
Visual Modeling and
Model Transformation

Hans-Jörg Kreowski

Research Group

Theoretical Computer Science Department of Computer Science

University of Bremen

hope to solve the software problem
(as software engineering promises for nearly 40 years)

but not without rigorous semantics and verification
(as software engineering tends to ignore)

Visual modeling

UML (use cases, class and object diagrams, state
charts, sequence and collaboration diagrams, etc.)

many other types of diagrams (ER diagrams, flow
diagrams, etc.)

Petri nets

graph grammars (as counterpart to Chomsky
grammars and contextfree grammars in particular)

Protocol Statechart
Interface User2Phone

Describes sequences
of events expected by
interface

Idle Dialing or Talking

on()

off()

Talking

off()

on()

<<interface>>

User2Phone
on()
off()
dial(n:Digit)

dial(n)

Sequence Diagram
Calling Scenario

on()

reply()

off()

<<component>>

:Phone
<<component>>

:Line

send_no("14“)

dial(1)

dial(4)

on()

send_off("14“)

:Actor

X2≠X3

X1:=succ(X1)

X2:=pred(X2)

F

X3 := 0

T

X1:=X1+X2

rules: ::= Xi:=e

b FT

e ::= 0 | succ(Xj) | pred(Xj)
1≤ i, j ≤ k

b ::= Xi≠Xj

rules: ::= Xi:=e

b FT

e ::= 0 | succ(Xj) | pred(Xj)
1≤ i, j ≤ k

b ::= Xi≠Xj

X3 := 0 X2≠X3
FT

X3 := 0

X1:=e1

X2≠X3
FT

X3 := 0

X1:=e2

⇒ ⇒ ⇒

generation of well-structured flow diagrams

initial:

rules: ::= Xi:=e

b FT

terminal: no

e ::= 0 | succ(Xj) | pred(Xj)
1≤ i, j ≤ k

b ::= Xi≠Xj

ob1:SGObject

role = r1
classifiers = cs1

(1)

ob1:SGObject

role = r1
classifiers = cs1

(2)

Activation

Current
index = 1
activatorStack = [0]

End

SG0

Generation of Sequence Graphs

GenerateSG
init: SG0

rules: gsg1, gsg2, gsg3

L Rob1:SGObject

role = r1
classifiers = cs1

(1)

N1
:SGObject

N2

ob1:SGObject

role = r1
classifiers = cs1

(2)

Activation

ob1:SGObject

role = r1
classifiers = cs1

(1)

ob1:SGObject

role = r1
classifiers = cs1

(2)

ob1:SGObject

role = r1
classifiers = cs1

Activation

ob1:SGObject

role = r1
classifiers = cs1

Activation

Activation

ob2:SGObject

role = r2
classifiers = cs2

ob2:SGObject

role = r2
classifiers = cs2

Activation

 SGStimulus
 signature = op
 recurrence = c

Return

ob1:SGObject

role = r1
classifiers = cs1

(1)

SGReturn

:SGObject
ob1:SGObject

role = r1
classifiers = cs1

(2)

SGReturn

gsg1

R ob1:SGObject

role = r1
classifiers = cs1

(1)

ob1:SGObject

role = r1
classifiers = cs1

(2)

ob1:SGObject

role = r1
classifiers = cs1

Activation

ob1:SGObject

role = r1
classifiers = cs1

Activation

Activation

ob2:SGObject

role = r2
classifiers = cs2

ob2:SGObject

role = r2
classifiers = cs2

Activation

 SGStimulus
 signature = op1
 recurrence = c1

SGReturn

ob3:SGObject

role = r3
classifiers = cs3

SGReturn

 SGStimulus
 signature = op2
 recurrence = c2

ob3:SGObject

role = r3
classifiers = cs3

Activation

c1 implies not c2

gsg2

L ob1:SGObject

role = r1
classifiers = cs1

(1)

ob1:SGObject

role = r1
classifiers = cs1

(2)

Activation

N1
:SGObject

N2

ob1:SGObject

role = r1
classifiers = cs1

(1)

SGReturn

:SGObject
ob1:SGObject

role = r1
classifiers = cs1

(2)

SGReturn

L R

ob1:SGObject

role = r1
classifiers = cs1

(1)

Activation

ob2:SGObject

role = r2
classifiers = cs2

Activation

SGReturn

:SGObject
(3)

(5) SGStimulus
 signature = op1
 recurrence = c1

:SGObject
(4)(6) SGStimulus

 signature = op2
 recurrence = c2

ob1:SGObject

role = r1
classifiers = cs1

(1)

Activation

:SGObject
(3)

(5) SGStimulus
 signature = op1
 recurrence = c1

:SGObject
(4)

(6) SGStimulus
 signature = op2
 recurrence = c2

ob1:SGObject

role = r1
classifiers = cs1

(2) ob1:SGObject

role = r1
classifiers = cs1

(2)
ob2:SGObject

role = r2
classifiers = cs2

 SGStimulus
 signature = op3
 recurrence = c3

c1 implies not c2
c1 implies not c2
c2 implies not c3
c1 implies not c3

gsg3

Model transformation

MDA (model-driven architecture, successor
of UML)

compiler (from source to target programs)

software development process and
program transformation

graph transformation

Xi ≠ Xj FT

translatesome

::= Xi ≠ Xj F

wait

some

translatetranslate

Xi := e ::=
Xi := e

translate

while Xi ≠ Xj do

some

waittranslate

Xi ≠ Xj F

other
::=

some

other od

translate translation of
well-structured flow diagrams

into textual expressions

plus some
string composition
rules

evaluation of well-structured flow diagrams

initial:

rules: ::=

current

wsfd
X1

n1

Xk

nk

.....
ni ∈ ΙΝ

Xi:=0

current

Xi

ni

Xi:=0

current

Xi

0

Xi:=f(Xj)

current

Xi

ni

Xj

nj

::= Xi:=f(Xj)
current

Xi

f(nj)

Xj

ni

f ∈ {succ, pred}

current

Xi

ni

Xj

nj

::=

current

Xi

ni

Xj

nj

ni≠nj

Xi≠Xj FT Xi≠Xj FT

current

Xi

ni

Xj

nj

Xi≠Xj FT

ni=nj

terminal: reduced forms

Rule base

basic ingrediences of a rule-based setting

set of configurations K (e.g. graphs)

set of rules R (e.g. graph transformation rules)

rule application operator ⇒ assigning

⇒⊆K × K to each r ∈ R

con ⇒ con‘ direct derivation, computation step,
evaluation step, reduction step, etc.

⇒ union of all ⇒ for all r ∈ P

⇒ reflexive and transitive closure*
P

P

r

r

r

Rule-based system (1st version)

syntax P ⊆ R

operational semantics

iterated rule application relation ⇒ ⊆ K × K

rule application graph Graph(P) = (K , ⇒)

examples

derivation graph (in grammatical context)

reachability graph (of place/transition nets)

transition relation

P

*
P

Rule base with control condition

control the nondeterminism of rule applications

set of control conditions C
with SEM(c) ⊆ K × K for c ∈ C

examples

priorities, regular expressions, evaluation strategies, etc

(I ,T) with SEM((I ,T)) = K(I) × K(T)

(K(I) ⊆ K initial config‘s and K(T) ⊆ K terminal ones,

may be used together with other control conditions)

(S , all) with K(S) = {S} for S ∈ K and K(all) = K

Rule-based system (2nd version)

syntax (P , c) with P ⊆ R and c ∈ C

operational (?!) semantics

iterated rule application relation ⇒∩ SEM(c)

rule application graph

Graph(P , (I ,T)) = (K , ⇒ , K(I) , K(T))

examples

various kinds of grammars, place/transition systems,

term rewrite systems, graph transformation,

finite state machines and statecharts with OR states, etc

*
P

P

(P , (I ,T) , c) specifies input-output transformation

K(I) ∋ M N ∈ K(T)

model transformation if K(I) and K(T)) are sets of

(visual) models of some kind (cf. compiler semantics)

examples

sequence collaboration

diagrams diagrams

(Cordes & Hoelscher 2003)

Model transformation

transformer

SD2CD

(P , (I ,T) , c) specifies input-output transformation

K(I) ∋ M N ∈ K(T)

semantics of models in K(I) if K(T)) is set of

semantic models of some kind

example

wsfd state transition

function

Semantics by model transformation

transformer

wsfd2stf

source models borrow semantics from target models

(if they have some)

Nice aspect of model transformation (1)

transformer

semanticsT

N ∈ K(T)K(I) ∋ M

notion of correctness

(if source and target models have got semantics)

Nice aspect of model transformation (2)

transformer

semanticsT

N ∈ K(T)K(I) ∋ M

semanticsI ?
=

examples

Nice aspect of model transformation (2)

diagram2text

denotational
semantics

textual
program

wsfd

operational
semantics =

SD2CD

CD2MOD

collaboration
diagrams

sequence
diagrams

SD2MOD
=

up to some adaptation

mapping of (visual) models into semantic domain

like model transformation if semantic entities are graphs

example

wsfd´s state transition functions
ΙΝ k ΙΝ k

defined by

S(Xi:=0 | f(Xj))(n1,...,nk) = (n1,...,ni-1,0 | f(nj),ni+1,...,nk)
S(wfds1;wfds2)(n1,...,nk) = S(wfds2)(S(wfds1)(n1,...,nk))
S(while Xi≠Xj do wfds od)(n1,...,nk) = if ni ≠ nj then S(while

Xi≠Xj do wfds od)(S(wfds)(n1,...,nk)) else (n1,...,nk)

Denotational semantics

S

Conclusion

rule-based framework suitable for operational semantics
and model transformation in visual modeling

see, e.g., Baresi, Ehrig, Engels, Gogolla, Heckel, Minas,
Schürr, Taentzer for more details

interesting aspects are missing like structuring,
composition and non-sequentiality

future research will shed some more light on the semantic
foundation of visual modeling

Handbook on Graph Grammars and Computing by
Graph Transformation

