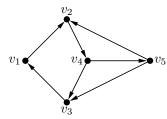
Algorithmen auf Graphen

9. Übungsblatt

Gruppe

1. Konstruktion einer Rundreise


+ 0 -

Das Problem DIRHAMPATH_{special} entscheidet bei Eingabe eines gerichtetetn einfachen Graphen G=(V,E) mit $E\subseteq V\times V$ und zweier verschiedener Knoten $A,B\in V$, ob es in G einen gerichteten einfachen Weg von A nach B durch alle Knoten gibt, also eine Knotenfolge $v_1v_2\dots v_{\#V}$ aus paarweise verschiedenen Knoten mit $(v_i,v_{i+1})\in E$ für alle $1\leq i<\#V$, $A=v_1$ und $B=v_{\#V}$.

Gib eine Reduktion von DIRHAMPATH $_{\rm special}$ auf HAMPATH $_{\rm special}$ an (für HAMPATH $_{\rm special}$ siehe Blatt 7).

Für die Konstruktion des ungerichteten einfachen Graphen G'=(V',E') verwende die Idee, jeden Knoten v eines gerichteten Graphen durch drei Knoten v^{in},v^{mid},v^{out} und zwei Kanten $\{v^{in},v^{mid}\}$ und $\{v^{mid},v^{out}\}$ darzustellen und beschreibe, wie die Kanten aus G in G' übertragen werden sollen. Lege dann einen Anfangs- und einen Endknoten aus V' für die Eingabe von HAMPATH_{special} fest.

Erläutere die Korrektheit deiner Konstruktion anhand des folgenden gerichteten Graphen mit $A = v_1$ und $B = v_3$.

2. Aufgabe 2 entfällt wegen Vorlesungsende.