as a distinguished data type.
Then, time values can be associated with individual tokens, read and manip-
ulated like other token attributes when firing transitions. In order to ensure
meaningful behaviour (like preventing time from going backwards) constraints
are imposed which can be checked for a given net. The advantage of this ap-
proach with respect to our aims is the fact that time is modelled within the
formalism rather than adding it on top as a new formal concept.

Based on the correspondence of Petri nets and (typed) graph transformation,
which regards Petri nets as rewriting systems on multi-sets of vertices [CM95],
we can derive a model of time within typed graph transformation systems with
attributes. The correspondence is visualised in Table 1. Besides (low-level) place-
transition nets and typed graph transformation systems, it relates (high-level)
environment-relationship nets to typed graph transformation with attributes.
This relationship, which has first been observed in the case of algebraic high-
level nets [EPR94] and attributed graph transformation [LKW93] in [Rib96],
shall enable us to transfer the modelling of time in time ER nets to typed graph
transformation with attributes.

Table 1. Corresponding Petri net and graph transformation variants

|Petri nets|graph transformation systems
low-level |PT nets |typed graph transformation (TGT)
high-level |ER nets |typed graph transformation with attributes (TGTA)
with time|TER nets|typed graph transformation with time (TGTT)
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Next, we review time environment-relationship (TER) nets [GMMP91] in
order to prepare for the transfer to typed graph transformation systems in Sec-
tion 4.

3 DModelling Time in Petri Nets

There are many proposals for adding time to Petri nets. In this paper we concen-
trate on one of them, time ER nets [GMMP91], which is chosen for its general
approach of considering time as a token attribute with particular behaviour,
rather than as an entirely new concept. As a consequence, time ER nets are a
special case of ER nets.

3.1 ER nets

ER (environment-relationship) nets are high-level Petri nets (with the usual net
topology) where tokens are environments, i.e., partial functions e : ID — V
associating attribute values from a given set V to attribute identifiers from a
given set ID. A marking m is a multi-set of environments (tokens).

To each transition ¢ of the net with pre-domain p; ...p, and post-domain
P} ...p,,, an action a(t) € Env™ x Env™ is associated. The projection of a(t)
to the pre-domain represents the firing condition, i.e., a predicate on the tokens
in the given marking which controls the enabledness of the transition. If the
transition is enabled, i.e., in the given marking m there exist tokens satisfying
the predicate, the action relation determines possible successor markings.

Formally, a transition ¢ is enabled in a marking m if there exists a tuple
(pre,post) € a(t) such that pre < m (in the sense of multiset inclusion). Fixing
this tuple, the successor marking m’' is computed, as usual, by m’ = (m — pre) +
post, and this firing step is denoted by m[t(pre, post))m’. A firing sequence of
s = my[t1(prei1,post1)) ... [tk—1(preg—1,posty_1))my is just a sequence of firing
steps adjacent to each other.

3.2 Time ER nets

Time is integrated into ER nets by means of a special attribute, called chronos,
representing the time of creation of the token as a time stamp. Constraints on the
time stamps of both given tokens and tokens that are produced can be specified
by the action relation associated to transitions. To provide a meaningful model
of time, action relations have to satisfy the following axioms with respect to
chronos values [GMMP91].

Axiom 1: Local monotonicity For any firing, the time stamps of tokens pro-
duced by the firing can not be smaller than time stamps of tokens removed
by the firing.

Axiom 2: Uniform time stamps For any firing mlt(pre,post))m’ all time
stamps of tokens in post have the same value, called the time of the fir-
ing.
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Axiom 3: Firing sequence monotonicity For any firing sequence s, firing
times should be monotonically nondecreasing with respect to their occur-
rence in s.

The first two axioms can be checked locally based on the action relationships
of transitions. For the third axiom, it is shown in [GMMP91] that every sequence
s where all steps satisfy Axioms 1 and 2 is permutation equivalent to a sequence
s" where also Axiom 3 is valid. Here, permutation equivalence is the equivalence
on firing sequences induced by swapping independent steps. Thus, any firing
sequence can be viewed as denoting a representative, which satisfies Axiom 3.

It shall be observed that TER nets are a proper subset of ER nets, i.e.,
the formalism is not extended but specialised. Next, we use the correspondence
between graph transformation and Petri nets to transfer this approach of adding
time to typed graph transformation systems.

4 Modelling Time in Graph Transformation Systems

Typed graph transformation systems provide a rich theory of concurrency gen-
eralising that of Petri nets [BCET99]. In order to represent time as an attribute
value, a notion of typed graph transformation with attributes is required. We
propose an integration of the two concepts (types and attributes) which presents
attribute values as vertices and attributes as edges, thus formalising typed graph
transformation with attributes as a special case of typed graph transformation.

Next, we give a light-weight (set-theoretic) presentation of the categorical
DPO approach [EPS73] to the transformation of typed graphs [CMR96].

4.1 Typed graph transformation

In typed graph transformation, graphs occur at two levels: the type level and the
instance level [CMR96]. A fixed type graph TG (which may be thought of as an
abstract representation of a class diagram) determines a set of instance graphs
(G, g : G = TG) which are equipped with a structure-preserving mapping g to
the type graph (formally expressed as a graph homomorphism).

A graph transformation rule p : L — R consists of a pair of TG-typed
instance graphs L, R such that the union L U R is defined. (This means that,
e.g., edges which appear in both L and R are connected to the same vertices in
both graphs, or that vertices with the same name have to have the same type,
etc.) The left-hand side L represents the pre-conditions of the rule while the
right-hand side R describes the post-conditions.

A graph transformation from a pre-state G to a post-state H, denoted by

G p:(o; H, is given by a graph homomorphism o : LUR — G U H, called
occurrence, such that

— o(L) C G and o(R) C H, i.e., the left-hand side of the rule is embedded into
the pre-state and the right-hand side into the post-state, and
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— o(L\R) = G\ H and o(R\ L) = H\G, i.e., precisely that part of G is deleted
which is matched by elements of L not belonging to R and, symmetrically,
that part of H is added which is matched by elements new in R.

. p1(01) Dn(0n) . .
A transformation sequence Gy — --- =’ G, is a sequences of consecutive

transformation steps.

On transformation sequences, a notion of equivalence is defined which gener-
alises the permutation equivalence on firing sequences: two sequences are equiva-
lent if they can be obtained from each other by repeatedly swapping independent
transformation steps. This equivalence has been formalised by the notion of shift-
equivalence [Kre77] which is based on the following notion of independence of

graph transformations. Two transformations G pl—ﬁﬁ) H; pg) X are indepen-
dent if the occurrences 01 (R;) of the right-hand side of p; and 02(Ls) of the
left-hand side of p» do only overlap in objects that are preserved by both steps,
formally 01 (Rl) Nos (Lg) g 01 (L1 N Rl) Nos (Lz N Rg) This is more sophisticated
than the notion of independent firings of transitions which are required to use
entirely disjoint resources.

4.2 Typed graph transformation with attributes

Assuming a set of data type symbols S, a type graph with attribute declarations
(based on S) is a graph T'G whose set of vertices T'Gy contains S. Therefore, data
type symbols are vertex types so that edges, representing attribute declarations,
may be drawn towards them from ordinary vertices. This is compatible with
notions of attributed graphs, like [LKW93], where attribute carriers are used to
relate graph elements and data values. Notice, however, that we limit ourselves
to attributed vertices, and that we do not extend but refine the notion of graph.

Given a data domain D for every data type symbol s, an instance graph with
attributes over the type graph T'G is an instance graph (G,g : G — T'G) over
TG (in the above sense) such that g=!(s) = Ds; C Gy. Therefore, all vertices
x € Gy with g(z) € S represent attribute values which may or may not be
referenced by an edge from another vertex. As a consequence, instance graphs
will be usually infinite. E.g., if the data type IN of natural numbers is present,
each n € IN will be a separate vertex.

Morphisms between instance graphs with attributes (G,g : G — T'G) and
(H,h: H — TGQ) are typed graph morphisms f : G — H, i.e., graph morphisms
compatible with the typing (ho f = g) and preserving the data domains; formally
fls =idg|s, if we denote by f|s : G|s — H|s the restriction of fy to vertices
x €V of type g(x) € S.

From this point on, all other notions, like rule, occurrence, transformation,
transformation sequence, etc. are defined as in the previous subsection. Also,
relevant results like the Local Church-Rosser Theorem, the Parallelism theorem,
and the corresponding equivalence on transformation sequences based on shifting
or swapping of independent transformations are easily transferred.

It is worth noticing that, in contrast with ER nets, attributes in our model are
typed, that is, different types of nodes may have different selections of attributes.
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However, like in ER nets, our data types have no syntax: We only consider sets of
values without explicit algebraic structure given by operations. As a consequence,
we do not explicitly represent variables within rules and variable assignments as
part of occurrences: A rule containing variables for attribute calculation and
constraints is considered as a syntactic representation of the (possibly infinite)
set, of its instances where the variables and expressions are replaced by concrete
values.

4.3 Typed graph transformation with time

To incorporate time into typed graph transformation with attributes, we follow
the approach of TER nets as discussed in Section 3. Therefore, a time data type
is required as domain for time-valued attributes.

A time data type T = (Diime,+,0,>) is a structure where > is a partial
order with 0 as its least element. Moreover, (+,0) form a monoid (that is, + is
associative with neutral element 0) and + is monotone wrt. >. Obvious examples
include natural or real numbers with the usual interpretation of the operations,
but not dates in the YY:MM:DD format (e.g., due to the Y2K problem).

A type graph with time TG is a type graph with attribute declarations based
on a set of data type symbols S that contains a special symbol time. An instance
graph with time over T'G for a given time data type T' = (Dgime, +,0,>) is an
instance graph (G,g : G — T'G) over TG such that the data type sort time is
interpreted by Dyime, that is, Diime = {z € Gy |g(x) = time}. Graph morphisms
are defined as before.

The definition of graph transformation rules with time has to take into ac-
count the particular properties of time as expressed, for example, by the axioms
in Section 3. Due to the more general nature of typed graph transformation in
comparison with ER nets, there exist some degrees of freedom in the transfer of
these axioms.

First, ER nets are untyped (that is, all tokens have (potentially) the same
attributes) while in typed graph transformation we can declare dedicated at-
tributes for every vertex type. Therefore, we do not have to assume a uniform
time attribute chronos, but could leave the choice of time attributes to the de-
signer. In particular, this would allow a vertex type not to have time stamps at
all, or to have several different time stamps, e.g., one for its creation and one
for the last update. Here, we consider time as a distinguished semantic concept
which should not be confused with time-valued data. Therefore, we decide for
the uniform treatment of time stamps using chronos. (This does not forbid us
to model additional time-valued data by ordinary attributes.)

The second degree of freedom comes from the (well-known) fact that graph
transformations generalise Petri nets by allowing contextual rewriting: All tokens
in the post-domain of a transition are newly created while in the right-hand side
of a graph transformation rule there may be vertices that are preserved. This
allows different generalisations of Axiom 2: The extremes are (1) to require
uniform time values only for new vertices or vertices whose chronos values are
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updated, or (2) to assign new uniform chronos values to all vertices in the right-
hand side. For the moment, we decide for the second, more conservative variant.

Therefore, we define a typed graph transformation rule with time as a graph
transformation rule with attributes such that

Condition 1. Local monotonicity: for all vertices x € L and y € R, the time
stamp of z is smaller or equal to the time stamp of y, and

Condition 2. Uniform time stamps: for all vertices z,y € R the time stamp
of = equals the time stamp of y.

These conditions ensure a behaviour of time which can be described informally
as follows. According to condition 1 an operation or transaction specified by a
rule cannot take negative time, i.e., it cannot decrease the time stamps of the
nodes it is applied to. Condition 2 states an assumption about atomicity of rule
application, that is, all effects specified in the right-hand side are observed at
the same time, called the firing time of the rule.

In this case we can show, in analogy with TER nets, that for each trans-
formation sequence s using only rules that satisfy the above two conditions,
there exists an equivalent sequence s’ such that s’ is time-ordered, that is, time
stamps are monotonically non-decreasing as the sequence advances. This is no
longer true if we use the more liberal interpretation of Axiom 2.

Condition 2’. Uniform time stamps for new or updated objects: for
all vertices z,y € R who are newly created or whose time stamps are
updated, the time stamp of z equals the time stamp of y.

In this case, it is no longer true that for all transformation sequences using
rules that satisfy Conditions 1 and 2’, there exists an equivalent time-ordered
sequence. This is shown by the following counterexample.

Ezample. Figure 1 shows a type graph TG and a (generic) instance graph IG
of TG, respectively. The type graph defines three vertex types: 71,72 and T'3.
For T2 and T'3 chronos attributes are declared, while T'1 has no attribute. (Our
example does not need edges.)

The instance graph contains nodes A : T'1 (i.e., a T'1-typed node named A),
B : T2, and C : T3, where C has the chronos value ¢2 and the chronos value of
B is ¢2+ 3. Two rules, p; and ps, are defined in Figure 2. By applying p;, nodes
a:T1 and b : T2 are matched and the chronos value of b is increased by 4 time
units.

Rule ps requires nodes a : T'1 and b : T'3. The former is deleted and the time
of the latter is increased by 2 units. (Note, that the use of similar names does
not imply any connection between the elements of different rules.)

An application of these rules to the instance graph in Figure 1 is shown in
Figure 3. Both p; and p, are applicable to the graph. Applying first p; and then
p2 leads to the graph in the lower right. In this sequence, first the chronos value
of B is increased and then A is deleted and the chronos value of C is increased.
The occurrences and the firing times of the steps are denoted next to the arrows.
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Fig. 2. Rules p1 and p2

At this point, two observations are crucial. First, the two steps are not inde-
pendent, that is there exists no equivalent sequence where p; and po are applied
in the reverse order. This is because A € (01(L1 N Ry1)) Noa(Ls \ R2)), ie., A is

deleted by p» but required by p;. Second, the sequence IG pl:(oé) 1G4 pz—ﬁg) 1G4
is not time-ordered because the firing time of the latter is smaller than the firing
time of the first.

Note that, if A would have a chronos attribute and all chronos values would
be updated uniformly as required by Condition 2, A should get time(o;) thus
disabling its deletion at a lower time.

Conceptually, Axiom 3 means to assume (or be able to establish) global time,
which is not always realistic, in particular when considering asynchronous (e.g.,
wide-area) networks. Therefore, also the more liberal interpretation may be jus-
tified even if it has weaker semantic properties. In particular, notice that it allows
for a higher degree of concurrency because, due to the update of chronos values
on all nodes in the right-hand side, in the conservative variant independence of
transformations is reduced to disjoint matches.

5 Conclusion

We have transferred the model of time within ER nets, a kind of high-level Petri
nets, to graph transformation systems. The resulting notion is a special case of
typed graph transformation, where certain vertices are interpreted as time values
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Fig. 3. Rule sequence

and edges towards these vertices are time-valued attributes. We have discussed
some choices and their semantic consequences.

It requires a deeper analysis of potential applications, in particular, the use of
time in diagrammatic techniques like statecharts or sequence diagrams and their
existing formalisations within graph transformation [EHHS00,HHS01,Kus01] to
understand if these choices are the right ones.
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1 Introduction

Hypermedia systems are very popular in information technology (consider
e.g. the World-Wide Web) since they provide an intuitive paradigm for orga-
nizing and accessing large collections of multimedia documents (hyperwebs).

With the increasing complexity of hypermedia applications, it is more and
more important to have specification techniques that are on a high level of ab-
straction and formal enough to prove properties of the described applications.
Existing models (e.g. [HS94], [SRB96], [TEP95], [Mau96]) concentrate on static
structural aspects offering high-level primitives like indices, hierarchical naviga-
tion spaces, and so on. Even though some approaches address dynamic aspects
of hypermedia (e.g. synchronization between different documents, see [SDW95]),
conceptual models of hyperweb transformation (hyperweb dynamics) are still
missing, forcing developers to reason about these aspects at a low implementa-
tion level (see [BtHO00]).

Looking for a conceptual model of hyperweb transformation, we consider
graphs and (rule-based) graph transformation. First, hyperwebs can be easily
interpreted as graphs: they are networks of documents and links. Second, graph
transformation (see e.g. [Roz97], [EEKR99], [EKMR99]) provides an intuitive,
yet formal, way of specifying operations on graphs. Third, there exist several
approaches that use hierarchical graphs, with support for grouping and encapsu-
lation of nodes and edges (see e.g. [Pra79], [ES95], [BEMWO00], [EH00], [DHP02],
[BHO1]), thus addressing the need for structuring in hypermedia. These factors
make hierarchical graph transformation very appealing for our purposes.

In order to evaluate the possible impact of hierarchical graph transformation
on hyperweb dynamics, we apply these ideas to a concrete hypermedia system,
namely HyperWave (see [Mau96]). It turns out that hierarchical graph transfor-
mation provides an intuitive and concise way of specifying (complex) hyperweb
transformations, and that it is on a comparable level of abstraction as Hyper-
Wave’s hypermedia model. Furthermore, our approach allows to check statically
whether the defined hyperweb manipulations preserve consistency, thus helping
to write correct applications and reducing the amount of consistency checks that
must be performed at runtime.
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This contribution has the following structure. In Section 2, we provide a
summary of the HyperWave data model and introduce a running example. In
Section 3, we recall the notion of a hierarchical graph and use it to model hy-
perwebs. In Section 4, we introduce hierarchical graph transformation and use
it to specify hyperweb manipulations. In Section 5, we provide a summary and
some concluding remarks.

2 Hypermedia and HyperWave

In the HyperWave'™ system a hypermedia repository—i.e. a hyperweb—provides
documents with referential links between them. A link starts from an anchor at-
tached to a document, and ends at a destination anchor, document, or collection.
Collections are organizational structures that contain documents and (possibly)
other collections!. Documents and collections can be shared by other collections,
but the collection hierarchy must be cycle free (dag). All documents and collec-
tions (except the root collection) must be contained in at least one collection
(orphans are forbidden). Empty repositories are forbidden.

Consider the following example scenario. A company stores its employees’
documents in a repository. Each user has a home collection, with work-related
documents, and some personal documents. A project manager has a “projects”
collection, a “phone” document, a personal collection, and an “archive” collec-
tion about completed projects. Figure 1 shows the contents of a project man-
ager’s collection. Collections are drawn as rectangles with tabs, documents as
rectangles, anchors as small black boxes. Arrows between collections indicate
their nesting, arrows from collections to documents indicate that a collection
contains that document, anchors are attached to pages using undirected lines,
and hyperlinks are drawn as arrows originating from anchors.

The company has several classes of users, with corresponding home collection
structures. An administrator’s collection (see Figure 3) contains a “staff” and a
“financial report” document, and no “projects” collection in the top level of its
hierarchy. If, say, a manager becomes an administrator, his or her information
structure is reorganized automatically by an application. In this example, the
new documents “staff” and “financial report” are added, and the projects are
moved to the “archive” collection.

In HyperWave such transformations are programmed as low-level database
transactions (see [Mau96, Appendix F]). In Section 4, we show how to specify
these manipulations through hierarchical graph transformation.

3 Hyperwebs and Hierarchical Graphs

In this section, we model hyperwebs in HyperWave using the hierarchical graph
approach described in [BHO1] and [BKKO1]. In this approach, a hierarchical
graph H consists of the following components:

! Besides collections, HyperWave supports other organizational structures, which are
not relevant here.
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Fig. 1. A project manager’s home collection.

— The underlying graph U, containing the nodes and edges of H.
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— The hierarchy graph P, a rooted directed acyclic graph (rooted dag) that
describes the hierarchical structure as a collection of graph packages (its
nodes) and a parent/child relation (its edges).

— The coupling graph C', a bipartite graph connecting nodes of U with nodes of
P. Edges from Ny to Np relate nodes to the package they belong to. Edges

from Np to Ny relate packages to nodes they are anchored to.

Anchoring is used when a modeled entity plays both the role of a node and
of a grouping component (package). For example, in HyperWave a collection
can be thought of both as a node (navigation edges can point to it) and as a
package (it groups documents and other collections). Notice that anchoring of
packages should not be confused with the use of anchors for hyperlinking within

hypermedia.

Hierarchical graphs

A set G defines a set of graphs if every G € G has a skeleton Sq¢ = (Ng, Eg, Ia),
where Ng and Eg are finite sets of nodes and edges, and I C Eg X Ng is an
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incidence relation. Having a skeleton is the minimal requirement for an entity to
be considered a graph, and it serves as an interface to the hierarchical structure
added to it.

A directed graph G consists of disjoint finite sets Ng of nodes and Eg of
edges, with each edge attached to exactly one source and one target node, and
each node (edge) labelled over a given set X' (resp. A) of labels. Every directed
graph G provides a skeleton. A dag is a cycle-free directed graph. A directed
graph is rooted if it has a distinguished root p € N so that there exists a path
from p ton in G, for all n € Ng. (Rooted dags are used for package hierarchies.)

A bipartite graph C over (M, N)—i.e. a directed graph where all edges have
one end in M and the other one in N—is a coupling graph if it induces an
association relation —c C N x M that assigns every node of M to at least one
node of N. A coupling graph C'is tight if it also induces a correspondence relation
~c C M x N that anchors every node of N at a unique node of M. (Coupling
graphs are used for connecting package graphs and underlying graphs.)

A generic hierarchical graph is a triple H = (U, P,C), with an underlying
graph U (of any kind, provided it has a skeleton), a rooted, directed acyclic
package graph P, and a bipartite coupling graph C over nodes (Ny, Np). If C' is
tight, H is called tightly coupled, and loosely coupled otherwise.

Modeling hyperwebs

A repository R with root collection p is modeled by a hierarchical graph
HG(R) = (U,P,C), where U represents the navigation structure and P the
organization structure. Let coll(R) be the set of collections of R, doc(R) the
set of documents, and anc(R) the set of anchors. For each ¢ € coll(R) \ {p}, we
let n. be a node. We also associate a package p. to every collection c.

The set of nodes Ny is {n. | ¢ € coll(R)\ {p}}Udoc(R)Uanc(R), where the
three types of nodes are marked with three disjoint label sets COLL, DOC, and
ANC = {anc}, respectively. Anchor nodes are attached to document nodes by
directed edges. Links are modeled by edges from source anchors to destination
anchors, documents, or collections. The two types of edges are marked with
labels {0, A}, respectively.

The set of packages Np is {p. | ¢ € coll(R)} and, for each ¢,c’ € coll(R),
if ¢ is contained in ¢’ we let p. be a child of p. in P (edge from ¢’ to ¢). The
package p, is the root of P. In order to have a uniform graph model for U, P,
and C, nodes and edges of P carry a trivial L label.

The coupling graph C relates Ny with Np. Every package p. (¢ # p) is
anchored to the node n. (edge from p. to n. in C). Every document node d €
doc(R) and all its anchors a4, ...,a; € anc(R) are associated to all packages p.
(edges to p. in C), such that d is contained by ¢ in R. We let N := Ny U Np
and use the same labels as in U and P. All edges of C are labeled with L.

The condition on hierarchical graphs, that requires that all nodes be at least
in one package, ensures that there are no orphans. We depict a hierarchical
graph with the same notation as in Figure 1. Labels are written inside nodes,
e.g. COLL = {home,arch,...}. Edge labels are omitted, since edges can be
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distinguished by the notation. A similar notation will be used for transformation
rules.

4 Hyperweb Dynamics

In this section, we apply hierarchical graph transformation to the specification
of hyperweb manipulations. Again, we follow the approach presented in [BHO1]
and [BKKO1]: hierarchical rules are triples of graph transformation rules that
are applied to the components of a hierarchical graph. Using the results proven
in [BKKO1], we can characterize the rules that manipulate hyperwebs in a con-
sistent way (see below). Such consistency depends on properties of rules that
can be checked statically.

Hierarchical graph transformation

The notion of a graph transformation approach has been formalized in [AEHT99]
in order to specify the common features of as many kinds of graph transformation
as possible. Here we are interested in basic graph transformation approaches
A =(G,R,=) where G is a class of graphs, R is a class of rules, and = is a rule
application operator that associates a binary relation = C G x G to every rule
r € R. We omit control conditions and graph class expressions that are used for
programming and specification in [AEH199].

A basic hierarchical graph transformation approach Ay = (H,Ry,=>) is
constructed by combining an underlying graph transformation approach A,, over
graphs G, with two graph transformation approaches A, over rooted dags, and
A, over coupling graphs, respectively, by componentwise composition. If its com-
ponent approaches have the same application operator, we call Ay homogeneous.
The classes of graphs and rules are defined as the Cartesian products of the corre-
sponding component classes, and their semantics is constructed componentwise,
too. The application operator is defined as =4 = {((U, P,C),(U’,P',C")) €
HxH|U=,U,P=>,P,C=.C'}.

We consider a homogeneous hierarchical graph transformation approach us-
ing the double pushout approach (DPO, see [CMR197]). DPO rules are of the

formr = L < K 2 R where i and J are graph morphisms mapping an interface
graph K to the left-hand side L and right-hand side R of the rule, respectively
(i must be injective). A transformation step from a graph G is performed by
finding an occurrence of L in G (a morphism m : L — G), building a graph D
by removing m(L) from G up to the interface m(i(K)), and adding (a copy) of
R by identifying all elements of R and D that have a common preimage w.r.t.
m o1 and j, respectively.
In the hierarchical case we will have triples of rules

r=(Ly & Ky Ry, L, & K, 3 Ry, L. & K, 55 R,)

that are applied in parallel to the components of a hierarchical graph. We con-
sider glued rules, i.e. rules such that: For X € {L,K, R}, Nx, = Nx, UNx, and
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Nx, N Nx, = 0, while the pairs (iy,ic), (ip,ic)s (Ju>Jc), (Jp,Jjc) agree on com-
mon nodes in their domains. For hyperweb transformation we use coordinated
hierarchical graph transformation, where glued rules are used and the matching
morphisms of the component rules overlap on the nodes of the coupling graph.
We indicate a coordinated transformation step with G =, G'.

Modeling hyperweb dynamics

In Figure 2, we show a rule that specifies the transformation of a manager
collection to an administrator collection. The left-hand side L, contains three
packages and two hierarchy edges. The three packages are also in the glued
left-hand side L., while L, is empty. The right-hand side R, contains three
packages (shared with R.) and a different hierarchy structure. R,, contains two
nodes (shared with R.). The interfaces are represented by means of identifiers:
the notation z” = ‘z in the right-hand side denotes a preserved node (a node
that is also in the interface). In ‘z: y (resp. x’: y), y denotes the label of the
matched (resp. inserted) node z. This rule hides the project collection inside the
archive collection, and adds the two new documents staff and financial report. By
applying this rule to the hyperweb of Figure 1, we obtain the hyperweb depicted
in Figure 3.

‘1: home 1’"="“1
‘2: arch ‘3: proj = 2’ = ‘2 4’: staff 5’: fincl
3 =13

Fig. 2. Reorganizing a collection.

By using the results proven in [BKKO01], this approach allows to check stat-
ically whether the defined transformations preserve consistency inside a reposi-
tory. In fact

— link consistency is always ensured by DPO rules (no dangling edges are
introduced),

— consistent hierarchy transformation (rooted dags are transformed to rooted
dags) is ensured by properties of rules that can be checked statically using
Proposition 5.20 in [BKKO01],
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\
techdoc proj
/ \
NTA
/\ / \
Java NTA1 NTA2 C2 friends

R

Fig. 3. A administrator’s home collection.
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— the absence of orphan documents in the transformed graphs is also related
to properties of rules that can be checked statically using Proposition 5.12

in [BKKO1].

Similar consistency checks are performed by a HyperWave server at runtime.

5 Conclusion and Future Work

In this paper, we have applied hierarchical graph transformation to the specifi-

cation of hyperweb manipulations in the HyperWave system.

Compared to HyperWave, our approach is visual and more concise, and
lies at a conceptual level, since it allows to reason in terms of organization
and navigation structures, avoiding implementation details like the sequences of
commands to be exchanged with a server. Furthermore, by using the double-
pushout approach, we can use results about hierarchical graph transformation
(see [BKKO1]) to check statically whether the defined operations preserve con-
sistency in a hyperweb. Such checks are performed at runtime in HyperWave.
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In the HyperView approach (see e.g. [Fau00]), the structure of web pages and
web sites is modeled using clustered graphs, where a structure graph is related to
a base graph by a clustering morphism, thus defining a decoupling approach that
has some similarity to ours. HyperView also uses (single-pushout, see [EHKT97])
rules for defining the translation between different views of existing hyperwebs
(web sites). Instead, in the present contribution we propose to use rules to modify
the content of hyperwebs. A closer comparison of HyperView with our approach
can be an interesting topic for future research.

An open issue concerning our approach is related to the efficiency of (hierar-
chical) graph transformation. First, the graph isomorphism problem—occurring
every time a rule is matched w.r.t. a host graph—is NP-complete. There exist
approaches (e.g. [BGT91], [MB95], [Rud00]) that try to improve this limit in
cases of practical interest. For example, [MB95] introduces an algorithm that
solves the problem in polynomial time, provided that the graph to be matched
is a-priori known. The impact of these results on our approach is a topic for
future research.

Another source of inefficiency is the non-determinism of rule application and
the need for backtracking. This situation can be improved by adding control
structures to drive rule application, like in PROGRES (see [SWZ99]) and in
GRACE (see [Kus99]). Transformation units (the concept used in GRACE) are
of particular interest because they can be combined with our model of hierarchi-
cal graph transformation since both rely on the same notion of a graph trans-
formation approach. The use of transformation units in our approach should
therefore be investigated.

Another interesting topic is the use of other approaches than DPO for spec-
ifying hyperweb manipulation. For example, imagine that we want to modify a
portion of web and update a lot of hyperlinks connecting it to its context in a
consistent way. Such situations suggest that a connecting approach (e.g. NLC,
[ER97]) can be better suited than DPO. Our generic hierarchical graph notion
allows to change the underlying graph transformation approach smoothly.

Finally, we have not modeled access permissions of HyperWave yet, and
this suggests that the notion of encapsulated hierarchical graph transformation
(see [ES95], [BEMWO0O0]) could be investigated. The above considerations are
summarized in Table 1.

HyperWave HG transformation
Abstraction level{Implementation Conceptual
Style Textual, verbose |Visual, concise
Consistency Checked at runtime|Static check possible
Efficiency Good To be investigated
Access control |Access permissions |Encapsulated HG

Table 1. Hyperweb dynamics: HyperWave vs hierarchical graph transformation.
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Abstract. In a software system development process a variety of het-
erogeneous viewpoint models of the system are constructed for the ab-
stract specification of its functionality and behaviour. These have to be
integrated in order to achieve a coherent and consistent global system
specification. Transformation systems constitute a formal semantic do-
main where specification languages conforming to different paradigms
can be interpreted, which makes possible a formal semantic integration
of heterogeneous viewpoint models. Analogous to graph transformation
systems states are described by algebraic structures and behaviour by the
ordering of state transformation steps, i.e., changes of the algebraic struc-
tures. In contrast with graph transformation systems, however, transfor-
mation systems are generic w.r.t. the choice of the state representations,
i.e., instead of graphs or extensions thereof arbitrary structures and cor-
responding logics may be used. Moreover, development relations and
structuring operations are defined, which altogether yields a powerful
and flexible integration framework.

1 Introduction

In the development process of large software systems usually a series of different
models of the system is constructed. These range from first sketches of the system
and its environment (the domain) through to detailed design models. Thereby
different aspects of the system and its components are specified from different
points of view. Following the viewpoint model of software systems development,
as promoted in the Reference Model of Open Distributed Processing [14] for
example, different languages should be used for the description or construction of
the different viewpoint models. These should be adequate for the specific purpose
of the viewpoint model, both concerning the addressed aspects and the envisaged
users. This approach is in principle also supported by the Unified Modeling
Language [20] that provides different modelling languages for the specification

* This work has been supported by the research project IOSIP (Eh65/10-2) within the
DFG Priority Program Integration of Software Specification Techniques for Applica-
tions in Engineering (1064)
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of the static structure, the dynamic behaviour (from different points of view),
and the implementation and deployment of the system.

But even if the viewpoint model is not explicitly referred to in the develop-
ment process, one always has to deal with heterogeneous models and languages.
In the development of embedded systems in an engineering application for exam-
ple one has to communicate with engineers who use their established languages
for the description of the technical (and also software technical) part of the
system ([1]). In an integration of different information sources in a federated in-
formation system different specifications and specification formalisms have to be
considered ([10]), and when systems are used as communication infrastructures
continuously over a long period new models and specifications, given perhaps in
new languages, must be related to older ones ([2,11]).

Thus, the use of different languages cannot and should not be avoided, but
mechanisms for their integration should be provided. In the research project
IOSIP! a reference model for the integration of heterogeneous software specifi-
cations has been developed that supports a formal semantic approach (see [5,
7,8]). A global semantic domain is given where all specification languages can
be directly and adequately interpreted and compared. This allows the investiga-
tion and solution of semantic problems independently of concrete specification
paradigms and languages, before they are represented syntactically w.r.t. the
considered concrete languages.

The elements of the semantic domain are transformation systems that repre-
sent the static structure and dynamic behaviour of arbitrary entities (systems,
components, objects, processes, methods, etc.). Roughly, these are extended la-
belled transition systems where both the states and the transitions are labelled.
(Using graphs as state labels one obtains thus graph transformation systems as
a special case of transformation systems.) The structure of the domain of trans-
formation systems is given by general schemes for development relations that
express semantic compatibility properties like refinement and implementation
for example, and composition operations for the construction of larger entities
by the interconnection and synchronization of smaller ones.

The domain of transformation systems yields a semantic background for the
analysis and integration of specifications. Unlike other approaches that are based
on the transformation of structures (like graph transformations) it is not in-
tended as a new specification or modelling language, although it could also be
used for this purpose, too.

In the remainder of this paper we briefly sketch the semantic domain of
transformation systems, describe different representations of static structures
that arise in different application contexts and require more expressive means
than graphs, and discuss some applications of the reference model induced by
the transformation systems approach.

! URL http://tfs.cs.tu-berlin.de/projekte/indspec/SPP /iosip.html
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2 Transformation Systems

A transformation system is a transition system (i.e., a graph) with labels for the
states and the transition. The state labels represent the data states of the mod-
elled entity. They are given by the class of all instances of a schema or signature
that defines the static structure of the entity. The state of an object for example
is given by the values of its attributes. In this case the signature is given by
the list of the attributes of the object and their types, and a state is given by a
corresponding list of values, i.e., elements of the types. Likewise, a program’s sig-
nature and its state are given by the list of (typed) program variables and their
values respectively. In graph transformation system approaches various kinds
of graphs are used to represent data states. But data states can be arbitrarily
complex and require further means for their representation, as discussed in the
following section. Therefore the definition of transformation systems is param-
eterized w.r.t. the kind of structures used for the representation of data states.
(Formally the framework for the data state specification parameter is required
to be a concrete institution, see [8].) Analogously, transitions can be labelled by
atomic actions, parameterized actions, sets of (parameterized) actions for the
representation of concurrent systems, or arbitrary other action structures.

According to this two level structure of transformation systems—the tran-
sition graph representing the skeleton of the dynamic behaviour and the data
states and action structures for the static structure—their properties can be
classified. Data invariants are properties that are satisfied in each data state of
the system. They can be expressed in the language induced by the data states
signature. A single step 7' : C = D of a transformation system is given by one
transition (edge) t : ¢ — d of the transition graph and its labels, the data states
C and D associated to ¢ and d and the action structure 7" associated to the tran-
sition t. The step T' : C = D represents a data state transformation induced
(caused, effected) by the actions T'. Correspondingly, transformation properties
can be specified by transformation rules a : L = R, given a pair of individual
data state specifications L and R for C' and D respectively and an expression
a for the action structure 7. Note that these transformation rules are not con-
sidered constructively as replacement rules, but descriptively like pre and post
conditions. (However, a constructive interpretation can also be given, provided
the data state specification formalism is algebraic, see [6].) Finally control flow
properties refer to the whole transformation system, i.e., its transition graph and
the labels. In contrast to the data state and transformation specifications there
is no canonical format for the control flow specification. Any formalisms whose
(operational) semantics can be defined in terms of (extended) labelled transition
systems can be used. Examples are process calculi like CCS [13] and CSP [9],
and Petri nets [15] for constructive specifications and temporal or modal logics
[4] for descriptive ones.

The structure of the domain of transformation systems is given by develop-
ment relations that support the semantic comparison of systems and composition
operations to construct larger systems from smaller ones. Both follow in their
definition the above mentioned two level structure of transformation systems.
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A development relation of two transformation systems is given by a graph
homomorphism and a signature morphism for the relation of their transition
graphs and data state and action signatures respectively. The former states how
the behaviour of one system can be embedded into or simulated by the other
one. With different kinds of graph homomorphisms additional behaviour (ex-
tended functionality) or restriction (exclusion of certain actions, reduction of
non—determinism, etc.) can be represented. The signature morphism states how
the structure of one systems is embedded into or simulated or refined by the
other one. It induces an operation (a forgetful functor) on the data states and
action structures that realizes the desired relation, restricting for example the
set of visible attributes and actions. The two morphisms can be combined either
in the same direction or in opposite directions. Moreover, closure operations can
be used that allow the mapping of a single step of one system to a (sequential,
parallel, etc.) composition of steps of the other one. In this way a schema for the
definition of different kinds of development relations is given. It can be adapted
and instantiated to meet both the development relations supported by the con-
sidered specification languages and the transformations that are necessary to
compare and integrate different viewpoint specifications.

Analogously a schema for the definition of composition operations is given.
In general, transformation systems are composed by specifying how their static
structures are related and how the systems shall be synchronized. The former
information is given by an identification relation, i.e., a relation on the sig-
natures of the systems, that states which parts of their static structures are
shared (pervasive static data types likes numbers and strings, exchange data
types used in the communication, or shared variables or other shared structures
used to realize communications for example.) The synchronization is specified
by a synchronization relation on the transition graphs of the systems that de-
clares which states and transitions of the systems are compatible with each other
in the sense that they can be entered or executed simultaneously. That means,
states or transitions may be synchronized if they are in the synchronization re-
lation. Must—synchronization can be obtained as a special case. The result of
the composition of transformation systems connected in this way represents a
global view of the interconnected local systems as a single transformation system
again. It is given by all tuples of synchronous states and transitions respectively,
whose labels are given by the amalgamations of the local data states and action
structures respectively. The general schema for the composition operations can
be instantiated again to reconstruct the composition operations supported by
the considered specification languages and to (semantically) express the compo-
sitions that are necessary for example to compare and integrate specifications of
different scopes.

The definition of the composition operations supports structural transparency
in that it allows us to abstract from the internal architecture of a composed sys-
tem and consider it as a single system with one global static structure and one
global behaviour. According to the formal definition of the properties, develop-
ment relations and composition operations moreover general compositionality
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properties have been shown that state under which conditions properties of the
local components are preserved by a composition and how compatible local de-
velopments induce a development of the global system.

3 Static Structure Representations

As mentioned above transformation systems are generic w.r.t. the representa-
tion of data states and action structures. That means, when using the approach
an (almost) arbitrary framework (institution) for the specification of the data
states and actions can be employed. Lists of typed attributes of objects and
typed program variables have been mentioned above as most simple examples.
Different kinds of graphs, like labelled, typed and/or attributed graphs or graph
like structures are used in graph transformation based approaches like AGG [19],
PROGRESS [16,17] and others [3]. In the standard version of transformation
systems partial algebras are used as data state models. This allows us to in-
clude and reason about static data types explicitly, to represent parameterized
attributes as partial functions, and to use mutable sets, for example to repre-
sent the varying set of references an object maintains or to represent creation
and deletion of items generally. Obviously, all kinds of graphs mentioned above
are special cases of partial algebras. Furthermore states of (elementary, coloured,
algebraic, etc.) Petri nets can be represented in different ways as partial algebras.

In some applications, however, even partial algebras are not sufficient to
represent data states adequately, i.e., without encodings. Especially when larger
entities like software components or whole systems are considered further means
are required.

Consider for example a class diagram that is used for the specification of
the static structure of a system. In order to describe a state of the system the
following information has to be given.

— How many objects of each class are there and how are the objects linked?
— What is the state of each object?

A system state (as data state) can accordingly be described as follows (see Fig-
ure 1).

— A graph defines the objects via its nodes and their links via its edges. Con-
sidering the class diagram as a graph, too, with classes as nodes and associ-
ations as edges, the typing of the objects and links can be defined as a graph
homomorphism from the object graph to the class graph.

— To define the objects states first each class in the class diagram is considered
as an algebraic signature as follows. The types that occur in the class as
attribute or parameter types yields sorts, possibly with associated function
symbols. Types may be classes or built—in static data types. The attributes
are represented as constants in the signature. Moreover, for each operation
op of the class with return type ¢ a constant ret_op : t is introduced that
serves to hold the return values of the operation in the states after its exe-
cution. Partial functions can be used, moreover, if parameterized attributes
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are considered for example. The partial algebras of this signature then rep-
resent the possible data states of the objects of this class. They contain the
static data types and values for the attributes and the return values of the
operations (which may also be undefined). The carrier sets corresponding to
the class types contain the references an object maintains internally to refer
to other objects.

To access the other objects in addition corresponding dereferencing functions
have to be given. The domain of a dereferencing function is thereby given
by a carrier set of a class sort (i.e., a set of references inside an object), its
codomain is given by the set of objects of the corresponding class, i.e., the
set of those nodes of the object graph that are mapped to the class node in
the class graph.

class diagram C D
a:D b:int
op:Int

c:C d:D

object diagram e
D={ref d-— Int=2z

= system state

a=ref d b =42
ret op=28

Fig. 1. Data state of a system, given by the objects, their links, their data states, and
the dereferencing

The dereferencing functions cross the frontiers between the objects insides and
the entire system. This cannot be expressed, for example, with attributed graphs,
since there only functions from the graph into the label algebra are allowed,
whereas the dereferencing function have opposite functionality. We thus have
a direct and adequate representation of system states that formally fits into
the framework of transformation systems. Moreover it supports the navigation
along links and references and the specification of state properties like OCL data
invariants.

The behaviour of single objects is specified in the UML with state machines,
that also refer to the static structure via actions and conditions. Thus the static
aspects have to be interpreted, too. The semantics of state machines can also be
defined in terms of transformation systems. Thereby data states are represented
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similarly as system states in the interpretation of class diagrams discussed above.
A restriction is thereby given in that only a single object is considered. However,
this object must be seen in its context, because it may refer to other objects in
the system. Accordingly, the data state of an object is defined now as a partial
system state like above, where, however, the data state (partial algebra) and the
dereferencing functions are given only for the considered object. That means,
the object may refer to other objects but may not inspect their states. The data
state of a state machine is then given by the data state of the object, i.e., an
instance of the class the state machine is associated to, and a configuration of
the state machine. The latter is given by a compatible set of basic states of the
state machine, one within each parallel region of the machine, and represents
the reactive capability of the object as far as specified within the state machine.
Note that the conditions that guard the transition are not interpreted in the
state machine itself. Therefore, in the semantics, the data states of the objects
have to be included, too.

The whole information represented in a data state of an object specified by
a state machine (that implicitly refers to a class diagram in addition) is needed
to define the semantics of single objects. Moreover, the interactions of sets of
objects of different classes are already determined by their state machines, too.
Indeed, they are completely specified by the event—action duality that yields the
synchronizations of the objects. The semantics of these interactions can also be
defined formally using the composition operations of transformation systems.
Thereby the identification relation only identifies the common static data types,
and the synchronization relation is induced—as mentioned above—Dby the duality
of events and actions. (An action of one object is an event for another one.)

4 Applications

The main aim in the development of transformation systems has been to provide
a reference model for the integration of heterogeneous formal and semi—formal
software specifications. Integration is thereby interpreted conceptually as the
possibility to consider a collection of (heterogeneous) viewpoint specification as a
single specification of one system. This does not necessarily mean to syntactically
integrate specifications, but only yields a background that has to be adapted and
instantiated to obtain a concrete applicable integration method. Nevertheless,
the semantic foundation have been worked out in detail and now support the
development of integration methods in a precise and clear way. (That means,
the old slogan Semantics First! has been respected.)

The meaning of integration can now be described more precisely as follows.
First of all, each specification in a development according in one way or an-
other to the viewpoint model is a partial, incomplete specification, since it only
specifies one aspect of a system. W.r.t. the other aspects that are not addressed
in this viewpoint the system is not constrained by the considered viewpoint
specification. That means, semantically, each specification admits a set of inter-
pretations. When a collection of specifications is to be integrated basically the
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intersection of these sets of admissible interpretations yields the conjunction of
the specifications on the semantic level. However, some transformations might
be required before that, because the scopes of the specifications, i.e., that part
of the system they specify, and their granularity w.r.t. structure and behaviour
may be different. For example, a class diagram specifies arbitrary collections
of objects, a statechart diagram specifies a single object, and a collaboration
diagram specifies a definite set of objects. Thus appropriate projections have
to be applied to the semantic interpretations of the individual specifications.
On the other hand, the transformation systems representing single object be-
haviours can also be composed in order to obtain system models that can be
compared—by intersection—with interpretations of collaboration and class di-
agrams for example. The conceptual semantic integration can be summarized
thus as the intersection of transformed sets of admissible interpretations. The
transformations thereby represent semantic correspondences of the considered
specifications. Based on these the intersection reflects their consistency. If the
intersection is empty the specifications are inconsistent (w.r.t. the correspon-
dences expressed by the transformations), if it has more than one element the
set of viewpoint specifications still admits different interpretations, i.e., it can
be considered as incomplete.

Based on this abstract integration concept concrete integration methods can
be developed. As opposed to the general language and paradigm independent
approach provided by the reference model an integration method should be de-
veloped for concrete languages or at least specific classes of languages. Then
the roles of the concerned viewpoints and the recommended usage of the lan-
guages can be taken into account and reflected in the method. For example,
class diagrams only define the static structure of systems and thereby provide
the syntactic means that are used in the other specifications. (In this sense they
are a precondition for the development of the other models.) A class diagram
induces the data states and action structures of the transformation systems of
its admissible interpretations, but it does not constrain their transition graphs.
The order of the invocations of the operations provided by the classes is not
given. Thus, after the interpretation of the class diagram the other diagrams are
used to select those transition graphs that represent admissible interpretations
of the behaviours specified by a state machine or a collaboration.

Beyond the integration of individual specifications the reference model also
yields guidelines how to integrate specification languages. The parametric def-
inition of transformation systems indeed states how a specification framework
for data states (= an abstract data type specification method) and a control
flow specification framework (= behaviour or process specification method) are
integrated to obtain the corresponding instance of transformation systems. The
abstract data type specification method induces a data transformation specifica-
tion framework, since a transformation is essentially given by pairs of data states,
augmented by an action structure (the latter has to be given in addition). The
behaviour specification is then put on top of the framework and used to define
the order (temporal, causal, etc.) of the steps defined in the data transformation
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specification framework. The behaviour specification may thereby refer to both
the action structures and the data states of the lower level, which justifies the
hierarchical integration of data state and behaviour specification.

When the transformation system reference model is used for the integra-
tion of concrete specification languages theses have to be interpreted in terms
of transformation systems. That means, their semantics has to be reconstructed
or defined by transformation systems, development relations, and composition
operations as provided by the reference model. (A series of examples for such
interpretations is given in [8], where also the adequacy and sufficient expressivity
of the reference model is discussed in more detail.) Thereby the explicit struc-
tures and the properties of the reference model can be reflected to the language.
That means, the interpretation can be used to suggest semantics definitions for
aspects that have not yet been defined precisely and to introduce development
operations or composition operations with precise semantics. The interpretation
of the UML techniques discussed above for example also provides a precise defi-
nition of the object interaction specified by state machines, which has not been
addressed yet in the semantics definition at all. Moreover, the reference model
provides development relations that can be used to define the semantics if sub-
typing and inheritance w.r.t. the state machines associated to the corresponding
classes for example.

Using the constructions employed for the definition of the composition of
transformation systems, basically identification and synchronization relations for
the interconnection of local systems and their representations, then also differ-
ent architecture description languages can be analyzed, compared, and possibly
integrated (see [12,18]). This aspect, however, has not yet been investigated in
detail.
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Abstract. Model transformation systems are graph transformation sys-
tems that perform translations between languages defined by a corre-
sponding metamodel as the type graph. The current paper proposes a
reflective method for the automatic generation of the implementation for
such transformation systems derived from a high-level specification con-
sisting of a set of graph transformation rules and a control flow graph.
The program generator takes a UML profile tailored to model transfor-
mation systems as the input, and produces the output Prolog program
by successive model transformation steps. In this respect, only the core
of the program generator is implemented by hand, and afterwards, this
core provides automation for additional features of the VIATRA model
transformation system.

Keywords: model transformation, graph transformation systems, auto-
mated program generation

1 Introduction

1.1 Model transformations in system design

Although the Unified Modeling Language (UML) has become the de facto stan-
dard visual modeling language of object—oriented design, both academic inves-
tigations and engineering experiments have revealed several shortcomings re-
garding, especially, its imprecise semantics and the lack of flexibility in domain
specific applications [9]. Recently, the UML 2.0 Request For Proposal issued
by the OMG has addressed to re-architecture the single and monolith language
into a family of languages with individually defined semantics based on a kernel
metamodeling language.

However, as the formal semantics of different views of the system (i.e., sep-
arate diagrams like class diagrams, statecharts, sequence diagrams, etc.) might
be defined in different semantic notations (e.g., by Petri nets, SOS rules, graph
transformation systems etc.), the integration of such local views into a consis-
tent global view of the system requires a precise specification of transformations
within and between UML models.

* This work was supported by the Hungarian National Scientific Foundation Grant
(OTKA 030804)
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In practice, transformations are necessitated for several purposes: (i) model
transformations within a language should control the correctness of consecutive
refinement steps, (ii) model transformations between different languages should
provide precise means to project the semantic content of a diagram into another
one, which is indispensable for a consistent global view of the system under
design, and (iii) a visual UML model (i.e., a sentence of a language in the UML
family) should be transformed into its semantic domain, which process is called
model interpretation.

As the abstract syntax of UML models is defined visually by a corresponding
metamodel, a straightforward representation of such models can rely on the use
of directed, typed, and attributed graphs for the underlying semantic domain.
Therefore, the use of graph transformation for capturing the semantics of model
transformations is a natural choice which also fits well to engineering practices
as a consequence of its visual expressiveness [20].

However, even if the formal specification of a transformation is precise (and
formally verified), its implementation is still highly error prone due to a huge ab-
straction gap between visual UML models and formal mathematical descriptions.
For this reason, the automated generation of a program that implements the
transformation is also a major requirement for model transformation systems.

1.2 VIATRA: Visual Automated Model Transformations

VIATRA (VIsual Automated model TRAnsformations) is a prototype tool be-
ing developed at the Budapest University of Technology and Economics, that
provides a general means to specify and implement various transformations be-
tween models defined by their corresponding metamodels by the paradigm of
graph transformation.

VIATRA interface The user interface of VIATRA is a set of XMI ! files, which
includes descriptions of metamodels, models and their transformations in all
phases of model transformations.

1. Metamodels: Both UML and mathematical languages are defined by a cor-
responding metamodel (e.g., a metamodel for Petri nets, or state transition
systems, etc.), which is constructed in a commercial UML CASE tool having
XMI export facilities.

2. Transformations: The elementary model transformation steps are defined
by specially structured graph transformation rules while the entire computa-
tion is specified by a control flow graph. In practice, both graph transforma-
tion rules and control flow graphs are described in a high-level UML notation
using a transformation specific profile based on UML Class diagrams.

3. Models: For obtaining a flexible and general interface, the input and output
models of VIATRA (thus both UML and mathematical models) are XMI files
conforming to their metamodel.

! XMI (XML Metadata Interchange) is the standard XML-based description format
for systems based on MOF metamodeling.
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VIATRA features The current version of VIATRA supports the following (main)
features.

1. Automated DTD generation: A corresponding DTD (Document Type
Definition) can be generated automatically from metamodels.

2. Automated program generation: When VIATRA is supplied with the
input files of the transformation and the metamodels, it automatically gen-
erates the declaration of the transformation (in Prolog) including the imple-
mentation of the control flow graph and graph transformation rules.

3. Automated transformation: This transformation program is then ex-
ecuted on an arbitrary source model, and the target model is generated.
Although VIATRA currently uses Prolog as the underlying transformation
engine (i.e., the concrete transformation of models is performed in Prolog),
it is hidden from the user and it still provides a more efficient solution than
by using an XSLT 2 engine.

The current paper provides an overview of the underlying program gener-
ation method of VIATRA (a more detailed description can be found in [19]).
The main characteristics of our solution are (i) the use of intermediate transfor-
mation steps to avoid re-implementing code generation for executable programs
and input descriptions for model checking tools, (ii) the reflective specification
method embedded in the code generation process (the implementation of model
transformation systems is specified by model transformation systems), (iii) and
a (future) bootstrapping step to improve the quality of the code generation (when
a previous version of the program generator is used for generating the next ver-
sion of the program generator, in analogy with the well-known bootstrapping
techniques of compiler design).

2 Automated Program Generation for Model
Transformation Systems

2.1 Theoretical background of model transformations

We provide a brief overview of the main concepts of model transformations,
namely, model graphs, model transformation rules and model transition systems.

Definition 2. A model graph G is a directed, typed and attributed graph.
The type graph of a model graph is called the metamodel, which is related to a
model graph by a typing homomorphism. The metametamodel is the common
language (in other words, the top-most type graph) for describing metamodels,
which is reflective (i.e., its type graph is itself).

In model transformation systems, the source and target models are related
by a reference graph, which is, in fact, an ordinary model graph. In general, a
reference graph is a common abstraction of the source and target models relating
the corresponding nodes and edges to each other.

? XSTL (eXtensible Stylesheet Language Transformation) is an XML technology used
for describing (mainly syntactic) transformations between XML files.
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Definition 3. A model transformation rule r = (L,N,R, M) is a special
graph transformation rule, where all graphs L, N and R are model graphs applied
in the specified mode M .

The application of r to a host graph G replaces an occurrence of L (left-
hand side) in G by an image of R (right-hand side) yielding the derived graph
H. This is performed by

1. finding an occurrence of L in (G, which is either an isomorphic or non-
isomorphic image according to M

2. checking the negative application condition N, which prohibit the presence
of certain nodes and edges

3. removing those nodes and edges of the graph G that are present in L but
not in R yielding the context graph D (all dangling edges are removed at
this point)

4. adding those nodes and edges of the graph G that are present in R but not
in L attaining the derived graph H.

Currently, the behavior of VIATRA follows conceptually the single pushout
approach [6] (i.e., removing dangling edges and allowing non—isomorphic images
in graph pattern matching), however, the concrete graph manipulations are de-
fined and implemented by logics based rewriting showing closer correspondence
to the techniques of [16].

The entire model transformation process is defined by an initial graph ma-
nipulated by a set of model transformation rules (micro steps) executed in a
specific mode in accordance with the semantics (macro steps) of a hierarchical
control flow graph.

Definition 4. A model transition system MTS = (Init, R,CFG) with re-
spect to (one or more) type graph TG is a triple, where Init defines the initial
graph, R is a set of model transformation rules (both compatible with TG ),
and CFG is a set of a control flow graphs defined as follows.

— There are six types of nodes of the CFG, each associated with a rule r € R:
Start, End, Try, Forall, Loop and Call.
— There are two types of edges: succeed and fail.

The control flow graph is evaluated by a virtual machine which traverses the
graph according to the edges and applies the rules associated to each node.

1. The execution starts in the Start and finishes in the End node. Neither
types of nodes have rules associated to them.

2. When a Try node is reached, its corresponding rule is tried to be executed.
If the rule was applied successfully then the next node is determined by the
succeed edge, while in case the execution failed, the fail edge is followed.

3. At a Loop node, the associated rule is applied as long as possible (which
may cause non-termination in the macro step).
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4. When a Forall node is reached, the related rule is executed parallelly for all
distinct (possible none) occurrences in the current host graph.

5. Finally, at a Call node (which has an associated CFG and not a rule) the
state of the CFG virtual machine is saved and the execution of the associated
CFG is started (in analogy with function calls in programming languages).
When the sub CFG machine is terminated, the saved state is restored, and
the execution is continued in accordance with the outgoing edge (succeed
or fail).

2.2 A case study: Semantics of Message Sequence Charts

To provide a more deeper insight into the expressiveness of model transforma-
tion systems, below we consider a semantic interpretation of Message Sequence
Charts (abbreviated as MSCs in the sequel). The semantics of MSCs that de-
fine a partial order on events (following the semi-formal description in [14]) is
captured by a corresponding model transformation system.

P1 P2 P3
) () (e,
M2

M3 send receive '
M4

RecEvent

M5

M5

Fig. 1. Message Sequence Charts: visual syntax and metamodel

Message Sequence Charts (a sample MSC model is depicted in Fig. 1 together
with a metamodel) are constructed from Processes (depicted as rectangles) that
communicate by sending and receiving Messages (shown as arrows). The fact
that a message is sent or received is represented by a corresponding Event
(SendEvent or RecEvent) on the process line (depicted as vertical lines). If a
message M; is (supposed to be) sent before another message M then the arrow
representing M; appears above the arrow of Mj.

For the semantic interpretation, we define a partial order on MSC events and
formalize it by the model transformation system of Fig. 2 as follows.

— Causality. If p is the send event and ¢ is the receive event of the same
message then p precedes gq.

— Controlability. If p appears above ¢ on the same process line, and ¢ is a
send event then p precedes q. This order reflects the fact that a send event
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precedes <end>
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<SendEvent> <RecEvent>|| <SendEvent> <RecEvent> O transClosureR fifoOrderR
causualityR
LHS  <process> RHS  <process> LHS  <Event> RHS  <Event>
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<Event> <SendEvent>| | <Event> abg\é%ndEvenD <Event> <Event> <Event> <Event>
controlabilityR transClosureR
LHS  <sendEvent> <RecEvent> RHS  <SendEvent> <RecEvent>
events @ <%/ents eventsr> @ send< > rec o events
<Process> <Message> <Processy | <Process> <Message> <Process>

above above precedes

<Message> <Message>
events send rec @ events|| events @ send() rec @ events
<SendEvent> <RecEvent> <SendEvent> <RecEvent>

fifoOrderR

Fig. 2. Defining semantics for Message Sequence Charts

can wait for other events to occur. On the other hand, we typically have less
control on the order in which receive events occur.

— FIFO order. For any send events p’ and ¢’ on the same process line where
p' is above ¢', p precedes ¢ for the corresponding receive events p and q.

— Transitivity. The precedes relation is transitive, i.e., if p precedes ¢ and ¢
precedes r then p precedes r.

Ezxample 6. We select rule transClosureR for deeper investigations. According
to the control flow graph, this rule is applied in loop mode in the very end of
the semantic transformation process, and generates the transitive closure of the
precedes relation. If event P is already connected to Q by a precedes edge and
Q is already connected to R (according to the left-hand side of the rule), and
if P is not connected yet to R by a precedes edge (negative condition), then a
new precedes edge is added leading from P to R (as defined by the right-hand
side). Loop mode prescribes that rule transClosureR should be applied as long
as possible.

The rules of the corresponding model transformation system are rather straight-
forward with respect to the metamodel and the informal semantics of MSCs,
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which clearly demonstrates the descriptive power of our approach. Even though
the control flow graph of our case study is relatively simple, the use of CFGs
for restricting the valid computations still helps reduce the complexity of rule
preconditions (thus resulting in more efficient pattern matching). In our case,
we can safely omit the negative application conditions from rules that can be
executed in forall mode (such as causalityR, controlabilityR and fifoOrderR)
without duplicating precedes edges since those rules are applied parallelly in a
single (deterministic) transformation step.

2.3 Program generation for graph transformation rules

The automated program generation of VIATRA allows the transformation de-
signers to focus on the design of a model transformation rather than the im-
plementation. Previous experiments (in project HIDE [3]) demonstrated that
the quality of an automatically generated executable transformation program is
much higher than a manually written target program. Moreover, once the au-
tomated program generator is completed, the time and workload related to the
design of a single transformation is drastically decreased.

In VIATRA, the program generation process of model transformation rules
is divided into several intermediate steps.

1. Model transition systems are specified in a UML CASE tool (Rational Rose
was used for our experiments), and exported in the standard XMI format.

2. This UML model is transformed into a GraTra model conforming to a meta-
model of graph transformation systems.

3. In VIATRA, model graphs are represented as predicates in a fact database.
For this reason, the previous GraTra model is projected into a Logic model
containing a sequence of terms for each rule.

4. The bridge between visual (graph based) and the textual language of Prolog
is provided by the parse tree of the Prolog code. In this sense, the Logic
model is transformed into a corresponding Prolog parse tree, and the target
Prolog code is printed out by traversing this tree in an in-order way.

The importance of these intermediate steps is threefold.

— At first, there is a huge abstraction gap between a visual UML-based speci-
fication of the transformation and even such a high-level programming lan-
guage as Prolog. Thus splitting the transformation into several subtransfor-
mations decreases the complexity of the individual steps, which eases not
only the implementation but also the verification of the automated program
generation.

— Secondly, the use of intermediate models increases reusability. For instance,
when generating the input language of a model checker for the verification
of a model transformation (an ongoing research activity), only the final step
needs to be altered.
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— Finally, the intermediate GraTra model provides the right basis for gen-
erating the upcoming standard XML description of graph transformation
systems [18] by a simple transformation from the GraTra XMI format to
GXL/GTXL.

In fact, each intermediate transformation step is specified (and implemented)
as model transformation, which means that the entire code generation process
is captured by graph transformation. In this sense, the implementation of model
transformation rules is specified by model transformation rules. This approach is
similar to the bootstrapping process of compiler design, where, for instance, a C
compiler is written in C and compiled by an existing C compiler, and recompiled
by itself afterwards to provide a more efficient and reliable target code. In VI-
ATRA, the current version of the program generator is implemented manually,
while future versions (with additional features, and more efficient / reliable tar-
get code) are generated by using the existing version of the program generator.

causalityR:- controlabilityR:-
node (msc:message(M)), node (msc:process (X)),
edge (msc:send(E1,M,P)), edge (msc:events(E1,X,P)),
node (msc:sendEvent (P)), node(msc:event(P)),
edge(msc:receive (E2,M,Q)), edge(msc:events(E2,X,Q)),
node(msc:recEvent (Q)), node(msc:recEvent (Q)),

add (edge (msc:precedes(E3,P,Q))) .| edge(msc:above(E3,P,Q)),
add (edge (msc:precedes(E4,P,Q))) .

fifoOrderR:- transClosureR:-
node (msc:process (X)), node(msc:event(P)),
edge (msc:events(E1,X,P1)), edge (msc:precedes (E1,P,Q)),
node (msc:sendEvent (P1)), node(msc:event(Q)),
edge(msc:events(E2,X,Q1)), edge (msc:precedes(E2,Q,R)),
node (msc:sendEvent (Q1)), node(msc:state(R)),
edge (msc:above (E3,P1,Q1)), ( edge(msc:precedes(E3,P,R) ->
edge (msc:send (E4,M1,P1)), fail ; true),
node (msc:message (M1)), add (edge (msc:precedes(E4,P,R))) .

edge(msc:receive (E5,M1,P)),
node(msc:recEvent (P)),

edge (msc:send (E6,M2,Q1)), msc:-

node (msc:message (M2)), forall(causabilityR),
edge(msc:receive (E7,M,Q)), forall(controlabilitR),
node (msc:recEvent (Q)), forall(fifoOrderR),

add (edge (msc:precedes (E8,P,Q))) .| loop(transClosureR).

Fig. 3. Program generation for transformation rules

Example 7. We continue our case study with a brief insight into the structure
of the generated Prolog code (see Fig. 3). Again, we discuss only the behavior
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of rule transClosureR in details. The Prolog code of the rules implements the
graph pattern matching by consecutive unifications during which the variables
P, Q, R, E1, E2 are instantiated. The outermost terms (node and edge) are
responsible, for instance, for the hierarchical matching of patterns (i.e., a node of
type SendFEvent should also be matched by the Event pattern in case of MSCs).
The negative part (within parenthesis) causes failure for the current matching
if and only if R is already a substate of P, and then steps to the next matching
to be examined by backtracking. Finally, after a successful pattern matching, a
precedes edge is added between P and R.

The example also demonstrates that the generated program partially contains
transformation dependent (translated) Prolog code (i.e., the sequence of terms
representing queries on the model graph) and (interpreted) calls to built-in rou-
tines from a VIATRA library (like node (), edge (), and routines implementing
different modes of rule application discussed in the upcoming section).

2.4 Implementing the virtual machine

cfGraph forallNode| | cfGraph forallNode
\  activeNode \  activeNode
ractiveCfg  apply ractiveCfg  apply

gelectR=

cfgvVM Rule cfgvVM Rule
forallNodeR
forall (Rule):- call(Rule), fail.
forall(Rule).

Fig. 4. Executing a step of the virtual machine

The implementation of the virtual machine that executes the control flow
graph (CFG) of a model transition system builds upon the reflective property
of program generation in VIATRA as the operational semantics of this virtual
machine is also defined by model transition systems. In this respect, the program
corresponding to a rule is generated automatically, and the implementation of
the “meta” CFG (i.e., the CFG that defines the behavior of the virtual machine)
is very simple. The entire semantics of the virtual machine consists of 11 rules,
from which the handling of forall nodes is depicted in Fig. 4.

Ezxample 8. The semantics of rule forallNodeR is as follows. When the virtual
machine is to execute a step (pc = step), then the active CFG node in the active
graph should be found and the selectR attribute of the associated graph trans-
formation rule is set to true in order to select the rule for execution. Moreover,
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the program counter pc is set to exec indicating that now the virtual machine
should execute the rule before making the next step and attribute rm (which
represents the execution mode of a rule) is set to forall.

In the rule execution phase, the piece of code in the right region of Fig. 4 is
called, which is responsible for executing the rule for all possible matches in the
current state. This is obtained by causing an artificial backtracking whenever
the rule application is succeeded. Finally, if all possible matches are processed,
the application of a rule in forall mode is also successfully completed (including
the case when there are no possible matches of the LHS).

Finally, the current node of the control flow graph is updated according to
the success of rule application, and we proceed with the new current node.

3 Conclusion

In the current paper, we presented an automatic program generation framework
for the implementation of model transformation systems, where the process
of program generation is specified by consecutive model transformations. Our
approach (implemented in the VIATRA tool) is reflective in the sense that the
next versions of the program generator can be derived by the previous version
similarly to the bootstrapping techniques of compiler design. In fact, the virtual
machine of VIATRA that executes a control flow graph has been implemented
by using the automated program generator of graph transformation rules.
VIATRA has already been applied successfully to provide an automated im-
plementation of transformations specified by means of model transition systems.

— The specification (and implementation) of the VIATRA virtual machine re-
quired 11 graph transformation rules and a simple automata.

— In [11], a transformation from UML Statecharts to Extended Hierarchical
Automata (EHA) has been carried out that provides formal operational se-
mantics for statecharts. In [19], we formalized the entire transformation by
model transitions systems with over 40 rules.

— The original paper defined the EHA semantics as a Kripke automata. We
also provided visual semantics for EHA by model transition systems having
approximately 20 rules (with simple LHS graphs).

— The completeness of UML statechart specifications in a dependable envi-
ronment has been investigated in [13]. Currently, an automated verification
program is under implementation using VIATRA.

— A transformation from UML statecharts to Stochastic Reward Nets [4] is
also under implementation (having currently 25 rules for a well-separated
subproblem) to provide access to Petri Net based analysis techniques.

3.1 VIATRA as a graph transformation tool

As state-of-the-art tools of graph transformation systems (such as GenGEd (with
AGG) [1] , DiaGen [10], Progres [17], and FUJABA [12]) have been evolving for
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more than a decade, VIATRA is naturally not the only tool that is capable of
performing model transformations. However, we believe that VIATRA is tai-
lored to the special needs of model transformations between UML and semantic
domains to such an extent that makes our tool more flexible and powerful in
this specific application domain of graph transformation systems than sophis-
ticated general-purpose graph transformation tools. Therefore, it is rather (i)
the underlying model transformation methodology, (ii) its openness and compli-
ance with leading industrial standards, and (iii) its (ongoing) integration with
model checking tools that makes VIATRA unique rather than the core graph
transformation engine itself.

— Openness, Compliance with standards: VIATRA is an open environ-
ment built around XMI technology, which is the de facto standard in UML-
based modeling environments. XMI DTDs for non-UML models are gener-
ated automatically from metamodels, which is a more flexible solution in
domain specific applications than tools forcing to use a fixed set of XML
elements. Moreover, similarly to the story diagram-based rule descriptions
[8] of FUJABA, VIATRA uses a UML profile based on class diagrams as the
formal specification language of model transformations.

— Model transformations: Transformations of UML models necessitate to
manipulate complex data structures with a large number of rules (see our
benchmark transformations or [7], where a Java implementation of UML
models is also specified by graph transformation rules), which makes graph
transformation tools without control condition impractical for such applica-
tions due to the increased level of nondeterminism. In addition, a typical
model transformation rule is executed parallelly (in forall mode) for each in-
dependent matching. However, forall type rule applications are not directly
supported by general purpose graph transformation tools. Moreover, as in
most cases more than a single language is involved in transformations, the
simultaneous handling of multiple metamodels is not flexible in these tools.

— Verifying model transformation systems: An ongoing research activity
integrates model transformation systems with existing model checking tools
for formal verification purposes which requires that the Kripke automata of
the system is derived from the same (intermediate) semantic representation
as the automatically generated target program. As a benchmark application,
we generate SAL [2] specifications from UML Statecharts, where statecharts
semantics are captured by model transformation systems.
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Abstract. A realizer of a maximal plane graph is a set of three par-
ticular spanning trees. It has been used in several graph algorithms and
particularly in graph drawing algorithms. We propose colored flips on
realizers to generalize Wagner’s theorem on maximal planar graphs to
realizers. From this result, it is proved that o + &1 +& — A =n—1
where &; is the number of inner nodes in the tree T;, A is the number of
three colored faces in the realizer and n is the number of vertices. As an
application of this formula, we show that orderly spanning trees with at
most | 22+t1=4 | leaves can be computed in linear time.

1 Introduction

Schnyder showed that every maximal plane graph admits a special decomposition
of its interior edges into three trees, called realizer [13,14]. Such a decomposition
can be constructed in linear time [14]. Using realizers, it has been proved in [14]
that every plane graph with n > 3 vertices has a planar straight-line drawing in
a rectangular grid area (n —2) x (n — 2). The existence of straight line embed-
dings for planar graphs was independently proven by Wagner [16], Fary [8] and
Stein [15]. However, the question whether a grid of polynomial size for such an
embedding exists was raised by Rosenstiehl and Tarjan [12].

Realizers are useful for many graph algorithms, of course for graph drawing
[14, 2] but also for graph encoding [3]. They are strongly connected with canon-
ical ordering (or shelling order) [9,11], with 3-orientations [4], and with orderly
spanning trees [2]. They can also be used to characterize planar graphs in terms
of the order of their incidence, i.e., a graph G is planar iff the dimension of the
incidence order of vertices and edges is at most 3 [13]. Realizers of the same
graph have already been investigated. Suitable operations transforming a real-
izer of a graph to another realizer of the same graph have been investigated in
[4,1]. A particular normal form is also characterized. Moreover, the structure of
the set of realizers of a given graph turns out to be a distributive lattice [4].

In this paper, we deal with realizers of size n, i.e. realizers of maximal plane
graphs of size n. Wagner [16] showed that any two maximal planar graphs having
the same number of vertices are equivalent under diagonal flip transformations.
A diagonal flip is a graph operation on maximal planar graphs which consists of
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removing the diagonal (u1,us) of a quadrilateral (uq,us,us,us), and inserting
the opposite diagonal (uz2,u4) (see Fig. 4). Hence, one can obtain all maximal
plane graphs of size n using diagonal flips. An extension of Wagner’s result to
torus graphs has been proved in [5]. We generalize Wagner’s theorem to real-
izers. Moreover, we show that the set of all realizers is a poset, i.e. a partially
ordered set, with some appropriate relationship. Instead of the flip operation, we
introduce two new operations, that we will call colored or oriented flips which
will be used to get a realizer from another one of the same size.

Flip operations are also related to the four color theorem. In [6], a signed
version of the diagonal flip has been used to define transformations between
signed triangulations of a polygon. The existence of a sequence of signed flips
between two given triangulations of a polygon turns out to be equivalent to
the four color theorem [6,7,10]. Our approach involves an “oriented” version of
diagonal flips.

As an application of our main result, we characterize the number of inner
nodes of realizers. Precisely, we prove that & + &1 + & — A = n — 1 where §; is
the number of inner nodes in the tree T; and A is the number of three colored
faces in the realizer. As an application of this result, we prove that an orderly
spanning tree with at most [WJ leaves can be computed in linear time for
a maximal plane graphs. This bound is a precise formulation of that given in [2].

The rest of this paper is organized as follows. In Section 2, we present realizers
and we give some basic properties. An extension of Wagner’s theorem on realizers
and the structure of the set of realizers are investigated in Section 3. We prove
in Section 4 that { + & + & — A =n — 1, and we apply it to orderly spanning
trees. Section 5 concludes the paper.

2 Preliminaries

2.1 Definitions

We assume that the reader is familiar with graph theory. In this paper we deal
with simple graphs. A drawing of a graph is a mapping of each vertex to a point
of the plane and of each edge to the continuous curve joining the two ends of
this edge. A planar drawing or plane graph is a drawing without crossing edges
except, possibly, on a common extremity. A graph that has a planar drawing
is a planar graph. A plane graph splits the plane into topologically connected
regions, called face regions. A face is the counterclockwise walk of the boundary
of a face region. One of the regions is unbounded and its associated face is
named the ezxternal face of the plane graph. The vertices and edges of this face
are also qualified as external, the other vertices are called inner ones. A cycle is
an eulerian connected partial subgraph (i.e. with vertices of even degree only).
A cycle is elementary if all its vertices are of degree 2. A circuit is a cycle where
each vertex has an out-degree equal to its in-degree. A k-cycle is a cycle of k
edges. Since we deal with plane graphs, a cycle defines an interior region. For
simplicity, we say the region C, for the region delimited by the cycle C.
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A planar graph G is mazimal (or triangulated) if all the other graphs with the
same number of vertices that contain GG, are not planar. The faces of a maximal
plane graph are triangular. In this case, we denote vg, v1,v2 the three vertices of
the external face of this plane graph.

Definition 1 [13] A realizer of a mazimal plane graph G is a partition of the
interior edges of G in three sets Ty, T1, T> of directed edges such that for each
interior vertex u it holds thats

1. u has out-degree exactly one in each of Ty, T1, Ts.

2. The counterclockwise order of the edges incident with u is: leaving in Ty,
entering in Ts, leaving in Ty, entering in Ty, leaving in To and entering in
T, (see Fig. 1).

So a realizer is a set of three rooted trees where their edges are oriented to their
roots, which are the external vertices vy, v1,v2. For simplicity, we write 72 4+ 1 as

EZ/

—

/O'

Fig. 1. Edge coloration and orientation around a vertex

a shorthand for (i + 1) mod 3 and 7 — 1 as a shorthand for (i +2) mod 3. In
the rest of the article, we assume that the edges of the tree T; are colored with
color i, where 7 € {0,1,2} and that the external edges (v;, vi+1) are of the color
i+ 1. In fact, we consider a slightly different definition of realizers by coloring
the external edges in order to reduce the number of particular cases.

An example of a graph, and a realizer of this graph are given in Fig. 2.

Fig. 2. An example of a realizer (a graph on the left side, and one of its realizer on the
right side)



178

We denote by deg;(v) the number of ingoing edges of v in T;. u1 i, us denotes
the path colored i from u; to us. We write uy >%_, us (resp. uy >%, us) if u; is
after us in the counterclockwise preordering (resp. clockwise preordering) of the
tree T;. Counterclockwise (resp. clockwise) preordering of a tree means visiting
the root, then recursively the subtrees in the counterclockwise (resp. clockwise)

order.

2.2 Properties of Realizers

Let F' = (eg, €1, e2) be a face of G with e; = {uj,u;41}.

Property 1 If uy is the parent of us in T; then uq >fjul us and us >f;ul Uy .

The proof of this property is based on the following facts.

Fact 1 Let eq be colored 1.
If eg and e1 are oriented towards ui then ey is colored i.

Proof. If ey is not colored i, the parent of u; in 7;1; would be inside the face F'.
This is not possible.

Fact 2 Let eq be colored 1.

If eg and ey are respectively oriented towards w1 and us then ey is colored i + 1.
Sitmilarly, if eo and ex are respectively oriented towards ug and u, then e, is
colored 1 — 1.

Proof. Assume that ey and e; are respectively oriented towards u; and us. If e;
is not colored i + 1, the parent of w; in 7341 would be inside the face F'. This
is not possible. A similar argument can be used to prove the second part of the
fact.

As a consequence of the above facts, there are four possible colorations of a

face which are given in Fig. 3. Notice that the last two colorations use the three
colors. We will say the faces are three-colored ones.

i-1 @ i-1 E@
i ;i i+1 i i+1

Fig. 3. Edge coloration of a face
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2.3 Realizer distributive lattice

In this section, we recall results on the set of the realizers of a given graph. In
particular, its structure is a distributive lattice.

Since we work with embedded graphs, a directed cycle is oriented either
clockwise or counterclockwise, also noted as cw-cycle (resp. ccw-cycle).

Lemma 1 [I] Let R be a realizer of a mazimal plane graph G. Let C be a
ccw-cycle (resp. cw-cycle) in R. Then we obtain a new realizer R' of G by

1. reversing the direction of the edges of C

2. setting for each edge of C' the new color to be the color succeeding (resp.
preceding) its original color,

3. setting for each edge inside C' the new color to be the color preceding (resp.
succeeding) its original color,

4. leaving the color of any other edge unchanged.

Definition 2 [1]

— Let G be a mazimal plane graph. Define R(G) := {R: R is a realizer of G}.

— For two realizers Ry and Ry of G, R = Ry iff Ry can be obtained from
Rs by re-coloring some cw-cycles, i.e. there exists a re-coloration sequence
which transforms Ry into Ro.

— Let Lg (resp. Rg) be the realizer of G without any cw-cycle, (resp. ccw-
cycle).

Theorem 1 [1] Let G be a mazimal plane graph. (R(G),=X) is a distributive
lattice.

In the following section, we will deal with the set of all realizers of size n.

3 Diagonal flips on realizers

3.1 Diagonal flip

In [16], Wagner proved that it is possible to obtain all maximal planar graphs of
size n using a graph rewriting rule called diagonal flip. In this section, we extend
this result to realizers using colored flips.

Definition 3 Let G be an embedded graph. Let us,ui,us and us,uq,u; be two
adjacent faces where us is not neighbor of us. A diagonal flip consists of removing
the edge (u1,uq) and inserting the edge (u2,us) (see Fig. 4).

Theorem 2 [16] Let G1 and G2 be two mazimal planar graphs with n vertices.
There exists a sequence of diagonal flips which transforms G into Gs.
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Fig. 4. Diagonal flip operation

3.2 (Generalization to realizers

As shown in Fig. 5, we propose colored diagonal flips for realizers using two kinds
of flips: fi and fi. It is easy to see that the application of a diagonal flip f{ or
f4 on a realizer gives another realizer.

The choice between fi and fi depends of the quadrilateral configuration.
Note that if the edge (u2,u1) is colored i — 1 and oriented towards u,, and if
the edge (us,u;) is colored i + 1 and oriented towards u;, then f or fi can be
applied.

Fig. 5. Flips on realizer

Unfortunately, it is not always possible to apply one of the two operations.
This occurs for the configuration of the quadrilateral of Fig. 6.

Fig. 6. Configuration for which colored flip cannot be directly applied

Now, we define two orders on trees, <., and <.y, that are useful to express
some flip properties.

Definition 4 Let T and T' be ordered rooted trees with k nodes. Let nq,ns, ..., ny,
and my, ma, ...,my, be the nodes of T and T' in the clockwise preordering (resp.
counterclockwise preordering). If T = T' then T <. T' and T < cw T'. Else,
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let i be the rank of the first node where deg(n;) # deg(m;). If deg(n;) < deg(m;)
then T <. T (resp. T <cew T').

Naturally, T >, T’ means that T’ <., T. Also, T' <.y T’ means that T' <!, T
and T # T'. If we consider the example of Fig. 7, we can see that the two
grey nodes are the first nodes in 7" and 7" with different degrees, with respect
to the clockwise preordering. As the grey node in T has more children than in
T', T >., T'. Similarly, the two black nodes are the first which have different
degrees in T and 7", in the counterclockwise preordering. Since the black node
in T" has more children than that in T, T <, T".

> e
T T

Fig. 7. Illustration of order relation between trees

Property 2 Let R = (Ty,T1,T%) be a realizer. Let R' = (T3, T}, T,) be a realizer
obtained from R by applying a flip fi (resp. fi). We have the following properties:
T@I <cw Tz’; Til_1 >cew Ti—l (resp. TZI <cew Ti; Til-f-l >cw Tz'+1)

Proof. Let us consider the flip f{ of Fig. 5. The edge (u1,u3) can be colored
1 — 1 and oriented towards us or colored 7 + 1 and oriented towards u;. In both
cases u1 <'7. uz. As the number of children of u; is greater in T/_; than in
Ti—1, T}_| >ccw Ti—1. The edge (u2,u4) can be colored i and oriented towards
u4 or colored 7 + 1 and oriented towards us. In both cases, uy4 <f:w Uus. Since the
number of children of uy4 is lesser in 7} than in T}, T} <cy Ts.

3.3 Structure of R,, and Wagner’s theorem

Let R, be the set of realizers of graphs of size n. The set of all realizers of
size n can be represented by an oriented colored graph where vertices stand for
realizers, and an edge colored i between two vertices R and R’ represents the
flip f{ transforming R into R'. Fig. 8 shows the graph of realizers of size 6. Each
vertex represents a realizer. There is a directed edge colored i from a realizer R
to another one R’ if R’ can be obtained from R by a flip fi. The right part of
the figure displays the transformation of the realizer 6 into the realizer 5 by a
flip f7.

We write R(fi|fi*')*R’ if R can be transformed into R’ by a sequence of
flips fi and fi*t'. Let (Rn, fi|fi™") be the set of realizers of size n, equipped
with the relation (fi|fit1)*.

Property 3 (R, fi|fit!) is a poset, i.e. a partially ordered set.
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Fig. 8. R with fi operations.

Proof. When applying fi, T! <cw T; and T!_; >cew Ti—1. When applying fit,
Ti’+1 <ew Tit1 and T} >ccp T;. So, using the flips fior f“, T; 1 is strictly
decreasing considering the order >..,, and T;4; is strictly increasing considering
the order >,,. Hence (f|fi*t1)* is antisymmetric. An empty sequence transforms
R into R, and thus the relation is reflexive. The relation is also transitive since
flip sequences can be concatenated.

Let D! be the realizer of size n where all the inner vertices are on the same
branch of T; and T;41 and T;_1 are trees of depth 1 (see Fig. 9).

i- Vit
n-{
i

Fig. 9. Realizer D},

Property 4 D' is the upper bound of (Rn, fi|fi*") and Dit! is the lower
bound. Di~' is the lower bound of (R, fi '|f) and D' is the upper bound.

Proof. Let R = (Ty,T1,T») be a realizer of size n. If R # D! then there is
an inner node in T; or in T; 1. If v is an inner node of T;, a flip ff+1 can be
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applied on its outgoing edge colored i+ 1. Similarly, if u is an inner node of T;_1,
a flip f} can be applied on its outgoing edge colored i. Hence a flip f{ or a flip

f"'l can be applied. In the same way, we show that D:~! is the upper bound
of (R, fi|fiT1). The second part of the property comes directly from the fact
that fQi_1 is the inverse of f{ and f} is the inverse of le'l.

Theorem 3 There exists a sequence of colored flips that transforms any realizer
R with n vertices into any other realizer R' with n vertices.

Proof. Let R and R’ be two realizers with n vertices. As D%~ is the unique
maximal element of (R,, fi|fi™'), there is a flip sequence that transforms R
into D=1, There is also a flip sequence that transforms Di~! into R'. Hence,

the concatenation of the two previous sequences transforms R into R'.

In the previous theorem, flips f; and f, are allowed to transform a realizer to
another one. It is possible to use only flips f; as stated in the following corollary.

Corollary 1 There ezists a sequence of colored flips (fP|fL|f2)* that transforms
any realizer R with n vertices into any other realizer R' with n vertices.

Proof. Since D? is the upper bound of (R, fi|f?) there exists a flip sequence
(fLIf3)* that transforms R into D9. Since D is the upper bound of (R, f1|f3),
there exists a sequence (f1|f3)* that transforms R’ into DY. The inverse flip se-
quence transforms D? into R’ and is composed of flips f{ and flips fi. Hence, the
concatenation of the two appropriated sequences gives a flip sequence (f?|fi|f2)*
that transforms R into R'.

4 Three-colored faces and number of inner nodes in
realizers

Let A be the number of three-colored faces of a realizer R. Let &; be the number
of inner nodes of the tree Tj.

Lemma 2 Let R be a realizer. Let R' be a realizer obtained from R with a flip
fi. The sum & + & + & — A is the same for R and R'.

o) &y-& =0/ o o)
Mop 8 80
' \o/) §,-8, =0 '

O R a-a=a & K

Fig. 10. Example of flip configuration
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Proof. To prove the lemma, we need to check the modifications induced by the
flip f! on the quadrilateral and the adjacent face of the edge (u1,us3). If we
consider the configuration of Fig. 10, we can see that us is an inner node of T
but not of T|. Moreover, R has a three-colored face whereas R’ does not. So the
lemma holds for this configuration.

More generally, there are 32 possible configurations of the quadrilateral and
the adjacent face of the edge (u1,us3) for the flip fi. Fig. 11 shows the 32 possible
configurations. For all these configurations, the lemma is verified.

Theorem 4 For any realizer R of a mazimal plane graph G, we have & + &1 +
€2 —A=n-1.

Proof. Since all realizers of size n can be obtained from one another by applying
operations f; which preserve the sum &y + & + & — A, all realizers of size n
have the same sum. In the particular case of the realizer DY of Fig. 9, this sum
isequalton —1 (§o=n—3,& =1,&& =1 and A =0).

The orderly spanning tree [2] of a maximal plane graph can be obtained from
a Schnyder tree T; by adding the edge (viy1,v;) to T;.

Corollary 2 Let R be a realizer of a plane graph G. An orderly spanning tree
can be obtained in linear time from R with at most LWJ leaves.

Proof. This corollary follows from the fact that the number of leaves in a Schny-
der tree T; is n — 1 —¢; and that the orderly spanning tree obtained from 7; has
one more leaf, the node v;41.

5 Conclusion and remarks

In this paper, we proved Wagner’s theorem for realizers of maximal plane graphs
of size n. The bound for the number of leaves of an orderly spanning tree, given
in Corollary 2, improves that given in [2]. This result can be useful particularly
for classes of graphs where A > 0, such as 4-connected graphs. As an application
of this bound, there exists an n x (22£2=4) grid for drawing a plane graph of
size n.

Besides, we have shown that (R, f{|fSfs*!) has a structure of a bounded
poset. We have also looked for richer structure such as lattices. Unfortunately,
neither (Rg, fIfiTHfitY), (Re, filfit1) nor (Re, fi|fat!) has a structure of a
lattice. We conjecture that (R, fi|fiT!|fi™!) is a poset. We have shown that
this conjecture is true for n < 6.
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Abstract. We show how to program in a core programming language
based on graph transformation rules. Our programs compute various
functions and relations on graphs: the functions generating the transi-
tive closure of a graph and the disjoint union of all subgraphs of a graph,
the relation yielding all spanning trees of a graph, and functions testing
for connectedness, acyclicity, and planarity. The language has a simple
syntax consisting of just three constructs: nondeterministic one-step ap-
plication of a set of rules, sequential composition, and iteration. It also
has a simple formal semantics, and was shown to be computationally
complete and minimal.

1 Introduction

In [3] we introduced a programming language for graph transformation con-
sisting of three constructs: nondeterministic application of a rule from a set of
graph transformation rules (according to the double-pushout approach), sequen-
tial composition of programs, and iteration in the form that a program is applied
as long as possible. The language has a simple formal semantics and is computa-
tionally complete in that it allows to compute every computable partial function
on labelled graphs. Moreover, the language is minimal in that omitting either
sequential composition or iteration results in an incomplete language.

In this paper we show how to program in this language, by giving programs
for the following problems: generating the transitive closure of a graph, generat-
ing the disjoint union of all subgraphs of a graph, generating all spanning trees
of a graph, and testing whether a graph is connected, acyclic, or planar, respec-
tively. The test functions are non-destructive in that they preserve the input
graph, hence their programs can be used as components of programs which do
further computations.

We consider the proposed programming language as a (declarative) core lan-
guage because it lacks types and high-level constructs like procedures and mod-
ules. Having a simple yet computationally complete core language has several
advantages:
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— High-level languages for graph transformation which provide more program-
ming comfort can be defined by mapping high-level constructs to the core.
In this way possibly complex languages can be obtained which by their def-
inition automatically get a formal semantics. Moreover, new languages are
known to be computationally complete if they just cover the core language.

— Implementations for new languages based on the core can be rapidly obtained
by extending an implementation of the core with translations from high-level
constructs into core constructs.

— Frameworks and systems for formal reasoning on graph programs can be
restricted to deal with the core language, since high-level programs can be
translated into semantically equivalent programs in the core language. For
example, frameworks for both program verification and program transfor-
mation can benefit from this approach.

The next section reviews the syntax and semantics of the core language and
mentions computational completeness and minimality. Section 3 constitutes the
main part of this paper, showing how to program in the language by means of
several examples. Finally, two auxiliary program schemes implementing a copy
operation and a conditional statement are given in the Appendix.

2 The language

Programs are based on sets of graph transformation rules according to the
double-pushout approach, where rules are matched injectively and may have
non-injective right-hand morphisms. See [3] and [2] for details.

Definition 5 (Syntax). Programs over a label alphabet C are inductively de-
fined as follows:

(1) Every finite set R of rules over C is a program.
(2) If P, and P, are programs, then (P;; P») is a program.
(3) If P is a program according to (1) or (2), then P is a program.

Programs according to (1) are elementary, the program (Py; P>) is the se-
quential composition of P, and P, and P | is the iteration of P. Programs of
the form (P;; (P»; Ps)) and ((Pi; P); P3) are considered as equal and can both
be written as (Py; Po; Ps); this is justified in that sequential composition is se-
mantically the composition of binary relations, which is associative (see below).

We consider graph transformation over abstract graphs (isomorphism classes
of graphs), denoting by A¢ the set of all abstract graphs over a label alphabet
C. Given a binary relation — on a set S, we denote by —1 the transitive closure
of — and by —* the reflexive-transitive closure. The domain of —, denoted by
Dom(—), consists of all elements a in S such that a — b for some b.
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Definition 6 (Semantics). Given a program P over a label alphabet C, the
semantics of P is a binary relation —p on A¢ which is inductively defined as
follows:

(1) -»p = =g if P is an elementary program R.
(2) _)<P1;P2) = —p °—p,.
(3) »p = {(G,H) |G =} H and H ¢ Dom(—p)}.

Consider now subalphabets C; and Cs of C and a relation Rel C A¢, x Ac,.
We say that P computes Rel if Rel = - p N (Ac, x Ac,), that is, if Rel coincides
with the semantics of P restricted to A¢, and Ac,. The same applies to partial
functions f: A¢, = Ac,, which are just special relations.

We remark that our programs can be formulated as semantically equivalent
graph transformation units in the sense of [6]. Hence the results stated below
apply to a certain sublanguage of graph transformation units, too.

Next we mention results from [3] on the computational completeness and the
minimality of our language, without defining when a partial function on graphs
is computable. The definition is based on an encoding of graphs as expressions.
Intuitively, a partial function f on abstract graphs is computable if there is a
computable function f’ on strings such that for every abstract graph G for which
f is defined and every graph expression w denoting G, f' is defined for w and
yields a graph expression denoting f(G). Moreover, f' is not defined on graph
expressions denoting graphs on which f is not defined.

Theorem 1 (Completeness). For every computable partial function f on ab-
stract graphs there exists a program that computes f.

The language is also minimal, meaning that omitting either sequential com-
position or iteration results in a computationally incomplete language.

Theorem 2 (Minimality).

1. The set of programs without sequential composition is computationally in-
complete.
2. The set of programs without iteration is computationally incomplete.

For example, in [3] it is shown that the function converse: A¢c — A which swaps
source and target of each edge in a graph, is not computable by any program in
the above two program classes.

3 Programming

In this section we show how to use our language for solving the following graph
problems: generating the transitive closure of a graph, generating the disjoint
union of all subgraphs of a graph, generating all spanning trees of a graph, and
testing for connectedness, acyclicity, and planarity.

The programs below make extensive use of rules that relabel nodes, although
the double-pushout approach is usually formulated for totally labelled graphs
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and label-preserving graph morphisms which prevent such rules. We employ a
generalized form of rules where nodes in the interface can be unlabelled and
morphisms can send unlabelled nodes to labelled nodes [4]. It can be shown,
however, that for every rule r of generalized type there is a program P(r) using
ordinary rules such that — ., =—p(,).

We display rules by showing their left- and right-hand sides, using the con-
vention that the interface graph consists of all numbered nodes.

3.1 Generating the transitive closure

The transitive closure of a graph G is obtained by adding an edge from a node
u to another node v, whenever there is in G a directed path from u to v but no
direct link. The function trans: A¢ — A, assigning to every graph its transitive
closure, is computed by the following program:!

TransClosure = if () then TransClosure; else TransClosure,.

The subprograms TransClosure; and TransClosures are dealing with an empty
and a non-empty input graph, respectively. While TransClosure; does not alter
the input graph, TransClosure, is given as follows:

((Selecty; (Selects; Connectl]; Forgets)|; Forgets)|; Forget,),

where Connect = (Selects; Unmark]; Link|). The main rules of TransClosure;
are given in Figure 1. Select; selects a node and gives it the index 1, Selects

Select; : @ = for AeCy

1 1
Selects : = for A,B€Cy,a€CgU{x}

1 2 1 2

for A,B,C € Cy,

. L @e@he ARy

1 2 3 1

c

2 3
C
for A,B,C € Cy,

Unmark : a = a a,b,c € Cp U {x}

1 2 3 1 2 3
o a b - - . ; for A,B,C € Cv,
1 2 3 1 2 3

Fig. 1. The main rules of TransClosures

gives a neighbour of this node the index 2, and Connect gives a neighbour of the

! The program scheme “if _then _else ” is defined in Appendix A.1.
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latter node the index 3 and, if there is no edge from the first to the third node,
links these nodes. To test whether the first and the third node are already linked,
Selects first marks the three nodes. If a link exists, then Unmark removes the
marks; in this case Link is not applicable. If the first and the third node are not
yet linked, then Link inserts an edge and removes the marks. Note that the dow-
narrows attached to Unmark and Link ensure that Connect is defined in cases
where Unmark or Link is not applicable. Finally, for ¢ = 1,2, 3, the subprogram
Forget; removes each occurrence of mark .

3.2 Generating the disjoint union of all subgraphs

Our next program transforms an input graph into the disjoint union of all its
subgraphs. PowerGraph will be used as a subprogram in the planarity test of
subsection 3.6, but is interesting in its own right.

We consider here subgraphs that are obtained by edge deletions because only
these matter for the planarity test. Extending the program to cover arbitrary
subgraphs is straightforward.

In PowerGraph we use a subprogram Tag which adds a “tag” to a given graph
by creating a unique auxiliary node and pointers from this node to all nodes in
the graph. This form of tagging allows to identify different subgraphs of a graph.
Tag is defined by

Tag = (CreateTag; LinkNode|; Restorel),

where the rule sets are shown in Figure 2. In these rules, the “invisible” edge
label, the node label 7, and the labels {A* | A € Cy'} are all fresh.

CreateTag: 0 = @

Linklode : (1) (4) = (7)-@) fordecy
1 2 1 2
Restore : = @ for A€ Cy
1

1

Fig. 2. The rules of Tag

Now PowerGraph is the program
(Tag; (PickGraph; (PickEdge; Copy; RemoveEdge)|; Untag)|; CleanUpl),

where Copy is an auxiliary program for copying a graph which is defined in
Appendix A.2. The other subprograms are shown in Figure 3. The program
PickGraph picks a tagged graph and removes all marks that have possibly been
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PickGraph = (Pick; Restorel)

Pick : @ = @ for t € {r,7'}
O~0 = (-0

1 2 1 2
Restore : 5 Q—O
1 2 = 162
3 3
!
PickEdge : o—0O = O——0
1 2 1 2

RemoveEdge = (Remove; Forget |; TickEdge)

Remove : O—0 = O O
1 2 1 2
Forget : @L@ = OO0
1 2 1 2
|
TickEdge : oo = o¥o
1 2 1 2

Untag = (Unlink|; RemoveTag)

Unlink : @O = @ O,
2 1 2

1
RemoveTag : @ = @
1
o = O
CleanUp : !

oo = 00O

1 2

Fig. 3. Some subprograms of PowerGraph
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created by a previous copy operation, yielding the graph “under consideration”.
The program PickEdge picks an edge in the graph under consideration and marks
it with !. Then Copy (see Appendix A.2) copies the graph under consideration,
and RemoveEdge removes the copy of the picked edge (marked with !") and marks
the picked edge with /. By repeating this process as long as possible, one obtains
copies of all graphs that result from the original graph by removing a single edge.
Afterwards the graph under consideration is “frozen” by removing its tag and
marking all nodes with '. The latter prevents further copy operations on the
graph. Then PickGraph picks a new tagged graph and the whole process starts
again.

3.3 Generating all spanning trees

A subgraph S of a graph G is a spanning tree of GG if the undirected graph
underlying S is a tree that contains all nodes of G. Our program will “highlight”
the edges of a spanning tree of a connected component of the input graph by
marking them with *. Let Spanning C A¢ x Acr be the relation with (G,G') €
Spanning if and only if G' is obtained from G by marking the edges of a spanning
tree of any connected component of G with . The relation Spanning is computed
by the program

Spanning = if () then Spanning; else Spanning,,
where Spanning; does not alter its input and Spannings is given by
Spanning, = (Select; (Activatel; Backtrack)|; Forget).

This program does a depth-first search for finding a spanning tree. The search
proceeds in a strictly sequential way since at any time at most one node is active,
that is, marked with e. The subprogram Select initially activates a node, while
Activate activates a neighbour of the currently active node and deactivates the
latter. Backtrack reactivates a neighbour of an active node. Finally, Forget
forgets auxiliary node markings. The spanning tree of a component of a graph
is then given by all x-marked edges and their incident nodes. The main rules of
Spannings are shown in Figure 4.

To compute spanning trees without backtracking, we can replace Spanning,
with

Spanning), = (Select; Activate'|; Forget).

The subprogram Select activates a node while Activate' looks for an activated
node, activates a neighbour, and remains active. So several nodes can be active
simultaneously. As before, the spanning tree is determined by the %-marked
edges. The main rules of Spanning), are shown in Figure 5.
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Select : @ = for A eCy
1 1
[ @B = for A, B € Cy, a € Cr
1 2

Activate : { 1 2

= for A BeCv,a€Cr
1 2

for A,B€Cyv,a€Ck
1 2
for A, B€Cv,a€Ck
1 2

?
®
v

Backtrack : ¢ 1 2

o
®
Y

Fig. 4. The main rules of Spannings

Select : @ = for AeCy
1 1

= ‘4 for A,B € Cy, a€Cr
= for A,B €Cy,a€Cr

Activate’ :

Fig. 5. The main rules of Spanning}

3.4 Testing for connectedness

A directed graph is connected if there is a path between each two nodes in the
underlying undirected graph. The function connected?: Az — A¢r with

G+ Q) if G is connected,

connected?(G) =
G+ (0) otherwise
is computed by the program
Connected? = if () then Connected?; else Connected?,.

Here Connected?; creates a single node with label 1 and Connected?; is given
by

Connected?s = (Select; Mark]; Check; Forget]).
The program Select picks any node, Mark] marks all nodes that are reachable
from the picked node, Check = (Initiate; Test |) adds an auxiliary node

with label 1 to the graph and checks whether any unmarked nodes remain, and
Forget| removes all marks. The rules of Connected?; are shown in Figure 6.
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Select : @ = for A € Cy
for A,B €Cv,a€Cp
~‘ = for A,B € Cy, a € Cx
Initiate : (z) :> (1)
Test: (1) @ (0) @ for A€ Cy
Forget : @ for A € Cy

Mark :

Fig. 6. The rules of Connected?»

3.5 Testing for acyclicity
The function acyclic?: A¢c — Aer with

acyclic?(G) = G+ @ if G is acyclic
. G + (0 otherwise

is computed by the following program:
Acyclic? = (Copy; Reduce; Check; GarColll).

The idea behind this program is that a graph is acyclic if and only if the rules of
Figure 7 reduce it to a graph without edges. The program Reduce for reducing
the copy of the input graph is given by

Reduce = (MarkNonLeaf |; DeleteEdge; DeleteEdgel; Restorel)/,

with rules as shown in Figure 7. Reduce first marks all nodes with at least one
outgoing edge, so that all other nodes must be leaves (nodes without outgoing
edges). Edges pointing to leaves cannot belong to cycles and hence can be safely
removed. This may result in new leaves, so we remove all marks and start again.
The reduction finishes if no edges pointing to leaves remain. Note that the twofold
occurrence of DeleteEdge guarantees that Reduce terminates.

The program Check = (Add; Test]) adds an auxiliary node with label 1 to
the graph, checks whether the reduced copy contains an edge and, if so, changes
the label of the auxiliary node to 0. Finally, GarColl | removes the remainder
of the copy. See Figure 8 for the rules of Check and GarColl.
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MarkNonLeaf : = '—~ for A, BeCv,a€Cr
DeleteEdge : for A\ B€Cv,a€Cr

1

Restore : for all A e Cy
1 1

Fig. 7. The rules of Reduce

Add : o = (1)
' @ = @ for A,BeCv,a€Cg
1 2 1 2

! ’
@ = @ a for A€ Cv,a €Cr
= 1 for A,B€Cv,a€Cr
1 2 1 5

l4
a
GarColl : ¢ = @ for A€ Cy, a €Cr
1 1

(4) = @  fordecCy

Test : ¢

Fig. 8. The rules of Check and GarColl

3.6 Testing for planarity

A graph is planar if it can be drawn on the plane without edge crossings. Our
program for computing the function planar?: 4, — A¢r with

planar?(G) = {G + @ if G is planar,

G + (0) otherwise
is based on Kuratowski’s Theorem.? By this theorem, an undirected and unla-
belled graph is planar if and only if it has no subgraph homeomorphic to K5 or
K3 3 [5]. Here K3 is the complete graph with five nodes, and K3 3 is the complete
bipartite graph whose node sets both have 3 nodes, see Figure 9. Furthermore,

% Tt is known that this leads to an algorithm of exponential complexity, which is evident
for our solution as PowerGraph produces a graph of exponential size. But simulating
one of the subtle linear algorithms for planarity testing (see for example [1]) is beyond
the scope of this paper.
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Ks Ks3
Fig. 9. The graphs K5 and K33

two graphs are homeomorphic if both can be obtained from the same graph by
a sequence of edge subdivisions. It follows that a graph is planar if and only if
no subgraph reduces by repeated applications of the rule Contract in Figure 10
to a graph containing K5 or K3 3.

The function planar? is computed by the program

Planar? = (Copy; Simplify|; PowerGraph; Contractl; Check; GarColl)

whose rules are shown in Figure 10. The subprogram Simplify first transforms
the copy of the input graph to an undirected, unlabelled graph without multiple
edges and loops. We draw unlabelled nodes as unfilled circles, and undirected
edges as lines without arrowheads. Implicitly, unlabelled nodes and edges carry
a special “invisible”label and undirected edges are pairs of edges pointing in
opposite directions.

The program PowerGraph of Section 3.2 is used to generate the disjoint union
of all subgraphs of the copied input graph (where we only consider subgraphs
resulting from edge deletions). Then Contract | contracts the obtained graph
as long as possible, and

Check = (Initiate; Test(Kj)|; Test(Ks53)l)

checks whether the contracted graph contains K or K3 3. The program first adds
an auxiliary node with label 1 which, if the check was successful, is changed to
0. The interfaces of the rules Test(K5) and Test(K3 3) consist of K5 and K3 3,
respectively. Finally, GarColl removes the remainder of the simple graph.

A Appendix

A.1 The program scheme if _then _ else _

We use a program scheme if K then P; else P, which checks whether the
input graph equals K and executes P; or P, depending on whether the check is
successful or not. More precisely, the semantics is given by G = if K then P, else P
H if and only if G = K and G —p, H or G # K and G —p, H. The scheme is
defined by

if K then P; else P, = (Check(K); (Deletej; P;)l; (Deletey; Po)l),



198

)
= (1) for A e Cy

09O = O—0O  foraeCs
1 2 1 2

Simplify : ¢ ,
a
8 = 0O for a € Cg
1 1
a0 = O0—O
L 1 2 1 2
Contract : O—O—O = O—O
1 2 1 2
Initiate : 0 = @

Test(Kg,g) H @ +K3,3 = @ +K3,3

Test(Ks) : ®+K5 = @+K5
oO—0O = O O
1 2 1 2

GarColl :
O = 0

Fig. 10. The rules of Planar?

where Check(K) copies the input graph G and reduces the copy to a node with
label 1 if G = K, and to a node with label 2 otherwise. For ¢ = 1,2, Delete;
deletes a node with label i. If Check(K) yields 1, then (Delete;; P;) can be
executed only once because the node with label 1 is deleted and (Deletey; Ps)
is executed zero times because there is no node with label 2. Vice versa, if
Check(K) yields a node with label 2, then (Delete;; P;) is executed zero times
and (Deletey; P») is executed once. We omit the rules of this program scheme
for space reasons.

A.2 The program scheme Copy

We also use a program scheme Copy for copying graphs. Given a label alphabet
C = (Cy,Cp),let C° = (CvU(Cy x{"HU(Cy x{*}), CeU(Cex{" HU(Crx{"})).
Labels (I,") and (,* ) from C'® are written !’ and [*, respectively. Copy transforms
a graph G over C into the graph G + G' over C®, where G’ is obtained from G
by replacing each label [ with {’. Copy is defined as follows:

Copy = (CopyNode; CopyEdgel; Restorel).
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The rules of Copy are shown in Figure 11.

CopyNode : @ = @ for all Ae Cy
1 1
1 2 1 2

@ @ for all A,B € Cy

CopyEdge : a = a* a’
@ @ and a € Cg
3 4 3 4
= (4 for all A € Cy
Restore : 1 1
= (4) (@) forallAcCy
1 2 1 2

Fig. 11. The rules of Copy
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