Algorithmen auf Graphen

3. Übungsblatt

Gruppe			
	1		

Sei B = (V, E) ein nichtleerer Baum, d.h. ein ungerichteter Graph, der zusammenhängend und kreisfrei ist und zudem mindestens einen Knoten hat. Sei weiter

- $no.l = \#\{v \in V \mid degree(v) = 1\}$ die Zahl der Blätter (wobei ein Blatt ein Knoten mit Grad 1 ist),
- $maxdeg = \max\{degree(v) \mid v \in V\}$ der maximale Grad und $max = \max\{1, maxdeg 1\}$,
- $diam = \max\{length(p) \mid v, v' \in V, p \in SIMPLE(v, v')\}$ der *Durchmesser*, also die Länge eines längsten einfachen Weges und
- radius der Radius, d.h. die Zahl, die durch die Eigenschaft $2 \cdot radius \leq diam \leq 2 \cdot radius + 1$ bestimmt ist.
- 1. Sei $V=\{1,\ldots,15\}$ eine Menge mit 15 Knoten. Gib für jede der folgenden Eigenschaften jeweils einen Baum mit dieser Knotenmenge an:
 - (a) nole = 2, (b) maxdeg = 3, (c) diam = 6, (d) radius
- 2. (a) Zeige mit vollständiger Induktion über radius, dass für alle nichtleeren Bäume gilt:
 - i. $no_l \le 2 \cdot max^{radius}$ für ungeraden Durchmesser $diam = 2 \cdot radius + 1$.
 - ii. $no l \leq max^{radius-1} \cdot (max+1)$ für geraden Durchmesser $diam = 2 \cdot radius \geq 2$.

Überlege dabei im Induktionsschluss, durch welche Konstruktion ein Baum mit Radius k+1 zu einem Baum mit Radius k wird.

- (b) Die beiden folgenden Aussagen sind falsch. Gib für eine davon ein Gegenbeispiel an.
 - i. Für jeden Baum mit geradem Durchmesser gibt es einen Knoten, den jeder einfache Weg besucht, der mindestens *radius* lang ist.
 - ii. Für jeden Baum mit ungeradem Durchmesser gibt es eine Kante, die jeder einfache Weg durchläuft, der länger als *radius* lang ist.
- 3. Sei $max \geq 2$. Dann lassen sich die vollständig balancierten Bäume B_i für $i \in \mathbb{N}$ folgendermaßen konstruieren:
 - (a) B_1 besteht aus max + 1 Knoten, von denen einer mit allen anderen durch je eine Kante verbunden ist; dieser Knoten mit Grad max ist die Wurzel von B_1 .
 - (b) Für $i \geq 1$ besteht B_{i+1} aus B_1 und max Kopien von B_i , wobei jedes Blatt von B_1 mit einer Wurzel je eines B_i verschmolzen wird; die Wurzel von B_1 wird damit auch Wurzel von B_{i+1} .

Es ist nicht schwer zu zeigen (und darf vorausgesetzt werden), dass $no_{-}l(B_i) = max^i$, $diam(B_i) = 2 \cdot i$ und $radius(B_i) = i$ für $i \in \mathbb{N}$ gilt.

Konstruiere mit Hilfe der B_i für alle $j \geq 1$ Bäume C_j mit $diam(C_j) = j$, so dass die Ungleichungen in 2 (a) zu Gleichungen werden (mit Beweis).