
Some Essentials of Graph Transformation?

Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany

{kreo,rena,kuske}@informatik.uni-bremen.de

Summary. This chapter introduces rule-based graph transformation, which con-
stitutes a well-studied research area in computer science. The chapter presents the
most fundamental definitions and illustrates them with some selected examples. It
presents also the concept of transformation units, which makes pure graph transfor-
mation more feasible for specification and modeling aspects. Moreover, a translation
of Chomsky grammars into graph grammars is given and the main theorems concern-
ing parallelism and concurrency are presented. Finally, an introduction to hyperedge
replacement is given, a concept which has nice properties because it transforms hy-
pergraphs in a context-free way.

1 Introduction

Graphs are a well-established means in computer science for representing data
structures, states of concurrent and distributed systems, or more generally sets
of objects with relations between them. Famous examples of graphs are Petri
nets, flow diagrams, Entity-Relationship diagrams, finite automata, and UML
diagrams.

In many situations one does not only want to employ graphs as a static
structure, but also to transform them e.g. by firing transitions in the case of
Petri nets or UML state diagrams, or by generating or deleting objects and
links in the case of UML object diagrams. The area of graph transformation
brings together the concepts of graphs and rules with various methods from
the theory of formal languages and from the theory of concurrency, and with
a spectrum of applications, see the three volumes of the Handbook of Graph

? Research partially supported by the EC Research Training Network SegraVis
(Syntactic and Semantic Integration of Visual Modeling Techniques) and the Col-
laborative Research Centre 637 (Autonomous Cooperating Logistic Processes: A
Paradigm Shift and Its Limitations) funded by the German Research Foundation
(DFG).

2 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

Grammars and Computing by Graph Transformation as an overview [Roz97,
EEKR99, EKMR99].

In this chapter, we give a survey of some essentials of graph transformation
including

• a translation of Chomsky grammars into graph grammars in Section 5
showing the computational completeness of graph transformation,

• the basic notions and results on parallelism and concurrency in graph
transformation in Section 6, and

• a context-free model of graph transformation in Section 7.

Unfortunately, graphs are quite generic structures that can be encountered
in many variants in the literature, and there are also many ways to apply rules
to graphs. One cannot deal with all possibilities in an introductory survey.
Therefore, we focus on directed, edge-labeled graphs (Section 2) and on rule
application in the sense of the so-called double-pushout approach (Section 3).
The directed, edge-labeled graphs can be specialized into many other types
of graphs. And the double-pushout approach (which is introduced here by
means of set-theoretic constructions on graphs without reference to categorical
concepts) is one of the most frequently used approaches. In Section 4, we define
graph grammars as a language-generating device and the more general notion
of a transformation unit that models binary relations on graphs.

2 Graphs and the Need to Transform Them

Graphs are well-suited and frequently-used structures to represent complex
relations between objects of various kinds. They are the central structures
of interest in at least four areas of mathematics and computer science:
graph theory (see, e.g., Harary [Har69]), graph algorithms (see, e.g., [Gib85]),
Petri nets (see, e.g., [Rei85, GV03]), and graph transformation (see, e.g., the
Handbooks on Graph Grammars and Computing by Graph Transformation
[Roz97, EEKR99, EKMR99]). But they are also popular and useful in many
other disciplines like biology, chemistry, economics, logistics, engineering, and
many others.

Maps are typical examples of structures that are often represented by
graphs. Already in 1736, Euler formulated the Königsberger Brückenproblem
concerning the map of Königsberg, which consists of four areas that are sep-
arated from each other by the two arms of the river Pregel. There are seven
bridges connecting two areas each, and the question is whether one can walk
around passing each bridge exactly once. This becomes a graph problem if
the areas are considered as nodes and the bridges as edges between the corre-
sponding nodes. A sketch of the map and the respective graph are shown in
the left side of Figure 1. For such graphs, the general question (known as the
Eulerian Cycle Problem) is whether there is a cycle passing each edge exactly
once. Similarly, maps of countries can be represented as graphs by considering

Some Essentials of Graph Transformation 3

the countries as nodes and by connecting each two nodes with an edge the
corresponding countries of which share a borderline. In this way the famous
Four-Color-Problem of maps becomes the Four-Color-Problem of graphs (see,
e.g., [Gib85, AH89]). Finally, road maps are nicely represented as graphs by
considering sites as nodes and a road that connects two sites directly as an
edge that may be labeled with the distance. Such graphs are the basic data
structures for various transportation and tour planning problems.

T F

Fig. 1. Various graphs

Another typical example of graphs are Petri nets, which allow one to model
concurrent and distributed systems (see, e.g., [Rei98]). A Petri net is a simple
bipartite graph meaning that there are two types of nodes, called conditions
and events or places and transitions, and a set of edges, called flow relation,
which connect nodes of distinct types only. The middle graph of Figure 1 shows
a sample Petri net; as usual, round nodes represent conditions or places, and
square nodes represent events or transitions.

A further example of graphs are well-structured flow diagrams such as the
right graph in Figure 1. Such a graph has an entry node (the circle) and an exit
node (the square), boxes representing statements, rhombs representing tests,
and auxiliary nodes in between each two linked boxes or box and rhomb. The
edges represent the control flow. No edge leaves the exit. Each rhomb is left
by two edges representing the test results TRUE and FALSE, respectively.
Each other node is left by a single edge. Each rhomb is the test of a while-loop
meaning that the TRUE -edge starts a path that ends at the node immediately
before the rhomb. Like well-structured flow diagrams, many other kinds of
diagrams including all the UML diagrams may be represented by and seen as
graphs.

Graphs are quite generic structures which can be encountered in the litera-
ture in many variants: directed and undirected, labeled and unlabeled, simple
and multiple, with binary edges and hyperedges, etc. In this survey, we focus
on directed, edge-labeled, and multiple graphs with binary edges.

4 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

2.1 Graphs

Let Σ be a set of labels. A (multiple directed edge-labeled) graph over Σ is a
system G = (V, E, s, t, l) where V is a finite set of nodes, E is a finite set of
edges, s, t : E → V are mappings assigning a source s(e) and a target t(e) to
every edge in E, and l : E → Σ is a mapping assigning a label to every edge
in E. An edge e with s(e) = t(e) is also called a loop. The components V , E,
s, t, and l of G are also denoted by VG, EG, sG, tG, and lG, respectively. The
set of all graphs over Σ is denoted by GΣ .

The notion of multiple directed edge-labeled graphs with binary edges is
flexible enough to cover other types of graphs. Simple graphs form a subclass
consisting of those graphs two edges of which are equal if their sources and
their targets are equal respectively. A label of a loop can be interpreted as
a label of the node to which the loop is attached so that node-labeled graphs
are covered. On the other hand, we assume a particular label ∗ which is
omitted in drawings of graphs. In this way, graphs where all edges are labeled
with ∗ may be seen as unlabeled graphs. Moreover, undirected graphs can be
represented by directed graphs if one replaces each undirected edge by two
directed edges attached to the same two nodes, but in opposite directions.
Finally, even hypergraphs can be handled by the introduced type of graphs as
done explicitly in Section 7.

If graphs are the structures of interest, it is rarely the case that just a single
static graph is considered. Rather, graphs may be the inputs of algorithms
and processes, so that means are needed to search and manipulate graphs.
Graphs may represent states of systems, so that means for updates and state
transitions are needed. Or graph languages are in the center of consideration
like the set of all well-structured flow diagrams or all Petri nets or all connected
and planar graphs. Like in the case of string languages, one needs means to
generate and recognize graph languages. To meet all these needs, rule-based
graph transformation is defined in the next section. This requires some pre-
requisites to deal with graphs, which are introduced in the following.

2.2 Subgraphs

A graph G ∈ GΣ is a subgraph of a graph H ∈ GΣ , denoted by G ⊆ H , if
VG ⊆ VH , EG ⊆ EH , sG(e) = sH(e), tG(e) = tH(e), and lG(e) = lH(e) for all
e ∈ EG. In drawings of graphs and subgraphs, shapes, colors, and names will
be used to indicate the identical nodes and edges.

Given a graph, a subgraph is obtained by removing some nodes and edges
subject to the condition that the removal of a node is accompanied by the
removal of all its incident edges. More formally, let G = (V, E, s, t, l) be a
graph and X = (VX , EX) ⊆ (V, E) be a pair of sets of nodes and edges.
Then G − X = (V − VX , E − EX , s′, t′, l′) with s′(e) = s(e), t′(e) = t(e), and
l′(e) = l(e) for all e ∈ E − EX is a subgraph of G if and only there is no

Some Essentials of Graph Transformation 5

e ∈ E − EX with s(e) ∈ VX or t(e) ∈ VX . This condition is called contact
condition of X in G.

In other words, two subsets of nodes and edges Y = (VY , EY) ⊆ (V, E)
induce a subgraph Y • = (VY , EY , s′, t′, l′) ⊆ G with s′(e) = s(e), t′(e) = t(e),
and l′(e) = l(e) for all e ∈ EY if and only if (V − VY , E − EY) satisfies the
contact condition in G, i.e. there is no edge e ∈ EY with s(e) ∈ V − VY or
t(e) ∈ V − VY .

2.3 Graph Morphisms

For graphs G, H ∈ GΣ a graph morphism g : G → H is a pair of map-
pings gV : VG → VH and gE : EG → EH that are structure-preserving, i.e.
gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for
all e ∈ EG. We will usually write g(v) and g(e) for nodes v ∈ VG and edges
e ∈ EG since the indices V and E can be reconstructed easily from the type
of the argument.

For a graph morphism g : G → H the image of G in H is called a match
of G in H , i.e. the match of G with respect to the morphism g is the sub-
graph g(G) ⊆ H which is induced by (g(V), g(E)). The corresponding contact
condition is satisfied because g preserves the structure of graphs.

Given F ⊆ G, then the two inclusions of the sets of nodes and edges define
a graph morphism. It is also easy to see that the (componentwise) sequential
composition of two graph morphisms f : F → G and g : G → H yields a graph
morphism g ◦ f : F → H . Consequently, if f is the inclusion w.r.t. F ⊆ G,
g(F) is the match of F in H w.r.t. g restricted to F .

2.4 Extension of Graphs

Instead of removing nodes and edges, one may add some nodes and edges to ex-
tend a graph such that the given graph is a subgraph of the extension. The ad-
dition of nodes causes no problem at all, whereas the addition of edges requires
the specification of their labels, sources, and targets, where the latter two may
be given or new nodes. Let G = (V, E, s, t, l) be a graph and (V ′, E′, s′, t′, l′)
be a structure consisting of two sets V ′ and E′ and three mappings s′ : E′ →
V] V ′, t′ : E′ → V] V ′, and l′ : E′ → Σ (where] denotes the disjoint union
of sets). Then H = G+(V ′, E′, s′, t′, l′) = (V]V ′, E]E′, s′′, t′′, l′′) is a graph
with G ⊆ H (which establishes the definition of the three mappings s′′, t′′, l′′

on E) and s′′(e′) = s′(e′), t′′(e′) = t′(e′), and l′′(e′) = l′(e′) for all e′ ∈ E′.

2.5 Disjoint Union

If G is extended by a full graph G′ = (V ′, E′, s′, t′, l′), the graph G + G′ is
the disjoint union of G and G′. Note that in this case s′ and t′ map E′ to
V ′ rather than V] V ′, but V ′ is included in V] V ′ such that the extension
works.

6 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

The disjoint union of graphs puts graphs together without any intercon-
nection. If graphs are disjoint, their disjoint union is just the union. If they
are not disjoint, the shared nodes and edges must be made different from
each other. Because this part of the construction is not made explicit, the dis-
joint union is only unique up to isomorphism, i.e. up to naming. Nevertheless,
the disjoint union of graphs has got some useful properties. It is associative
and commutative. If G1 + G2 is the disjoint union of G1 and G2, there are
two inclusions incl i : Gi → G1 + G2. And whenever one has two graph mor-
phisms gi : Gi → G into some graph G, there exists a unique graph morphism
g : G1+G2 → G with g◦incl i = gi for i = 1, 2. This property is the categorical
characterization of the disjoint union up to isomorphism.

3 Rule-Based Transformation of Graphs

Graph transformation is a rule-based method that performs local changes on
graphs. With graph transformation rules it is possible to specify formally and
visually for instance the semantics of rule-based systems (like the firing of
transitions in Petri nets or in state charts, or the semantics of functional lan-
guages), specific graph languages (like the set of all well-formed flow graphs),
graph algorithms (like the search of all Eulerian cycles in a graph), and many
more.

3.1 Graph Transformation Rule

The idea of a graph transformation rule is to express which part of a graph
is to be replaced by another graph. Unlike strings, a subgraph to be replaced
can be linked in many ways (i.e., by many edges) with the surrounding graph.
Consequently, a rule also has to specify which kind of links are allowed; this
is done with the help of a third graph that is common to the replaced and
the replacing graph and requires that the surrounding graph may be linked
to the replaced graph only with edges incident to this third graph.

Formally, a rule r = (L ⊇ K ⊆ R) consists of three graphs L, K, R ∈ GΣ

such that K is a subgraph of L and R. The components L, K, and R of r are
called left-hand side, gluing graph, and right-hand side, respectively.

Example 1 (flow diagrams). Figure 2 shows two rules representing the replace-
ment of a single statement in a flow diagram by a more complex instruction:
the statement is replaced by two consecutive statements with rcompound, and
by a while-loop with rwhile-do. For both rules, the gluing graph consists of two
nodes that can be located in the respective left- and right-hand sides by their
shape and color.

Example 2 (shortest paths). Figure 3 shows the two essential rules for the
computation of shortest paths in distance graphs, that is graphs labeled with

Some Essentials of Graph Transformation 7

rcompound =

0

B

B

B

B

B

B

B

B

@

⊇ ⊆

1

C

C

C

C

C

C

C

C

A

rwhile-do =

0

B

B

B

@

⊇ ⊆
T F

1

C

C

C

A

Fig. 2. Graph transformation rules for the construction of flow diagrams

non-negative integers. The first rule adds a direct connection between each
two nodes that are connected by a path of length 2 and sums the distances up.
Using this rule, one can compute the transitive closure of the given distance
graph. If one applies the second rule, which chooses the shortest connection
of two direct connections as long as possible, one ends up with shortest con-
nections between each two nodes.

radd =

0

@

x y

⊇

x y

⊆

x y

x + y

1

A

rselect =

 x

y
⊇

x

⊆

x !

(for x ≤ y)

Fig. 3. Graph transformation rules for the computation of shortest paths

In practice one often has the special case where the gluing graph of a rule
r = (L ⊇ K ⊆ R) is a set of nodes. In this case the graphical representation
of r may omit the gluing graph K by depicting only the graphs L and R, with
numbers uniquely identifying the nodes in K. As an example, the rule rwhile-do

from Figure 2 is drawn in Figure 4 using this alternative representation.

rwhile-do :

1

2

−→

1

2

T F

Fig. 4. Alternative representation of the rule rwhile-do

8 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

3.2 Application of a Graph Transformation Rule

The application of a graph transformation rule to a graph G consists of re-
placing a match of the left-hand side in G by the right-hand side such that the
match of the gluing graph is kept. Hence, the application of r = (L ⊇ K ⊆ R)
to a graph G = (V, E, s, t, l) comprises the following three steps.

1. A graph morphism g : L → G is chosen to establish a match of L in G
subject to the following two application conditions :
a) Contact condition of g(L)− g(K) = (g(VL) − g(VK), g(EL) − g(EK))

in G; and
b) Identification condition. If two nodes or edges of L are identified in

the match of L they must be in K.
2. Now the match of L up to g(K) is removed from G, resulting in a new

intermediate graph Z = G − (g(L) − g(K)).
3. Afterwards the right-hand side R is added to Z by gluing Z with R in g(K)

yielding the graph H = Z +(R−K, g) where (R−K, g) = (VR−VK , ER−
EK , s′, t′, l′) with s′(e′) = sR(e′) if sR(e′) ∈ VR−VK and s′(e′) = g(sR(e′))
otherwise, t′(e′) = tR(e′) if tR(e′) ∈ VR − VK and t′(e′) = g(tR(e′))
otherwise, and l′(e′) = lR(e′) for all e′ ∈ ER − EK .

The contact condition guarantees that the removal of g(L) − g(K), yields a
subgraph of G. The identification condition is not needed for the construction
of a direct derivation, but will be helpful in dealing with parallel rules as
considered in Section 6. The extension of Z to H is properly defined because
s′ and t′ map the edges of ER −EK into nodes of VR −VK or g(VK) which is
part of VZ .

Example 3 (flow diagrams). Figure 5 shows an application of the rule rwhile-do

to a flow graph representing a sequence of three statements. The gray areas
indicate the match (left), its parts belonging to the image of the gluing graph
(middle), and the right-hand side (right).

⊇ ⊆ FT

Fig. 5. An application of the rule rwhile-do

Some Essentials of Graph Transformation 9

A rule application of r = (L ⊇ K ⊆ R) can be depicted by the following
diagram where the graph morphisms d : K → Z and h : R → H are given by
d(v) = g(v) for all v ∈ VK , d(e) = g(e) for all e ∈ EK , h(v) = d(v) if v ∈ VK ,
h(v) = v if v ∈ VR −VK , h(e) = d(e) if e ∈ EK , and h(e) = e if e ∈ ER −EK .

L ⊇ K ⊆ R

G ⊇ Z ⊆ H

g d h

It is worth noting that if the subgraph relations in the diagram are in-
terpreted as inclusion morphisms, both squares of the diagram are pushouts
in the category of graphs. This is why the presented approach is also called
double-pushout approach (cf. [CEH+97]). Here the identification condition is
significant because the left diagram is not a pushout if g does not obey the
identification condition.

3.3 Derivation and Application Sequence

The application of a rule r to a graph G is denoted by G =⇒
r

H where

H is a graph resulting from an application of r to G. A rule applica-
tion is called a direct derivation, and the iteration of direct derivations
G0 =⇒

r1

G1 =⇒
r2

· · ·=⇒
rn

Gn (n ∈ N) is called a derivation from G0 to Gn. As

usual, the derivation from G0 to Gn can also be denoted by G0
n

=⇒
P

Gn where

{r1, . . . , rn} ⊆ P , or by G0
∗

=⇒
P

Gn if the number of direct derivations is not

of interest.
The string r1 · · · rn is called an application sequence of the derivation

G0 =⇒
r1

G1 =⇒
r2

· · ·=⇒
rn

Gn.

Example 4 (flow diagrams). Figure 6 contains a derivation using the rules from
Figure 2. Its last direct derivation is the one detailed in Figure 5, and the
application sequence of the whole derivation is rcompound rcompound rwhile-do.

In the literature one encounters various approaches to graph transfor-
mation, among them specific ones, like edge replacement [DHK97] or node
replacement [ER97], and general ones, like the double-pushout approach
[CEH+97], the single-pushout approach [EHK+97], or the PROGRES ap-
proach [Sch97].

4 Graph Grammars and Graph Transformation Units

Analogously to Chomsky grammars in formal language theory, graph transfor-
mation can be used to generate graph languages. A graph grammar consists

10 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

=====⇒
rcompound

=====⇒
rcompound

====⇒
rwhile-do

T F

Fig. 6. A derivation of a flow diagram

of a set of rules, a start graph, and a terminal expression fixing the set of
terminal graphs. Such a terminal expression may consist of a set ∆ ⊆ Σ of
terminal labels admitting all graphs that are labeled over ∆.

4.1 Graph Grammar

A graph grammar is a system GG = (S, P, ∆) where S ∈ GΣ is the initial
graph of GG, P is a finite set of graph transformation rules, and ∆ ⊆ Σ is a
set of terminal symbols. The generated language of GG consists of all graphs
G ∈ GΣ that are labeled over ∆ and that are derivable from the initial graph S
via successive application of the rules in P , i.e. L(GG) = {G ∈ G∆ | S

∗
=⇒

P
G}.

Example 5 (connected graphs). As an example of a graph grammar consider
connected = (•, P, {∗}) where the start graph consists of a single node and
the terminal expression allows all graphs labeled only with ∗. Recall that the
symbol ∗ denotes a special label in Σ standing for unlabeled and being invisible
in displayed graphs. The rules in P = {p1, p2, p3} are depicted in Figure 7.
The rule p1 adds a node v and an edge e such that v is the target of e, and
takes as source of e an already existing node. The rule p2 is similar, the only
difference being that the direction of the new edge e is inverted. The third
rule p3 generates a new edge between two existing nodes. The new edge can
also be a loop if the two nodes in the left-hand side of p3 are identified, i.e. if
they are one and the same node in the match of the left-hand side. It can be
shown that the generated language of connected, L(connected), consists of all
non-empty connected unlabeled graphs.

Example 6 (Petri nets). A place/transition system (N, m0) consists of a Petri
net N = (S, T, F) with a set of places S, a set of transitions T , and a flow
relation F ⊆ (S ×T)∪ (T ×S), and an initial marking m0 : S → N. To model
the firing of transitions by graph transformation in the introduced way, one
may represent a net N = (S, T, F) with a marking m : S → N by the graph
G(N, m) as indicated in Figure 8 where all tokens become nodes. Moreover,

Some Essentials of Graph Transformation 11

connected
initial:
rules:

p1: −→
1 1

p2: −→
1 1

p3: −→
1 2 1 2

terminal: ∗

Fig. 7. A graph grammar generating connected graphs

all places and transitions of N are labeled with their respective names (i.e., a
loop – that is not drawn here – carrying the respective label is attached).

r
r

r

Fig. 8. Turning tokens into nodes

Then we can transform a place/transition system (N, m0) into a graph
grammar GG(N, m0) = (G(N, m0), P (N), P ∪ T ∪ {∗}) where P (N) contains
a rule r(t) for each transition t as depicted in Figure 9. Note that the labels
attached to the nodes are needed to make sure that distinct pre- or postplaces
cannot be identified in a match.

r(t) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

s1

. . .

sk

t

s′1

. . .

s′n

⊇

s1

. . .

sk

t

s′1

. . .

s′n

⊆

s1

. . .

sk

t

s′1

. . .

s′n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Fig. 9. Firing rule for a transition t with •t = {s1, . . . , sk} and t• = {s′1, . . . , s
′

n}

12 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

It is not difficult to show that a marking m is reachable from m0 if and only
if there is a derivation G(N, m0)

∗
=⇒G(N, m). Thus, L(GG(N, m0)) consists

of all net representations G(N, m) where m is a marking reachable from m0

in N .
One may also model Petri nets with weights assigned to the edges of the

flow relation in this way. The left-hand side of the firing rule for a transition t
has as many token nodes attached to each preplace s of t as the weight assigned
to the edge (s, t) of the flow relation specifies, and analogously for the right-
hand side and the postplaces. Then the identification condition ensures that
token nodes cannot be identified in a match, so that the application of such
a rule works correctly.

As for formal string languages, one does not only want to generate lan-
guages, but also to recognize them or to verify certain properties. Moreover, for
modeling and specification aspects one wants to have additional features like
the possibility to cut down the non-determinism inherent in rule-based graph
transformation. This can be achieved with the concept of transformation units
(see, e.g., [AEH+99, KK99a, KK99b]), which generalize graph grammars in
the following aspects:

• Transformation units allow a set of initial graphs instead of a single one.
• The class of terminal graphs can be specified in a more general way.
• The derivation process can be controlled.
• Transformation units provide a structuring concept for graph transforma-

tion.
• Transformation units do not depend on a specific graph transformation

approach.

The first two points are achieved by replacing the initial graph and the
terminal alphabet of a graph grammar by a graph class expression specify-
ing sets of initial and terminal graphs. The regulation of rule application is
obtained by means of so-called control conditions.

4.2 Graph Class Expressions

A graph class expression may be any syntactic entity X that specifies a class
of graphs SEM (X) ⊆ GΣ . A typical example is the above-mentioned subset
∆ ⊆ Σ with SEM (∆) = G∆ ⊆ GΣ . Similarly, the expression all edges x for
x ∈ Σ specifies the class of all graphs G with lG(e) = x for every e ∈ EG, i.e.
all edges are labeled with x. Another useful type of graph class expressions is
given by sets of rules. More precisely, for a set P of rules SEM (P) contains all
P -reduced graphs, i.e. graphs to which none of the rules in P can be applied.
Finally, it is worth noting that a graph grammar GG itself may serve as a
graph class expression with SEM (GG) = L(GG).

Some Essentials of Graph Transformation 13

4.3 Control Conditions

A control condition may be any syntactic entity that cuts down the derivation
process. A typical example is a regular expression over a set of rules (or any
other string-language-defining device). Let C be a regular expression speci-
fying the language L(C). Then a derivation with application sequence s is
permitted by C if s ∈ L(C). As a special case of this type of control condition,
the condition true allows every application sequence, i.e. L(C) = P ∗ where
P is the set of underlying graph transformation rules. Another useful control
condition is as long as possible, which requires that all rules be applied as
long as possible. More precisely, let P be the set of underlying rules. Then
SEM (as long as possible) allows all derivations G =⇒

P
G′ such that no rule of

P is applicable to G′. Hence, this control condition is similar to the graph
class expression P introduced above. Also similar to as long as possible are
priorities on rules being partial orders on rules such that if p1 > p2, p1 must
be applied as long as possible before any application of p2. More details on
control conditions for transformation units can be found in [Kus00a].

Now we have collected all components for defining unstructured transfor-
mation units.

4.4 Transformation Units

A transformation unit (without import) is a system tu = (I, P, C, T) where
I and T are graph class expressions to specify the initial and the terminal
graphs respectively, P is a set of rules, and C is a control condition.

Such a transformation unit specifies a binary relation SEM (tu) ⊆ SEM (I)×
SEM (T) that contains a pair (G, H) of graphs if and only if there is a deriva-

tion G
∗

=⇒
P

H permitted by C.

Example 7 (Eulerian graphs). As an example consider the transformation unit
Eulerian shown in Figure 10. It takes as initial graphs all those generated by
the graph grammar connected introduced in Example 5, i.e. all connected unla-
beled graphs. The terminal graphs are all graphs whose edges are labeled only
with ok. The five rules label edges in a specific way, and the control condition
requires that the rules p2, . . . , p5 can only be applied if p1 is not applicable.
In more detail, the transformation unit Eulerian checks whether every node
in a connected graph has the same number of incoming and outgoing edges,
where loops count as one incoming and one outgoing edge. Hence it checks
whether the input graphs are Eulerian. The rule p1 labels loops with ok. The
control condition requires that first all loops are labeled. This is necessary
because otherwise a rule out of p2, . . . , p5 could also be applied to a loop (by
identifying the target and the source node of an edge in a match of a left-hand
side), which would also admit non-Eulerian graphs as output. The label s in
the rules indicates that the edge has already been counted as outgoing edge
of its source node. Analogously, t means that it has been counted as incoming

14 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

Eulerian
initial: connected
rules:

p1: −→
1 1

ok

p2: −→
1

2

3

1

2

3

s

t

p3: −→
1

2

3

1

2

3

t ok

t

p4: −→
1

2

3

1

2

3
s ok

s

p5: −→
1

2

3

1

2

3
s

t

ok

ok

cond: p1 > px for every x ∈ {2, . . . , 5}
terminal: all edges ok

Fig. 10. A transformation unit that specifies Eulerian graphs

edge of its target. The label ok means that the edge has been counted once
for its source and once for its target.

In every rule application there is a node for which exactly one incoming
and one outgoing edge are counted. Hence, for each node the difference be-
tween the number of uncounted in- and outgoing edges is invariant under a
transformation step. Conversely, it can be shown by induction on the number
of simple cycles that every Eulerian graph is recognized by the unit Eulerian.
Hence, the semantics of Eulerian consists of all pairs (G, G′) where G is con-
nected, unlabeled, and Eulerian, and G′ is obtained from G by labeling every
edge with ok.

It is worth noting that in general transformation units have an import
component that allows to use the semantic relations specified by other units
as transformation steps [KK99b]. Moreover, transformation units have been
generalized to arbitrary m, n-relations on graphs in [KKK04a, KKK04b], to
distributed graph transformation in [KK02], to other data structures than
graphs in [KK03], and to parameterized transformation units in [Kus02]. A
thorough study of transformation units can also be found in [Kus00b].

Some Essentials of Graph Transformation 15

5 Transformation of Chomsky Grammars into Graph

Grammars

Intuitively, it may be clear that graph transformation is computationally com-
plete. This claim is made precise in this section by translating Chomsky gram-
mars into graph grammars. The translation is based on the observation that
a string x = a1 · · ·ak with ai ∈ Σ for i = 1, . . . , k can be represented by
a so-called string graph x• that consists of k + 1 nodes and k edges, where
for i = 1, . . . , k the source of the ith edge is the ith node, the target is the
(i+1)th node, and the label is ai (see Figure 11). The first and the last nodes
are denoted by b(x•) and e(x•), respectively.

a1 · · · ak . . .
a1 ak

Fig. 11. Translating a string into a string graph

Let CG = (N, T, S, P) be a Chomsky grammar. For the sake of conve-
nience, we assume that the right-hand side of every production is not empty,
i.e. for all productions u → v in P we have v 6= λ. Such a production p is
translated into a graph transformation rule rp as follows. Let u• and v• be
string graphs associated with u and v, respectively, such that b(u•) = b(v•)
and e(u•) = e(v•). Then let rp = (u• ⊇ be ⊆ v•) with be the graph consisting
of the two nodes b(u•) and e(u•) be the graph transformation rule associated
with p.

Since the edges in a string graph are directed, there exists a match of u• in
a string graph x• if and only if u is a substring of x. In other words, the rule
rp can be applied to x• if and only if the production p can be applied to x.
The results of the applications correspond, too, so that we have the following
theorem.

Theorem 8 (Correct Translation). Let CG = (N, T, S, P) be a Chomsky
grammar with v 6= λ for all u → v in P .

1. Let x, y ∈ (N ∪ T)∗ and p ∈ P . Then x =⇒p y if and only if x• =⇒
rp

y•.

2. Let CG• = (S•, P •, T) with P • = {rp | p ∈ P} be the graph grammar
associated with CG. Then L(CG•) = L(CG)• = {x• | x ∈ L(CG)}.

The reason for excluding productions of the form u → λ from the con-
struction given above is that λ• is a single-node graph with b(λ•) = e(λ•).
Since |u| > 0, this implies that there is no string graph u• with b(u•) = b(λ•)
and e(u•) = e(λ•). We can deal with this problem as follows.

In the case of a Chomsky grammar of type 1 or higher, we may assume
w.l.o.g. that there is only the production S → λ with empty right-hand side,
and this only if S does not occur in the right-hand side of any other production.

16 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

Thus, we may use the graph transformation rule S• ⊇ EMPTY ⊆ λ• where
EMPTY denotes the empty graph.

In the case of a Chomsky grammar of type 0, we may eliminate each
production u → λ by replacing it with all productions of the form ua → a
and au → a, where a ∈ N ∪ T . If the original grammar generates the empty
word, a new axiom S′ and productions S′ → S | λ must be added. Then the
construction(s) given above can be used.

As a consequence of Theorem 8, all undecidability results known for Chom-
sky grammars transfer to graph grammars. In particular, one gets the follow-
ing results.

Corollary 9 (Undecidability Results). For graph grammars, the empti-
ness, finiteness, membership, inclusion, and equivalence problems are unde-
cidable.

6 Parallelism and Concurrency

Parallelism is one of the key concepts of computer science. On the one hand,
parallel computing may speed up computational processes such that, for ex-
ample, data processing problems with exponential time complexity become
solvable in polynomial time. On the other hand, parallelism may allow one
to model certain applications in a realistic way, like the growing of plants or
the transportation of goods. Graph transformation provides a framework in
which parallelism can be studied in various respects.

The parallel application of rules is easily introduced into the double-
pushout approach because the disjoint unions of rules are rules, which are
called parallel rules. Consequently, simultaneous applications of rules are just
ordinary direct derivations using parallel rules. Moreover, these parallel deriva-
tions have some nice properties with respect to sequentialization and paral-
lelization. Given a direct derivation through a parallel rule, the component
rules can be applied in arbitrary order yielding the same result. Conversely, a
derivation the steps of which are independent of each other in a certain sense
can be composed into a single derivation step. Together, this yields pure con-
currency, meaning that independent derivation steps in arbitrary order and
the parallel application of the same rules perform the same computation.

6.1 Parallel Rules

1. Let ri = (Li ⊇ Ki ⊆ Ri) for i = 1, 2 be two rules. Then

r1 + r2 = (L1 + L2 ⊇ K1 + K2 ⊆ R1 + R2)

is the parallel rule of r1 and r2.

Some Essentials of Graph Transformation 17

2. Let P be a set of rules. Then P+ denotes the set of parallel rules over P
which is recursively defined to be the smallest set with

(i) P ⊆ P+ and
(ii) r1 + r2 ∈ P+ for r1, r2 ∈ P+.

The definition of parallel rules makes use of the disjoint union of graphs
as defined and discussed in Section 2.5. Since the disjoint union of graphs
is associative and commutative, the disjoint union of rules is associative and
commutative, too. Hence, P+ can be considered as the free commutative semi-
group over P .

Theorem 10 (Sequentialization). Let G =⇒
r1+r2

H be a direct derivation.

Then there are two direct derivations G =⇒
r1

G1 =⇒
r2

H for some graph G1.

Because r1 +r2 = r2 +r1, Theorem 10 means that there are also two direct
derivations G =⇒

r2

G2 =⇒
r1

H for some G2.

Let ri = (Li ⊇ Ki ⊆ Ri) for i = 1, 2 be two rules and incli : Li →
L1 + L2 be the inclusions of the left-hand sides into the disjoint union. Let
g : L1 + L2 → G be the graph morphism underlying the direct derivation
G =⇒

r1+r2

H . Then g ◦ incli : Li → G are the graph morphisms inducing the

direct derivations G =⇒
ri

Gi. Using the gluing condition of g one can show

g(L2) ⊆ G1 and g(L1) ⊆ G2. This allows to define graph morphisms g′

2 : L2 →
G1 and g′1 : L1 → G2 which induce the direct derivations G1 =⇒

r2

H1 and

G2 =⇒
r1

H2. Finally, it is not difficult to show that H , H1 and H2 are equal up

to isomorphism.

Corollary 11. Let P be a set of rules. Then
∗

=⇒
P

=
∗

=⇒
P+

.

Theorem 10 implies =⇒
P+

⊆
∗

=⇒
P

, and consequently
∗

=⇒
P+

⊆
∗

=⇒
P

. The converse

inclusion follows from P ⊆ P+.

6.2 Independence

1. Let G =⇒
r1

G1 =⇒
r2

H be two direct derivations. Let h1 : R1 → G1 be the

right graph morphism of the first step and g′

2 : L2 → G1 be the (left)
graph morphism of the second step. Then the two derivation steps are
sequentially independent if

h1(R1) ∩ g′2(L2) ⊆ h1(K1) ∩ g′2(K2),

i.e. the matches overlap in G1 in gluing parts only.

18 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

2. Let G =⇒
ri

Gi be two direct derivations and gi : Li → G their underlying

graph morphisms. Then the two derivation steps are parallel independent
if

g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2),

i.e. the matches overlap in G in gluing parts only.

Sequential independence is equivalently described by the property

h1(R1) ∩ (g′2(L2) \ (g′2(K2)) = ∅ = (h1(R1) \ (h1(K1)) ∩ g′2(L2).

In other words, the second step does not remove anything of the right match
of the first step and the first step does not add anything of the match of the
second step.

Parallel independence is equivalently described by the property

g1(L1) ∩ (g2(L2) \ g2(K2)) = ∅ = (g1(L1) \ (g1(K1)) ∩ (g2(L2),

meaning that none of the derivation steps removes anything of the match of
the other one.

The sequentializations G =⇒
r1

G1 =⇒
r2

H and G =⇒
r2

G2 =⇒
r1

H of a parallel

derivation step G =⇒
r1+r2

H are sequentially independent, and the two first steps

are parallel independent.

Theorem 12 (Parallelization).

1. Let G =⇒
r1

G1 =⇒
r2

H be two sequentially independent direct derivations.

Then there is a direct derivation G =⇒
r1+r2

H such that the given deriva-

tion is one of its sequentializations.
2. Let G =⇒

ri

Gi for i = 1, 2 be two parallel independent direct derivations.

Then there is a direct derivation G =⇒
r1+r2

H such that the given direct

derivations are the first steps of its sequentializations.

Let g1 : L1 → G be the graph morphism of the first step and g′

2 : L2 → G1

be the graph morphism of the second step. Then the sequential independence
implies that g′

2(L2) ⊆ G (up to some renaming of nodes and edges). Therefore
the graph morphism g : L1 + L2 → G that induces G =⇒

r1+r2

H can be defined

by g(x) = g1(x) for x of L1 and g(x) = g′

2(x) for x of L2.
Let gi : Li → G for i = 1, 2 be the graph morphism of the direct derivation

G =⇒
ri

Gi. Then the graph morphism g : L1 + L2 → G that induces G =⇒
r1+r2

H

is given by g(x) = gi(x) for x of Li. The parallel independence and the appli-
cation conditions of g1 and g2 imply the application conditions of g.

Altogether, the sequentialization and parallelization theorems show that
a parallel derivation step, each of two sequentially independent derivations,
and two parallel independent direct derivations imply each other.

The situation is illustrated in Figure 12, where || indicates independence.
This phenomenon is known as pure concurrency.

Some Essentials of Graph Transformation 19

G H

G1

G2

==
=
=
=⇒

==
=
=
=
⇒

==
=
=
=⇒

==
=
=
=
⇒

===========⇒
r1 + r2

r2

r1 r2

r1

||

||

||

Fig. 12. Parallel and sequential independence

Example 13 (Petri nets). In the case of place/transition systems, the only
non-gluing items are the token nodes and their incident edges. Hence, the
applications of two firing rules for two transitions are independent if and
only if they do not share tokens on some common preplace, i.e. if they are
concurrent in the sense of net theory. Therefore, the application of the parallel
firing rule of the involved transitions – see for an example the parallel rule in
Figure 13 and its application in Figure 14 – corresponds to the parallel firing
of these transitions.

s2 s3 s3 s4

s1 s4 s1

t2 t3 ⊇

s2 s3 s3 s4

s1 s4 s1

t2 t3 ⊆

s2 s3 s3 s4

s1 s4 s1

t2 t3

Fig. 13. A parallel rule r(t2) + r(t3)

More about parallelism and concurrency in the line of this section can
be found in Corradini et al. [CEH+97]. The counterpart for the so-called
single-pushout approach is surveyed by Ehrig et al. in [EHK+97]. And the
third volume of the Handbook of Graph Grammars and Computing by Graph
Transformation [EKMR99] provides a collection of seven chapters on various
graph-transformational approaches to parallelism, concurrency, distribution,
and coordination.

20 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

s1

s2 s3

s4

t1

t2 t3

=======⇒
r(t2)+r(t3)

s1

s2 s3

s4

t1

t2 t3

Fig. 14. Modeling the parallel firing of transitions t2 and t3

7 Context-Freeness of Hyperedge Replacement

Graph transformation is a general modeling framework that allows one to
specify arbitrary computable relations on graphs. Consequently, any non-
trivial semantic property of transformation units and graph grammars is un-
decidable. If one looks for subclasses with decidable properties (and other nice
properties), graph-transformational counterparts of context-freeness are can-
didates. One of these is hyperedge replacement (see, e.g., [Hab92, DHK97]),
which is usually formulated for hypergraphs the edges of which may be inci-
dent to more than two nodes. But hyperedge replacement can also be seen as
a special case of graph grammars as introduced in Section 4.

To make this precise, we assume some subset N ⊆ Σ of nonterminals
which are typed, i.e. there is an integer k(A) ∈ N for each A ∈ N . Moreover
we assume that Σ contains the numbers 1, . . . ,max for some max ∈ N with
k(A) ≤ max for all A ∈ N . A hyperedge with label A ∈ N is meant to be an
atomic item which is attached to a sequence of nodes v1 · · · vk(A). It can be
represented by a node with an A-labeled loop and k(A) edges the labels of
which are 1, . . . , k(A), respectively, and the targets of which are v1, . . . , vk(A),
respectively, as depicted in Figure 15. Accordingly, we call such a node with
its incident edges an A-hyperedge. A graph is said to be N -proper if each
occurring nonterminal and each number between 1 and max belongs to some
hyperedge.

Each A ∈ N induces a particular N -proper graph A• with the nodes
{0, . . . , k(A)} and a single hyperedge where the A-loop is attached to 0 and
i ∈ {1, . . . , k(A)} is the target of the edge labeled with i for i = 1, . . . , k(A).
Let [k(A)] denote the discrete graph with the nodes {1, . . . , k(A)}. Thus a
rule of the form A• ⊇ [k(A)] ⊆ R for some N -proper graph R is a hyperedge
replacement rule, which can be denoted by A ::=R for short.

Some Essentials of Graph Transformation 21

v1

v2

v3

vk(A)

A
1

2 3

k(A)

v1

v2

v3

vk(A)

1

2 3

k(A)

A

Fig. 15. Graph representation of a hyperedge

A hyperedge replacement grammar is a system HRG = (N, T, P, S) with
S ∈ N , T ⊆ Σ with T ∩ N = ∅, and a set of hyperedge replacement rules P .
Its generated language L(HRG) is defined as the graph language generated
by the graph grammar (S•, P, T).

Example 14 (flow diagrams). The graph transformation rules rcompound and
rwhile-do in Section 3.1 become proper examples of hyperedge replacement
rules with hyperedges of type 2 if one replaces every statement (i.e. every
rectangle node) with its two incident edges by a node with a box-labeled node
and two outgoing numbered edges. This conversion is shown in Figure 16.

Fig. 16. Conversion of statements into the graph representation of a hypergraph

Example 15 (Sierpiński triangles). Another example, this time with hyper-
edges of type 3, is the hyperedge replacement grammar depicted in Figure 17
that generates Sierpiński triangles. A sample derivation is depicted in Fig-
ure 18, where the second and third step each are replacing three hyperedges
in parallel.

Further examples can be found in the literature (see, e.g. [Hab92, DHK97]).
In this way, hyperedge replacement is just a special case of graph trans-

formation, but with some very nice properties. Some simple observations are
the following, giving first indications to the context-freeness of hyperedge re-
placement.

1. Let r = (A ::= R) be a hyperedge replacement rule and G an N -proper
graph with an A-hyperedge y. Then there is a unique graph morphism
g : A• → G mapping A• to the A-hyperedge y such that the contact
condition is satisfied and therefore r is applicable to G.

22 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

Sierpinski-triangle
initial:

S• = S

1

23

1

2
3

rules:

S ::=
S

1

1

2
3

S

3

1

2
3

S

2

1

2
3

1

23

terminal: {∗}

Fig. 17. A hyperedge replacement grammar generating Sierpiński triangles

S• =⇒

S

1

2

3

S

1

2

3

S

1

2

3

=⇒

S
1

2
3

S
1

2
3

S
1

2
3

=⇒

Fig. 18. A derivation generating a Sierpiński triangle

2. The directly derived graph H is N -proper and is obtained by removing
y, i.e. by removing the node with the A-loop and all other incident edges,
and by adding R up to the nodes 1, . . . , k(A) where edges of R incident to
1, . . . , k(A) are redirected to g(1), . . . , g(k(A)), respectively. Due to this
construction, H may be denoted by G[y/R].

3. Two direct derivations G =⇒
r1

H1 and G =⇒
r2

H2 are parallel independent if

and only if they replace distinct hyperedges.
4. A parallel rule r =

∑
i∈I

ri of hyperedge replacement rules ri = (A ::= Ri)

for i ∈ I is applicable to G if and only if there are pairwise distinct Ai-

Some Essentials of Graph Transformation 23

hyperedges yi for all i ∈ I . In analogy to the application of a single rule,
the resulting graph may be denoted by G[yi/Ri | i ∈ I].

5. If I = I1] I2, then we have in addition

G[yi/Ri | i ∈ I] = (G[yi/Ri | i ∈ I1])[yi/Ri | i ∈ I2].

6. Two successive direct derivations G =⇒
r1

G1 =⇒
r2

H are sequentially inde-

pendent if and only if the hyperedge replaced by the second step is not
created by the first one.

Observation 1 holds because the A-hyperedge of A• and y have the same
structure. The only identifications that are possible concern the targets of
numbered edges. But they are gluing nodes such that the identification condi-
tion holds. The only node to be removed is the one with the A-loop. But all its
incident edges are removed, too, so that the contact condition holds. Obser-
vation 2 rephrases the definition of a direct derivation for the special case of a
hyperedge replacement rule. Observation 3 holds because the matches of two
direct derivations are either equal and then dependent on each other because
the non-gluing node is removed by both of them, or they share only target
nodes of numbered edges and then they are parallel independent. If a parallel
rule is applicable, the identification condition is satisfied in particular. There-
fore, as observation 4 states, no two rules can remove the same hyperedge as
they would share non-gluing items. Then, observation 5 is a consequence of
the sequentialization theorem as

∑
i∈I

ri =
∑

i∈I1

ri +
∑

i∈I2

ri. Finally, observation 6

holds by definition and the special form of the hyperedge replacement rules.
Altogether, the direct derivations through hyperedge replacement rules can
be ordered arbitrarily as long as they deal with different hyperedges. This
observation leads to the following result.

Theorem 16 (Context-Freeness Lemma). Let HRG = (N, T, P, S) be a

hyperedge replacement grammar and let A• n+1
=⇒

P
H be a derivation. Then there

are some rule A ::= R and a derivation A(y)•
n(y)
=⇒

P
H(y) for each hyperedge y

of R with label A(y) such that H = R[y/H(y) | y ∈ YR] and
∑

y∈YR

n(y) = n,

where YR is the set of hyperedges of R.

If one varies the start symbol of HRG through all nonterminals, one gets a
family of hyperedge replacement grammars (HRG(A))A∈N with HRG(A) =
(N, T, P, A). The Context-Freeness Lemma relates the graphs derived by this
family to each other. Reformulated for the generated languages, hyperedge
replacement languages turn out to be fixed points.

Theorem 17 (Fixed-Point Theorem). Let (HRG(A))A∈N with HRG(A) =
(N, T, P, A) be a family of hyperedge replacement grammars (which share rules

24 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

as well as terminals and nonterminals). Then, for each A ∈ N , the following
equality holds:

L(HRG(A)) =
⋃

(A ::= R)∈P

{(R[y/H(y) | y ∈ YR] | H(y) ∈ L(HRG(A(y)))}.

The Context-Freeness Lemma and Fixed-Point Theorem characterize gen-
erated graphs as covered each by a right-hand side of a rule without the hyper-
edges and smaller derived graphs. This provides a recursive way to prove and
decide properties of the generated languages and their members if the proper-
ties are compatible with the composition of generated graphs as subsitution of
hyperedges by derived graphs in right-hand sides. Many graph-theoretic prop-
erties like connectedness, planarity, Hamiltonicity, k-colorability, and many
more are compatible. The explicit decidability results of hyperedge replace-
ment grammars can be found in [Hab92, DHK97] where also further struc-
tured results are surveyed. For other context-free graph-transformational ap-
proaches which are mainly based on node replacement, the reader may consult
Engelfriet and Courcelle [Eng97, Cou97].

8 Conclusion

In this chapter, we have given an introductory survey on some essentials of
graph transformation focussing on theoretical aspects. For further reading,
we recommend the three volumes of the Handbook of Graph Grammars and
Computing by Graph Transformation [Roz97, EEKR99, EKMR99]. Language-
theoretic topics with respect to node and hyperedge replacement are addressed
in Chapters 1, 2 and 5 of Volume 1. Collage grammars as a picture-generating
device based on hyperedge replacement are the subject of Chapter 11 of Vol-
ume 2. Graph transformation as a general computational framework is pre-
sented in Chapters 3 and 4 of Volume 1 with respect to the double and single
pushout approaches while an alternative approach can be found in Chapter 7.
Chapters 3 and 4 discuss aspects of parallelism and concurrency in partic-
ular, which are also studied in the whole of Volume 3. Finally, Volume 2 is
devoted to potential applications of graph transformation relating it to term
rewriting and functional programming (Part 1), to visual and object-oriented
languages (Part 2), to software engineering (Part 3), to other engineering
disciplines (Part 4), to picture processing (Part 5), to the implementation
of graph-transformational specification languages and tools (Part 6), and to
structuring and modularization (Part 7). In recent years, main topics of inter-
est have become the syntactic and semantic foundation of visual languages in
the broadest sense and of model transformation, as graphs seem to be obvi-
ous candidates to represent visual models, diagrams, and all kinds of complex
structures in a precise way (see, e.g., [CEKR02, EEPPR04, PNB04] and the
SeGraVis webpage www.segravis.org).

Some Essentials of Graph Transformation 25

References

[AEH+99] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann,
Hans-Jörg Kreowski, Sabine Kuske, Detlef Plump, Andy Schürr, and
Gabriele Taentzer. Graph transformation for specification and program-
ming. Science of Computer Programming, 34(1):1–54, 1999.

[AH89] Kenneth Appel and Wolfgang Haken. Every Planar Map is Four Col-
orable, volume 98 of Contemporary Mathematics. Amer. Mathematical
Society, 1989.

[CEH+97] Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Michael Löwe, Ugo
Montanari, and Francesca Rossi. Algebraic approaches to graph trans-
formation Part I: Basic concepts and double pushout approach. In
Rozenberg [Roz97].

[CEKR02] Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Proc. 1st Int. Conference on Graph Transforma-
tion (ICGT 2002), volume 2505 of Lecture Notes in Computer Science.
Springer, 2002.

[Cou97] Bruno Courcelle. The expression of graph properties and graph trans-
formations in monadic second-order logic. In Rozenberg [Roz97], pages
313–400.

[DHK97] Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge
replacement graph grammars. In Rozenberg [Roz97], pages 95–162.

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 2: Applications, Languages and Tools.
World Scientific, Singapore, 1999.

[EEPPR04] Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grzegorz
Rozenberg, editors. Proc. 2nd Int. Conference on Graph Transforma-
tion (ICGT 2004), volume 3256 of Lecture Notes in Computer Science.
Springer, 2004.

[EHK+97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila
Ribeiro, Annika Wagner, and Andrea Corradini. Algebraic approaches
to graph transformation Part II: Single pushout approach and com-
parison with double pushout approach. In Rozenberg [Roz97], pages
247–312.

[EKMR99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 3: Concurrency, Parallelism, and Distribu-
tion. World Scientific, Singapore, 1999.

[Eng97] Joost Engelfriet. Context-free graph grammars. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, Volume 3:
Beyond Words, pages 125–213. Springer, 1997.

[ER97] Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph
grammars. In Rozenberg [Roz97], pages 1–94.

[Gib85] Alan Gibbons. Algorithmic Graph Theory. Cambridge University Press,
1985.

[GV03] Claude Girault and Rüdiger Valk. Petri Nets for Systems Engineering.
Springer, 2003.

[Hab92] Annegret Habel. Hyperedge Replacement: Grammars and Languages,
volume 643 of Lecture Notes in Computer Science. Springer, 1992.

26 Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske

[Har69] Frank Harary. Graph Theory. Addison Wesley, 1969.
[KK99a] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units and

modules. In Ehrig et al. [EEKR99], pages 607–638.
[KK99b] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units

with interleaving semantics. Formal Aspects of Computing, 11(6):690–
723, 1999.

[KK02] Peter Knirsch and Sabine Kuske. Distributed graph transformation
units. In Corradini et al. [CEKR02], pages 207–222.

[KK03] Hans-Jörg Kreowski and Sabine Kuske. Approach-independent structur-
ing concepts for rule-based systems. In Martin Wirsing, Dirk Pattison,
and Rolf Hennicker, editors, Proc. 16th Int. Workshop on Algebraic De-
velopment Techniques (WADT 2002), volume 2755 of Lecture Notes in
Computer Science, pages 299–311. Springer, 2003.

[KKK04a] Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske.
Rule-based transformation of graphs and the product type. In Patrick
van Bommel, editor, Transformation of Knowledge, Information, and
Data: Theory and Applications, pages 29–51. Idea Group Publishing,
Hershey, Pennsylvania, USA, 2004.

[KKK04b] Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske.
Typing of graph transformation units. In Ehrig et al. [EEPPR04], pages
112–127.

[Kus00a] Sabine Kuske. More about control conditions for transformation units.
In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors, Proc. Theory and Application of Graph Transforma-
tions, volume 1764 of Lecture Notes in Computer Science, pages 323–
337. Springer, 2000.

[Kus00b] Sabine Kuske. Transformation Units—A structuring Principle for
Graph Transformation Systems. PhD thesis, University of Bremen, 2000.

[Kus02] Sabine Kuske. Parameterized transformation units. In Proc. GET-
GRATS Closing Workshop, volume 51 of Electronic Notes in Theoretical
Computer Science, 2002.

[PNB04] John L. Pfaltz, Manfred Nagl, and Boris Böhlen, editors. Proc. 2nd
Int. Workshop and Symposium on Applications of Graph Transforma-
tions with Industrial Relevance (AGTIVE 2003), volume 3062 of Lecture
Notes in Computer Science. Springer, 2004.

[Rei85] Wolfgang Reisig. Petri Nets. An Introduction. Springer, 1985.
[Rei98] Wolfgang Reisig. Elements of Distributed Algorithms. Modeling and

Analysis with Petri Nets. Springer, 1998.
[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Com-

puting by Graph Transformation, Vol. 1: Foundations. World Scientific,
Singapore, 1997.

[Sch97] Andy Schürr. Programmed graph replacement systems. In Rozenberg
[Roz97], pages 479–546.

