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Abstract

In this paper, some fundamental aspects of the semantics of rule-based systems are sketched and
related to the semantics of visual models. A rule-based system comprises a set of rules and some
control conditions including descriptions of initial and terminal configurations. Semantically, the
rules specify a binary relation on configurations of some kind by means of rule applications which
are restricted according to the control conditions. As visual models are usually represented by
diagrams, graphs or similar configurations, the rule-based setting can be employed to provide
visual models with semantics.
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1 Introduction

Traditional programs and specifications are represented as textual expressions
and strings with some grammatical structure. Their semantics is often opera-
tionally defined by term rewriting or state transition or denotationally given
as a mapping into a semantic domain that reflects the syntactic structure.
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In recent years, visual models have become very popular in systems develop-
ment in addition to textual descriptions as the wide-spread use of UML and
Petri net proves. Visual models are syntactically represented by diagrams,
graphs, or similar configurations of some kind. Although they are intention-
ally more intuitive and suggestive than textual descriptions, their meaning
must be fixed to avoid misunderstandings and mistakes. Like in the case of
text-based modelling languages, there are the two possibilities of operational
and denotational semantics even in the case of visual models in principle. In
contrast to the textual case, the semantics of visual models is not yet worked
out systematically. But one encounters a number of tentative proposals in the
literature. Many of them point in the direction that the transformation of
graphs, diagrams, or other kinds of configurations may play a similar central
role as term rewriting in the traditional case of textual models. In this paper,
we sketch the semantic potentials of a rule-based setting as it is provided by
the area of graph transformation for example.

The paper is organized in the following way. The next section presents
the general idea of rules and their application to configurations. Section three
introduces an approach to regulate the inherently nondeterministic rule ap-
plication process using control conditions. Additionally, in the next section,
valid initial and terminal configurations are specified allowing for further regu-
lations. The framework given so far is then used to introduce different kinds of
semantics (i.e. interpreter semantics, compiler semantics, and denotational se-
mantics), as well as model transformation, and language generation and recog-
nition. The paper ends with some short concluding remarks. All main ideas
and definitions are demonstrated using a running example of well-structured
flow diagrams.

2 Rules and their application

The objective of rules is their application to some kind of configurations like
strings, terms, graphs, diagrams, pictures, etc. The application of a rule to
a configuration derives a configuration. By means of all of its applications, a
rule as a syntactic item yields a binary relation on configurations as a basic
semantic entity.

The elementary ingredients of a rule-based setting are a set K of configu-

rations, a set R of rules, and a rule application operator =⇒ that assigns a
binary relation =⇒

r
⊆ K ×K to each rule r ∈ R.

A rule application con =⇒
r

con′ is called direct derivation, derivation step,
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computation step, transition step, evaluation step, or something like this de-
pending on the framework the rules are used in.

As the semantic relations of rules are binary relations on configurations,
one gets the union, the sequential composition, and other set-theoretic op-
erations of semantic relations for free. In particular, one gets the union
=⇒

P
=

⋃

r∈P

=⇒
r

for a set P ∈ R of rules and the reflexive and transitive

closure
∗

=⇒
P

of =⇒
P

.

This allows one to consider a set P ⊆ R of rules as the most elementary
version of a rule-based system with two variants of semantics.

(i) Rule application graph: Graph(P ) = (K, =⇒
P

) with the configura-

tions as nodes and the rule applications as edges.

(ii) Iterated rule application relation:
∗

=⇒
P

⊆ K×K.

Graph(P ) is a proper operational semantics while
∗

=⇒
P

only indicates what

is reachable from what configuration and abstracts from the intermediate con-
figurations. In grammatical frameworks, Graph(P ) is known as the derivation

graph and
∗

=⇒
P

as the derivation relation (with respect to graph transforma-

tion, see, e.g., Rozenberg [27]). In the area of Petri nets, Graph(P ) is the

reachability graph and
∗

=⇒
P

the usual firing relation.

Example

As a running example, we discuss well-structured flow diagrams (see, e.g.,
Farrow, Kennedy, and Zucconi [12]) which are well-known visual models and
quite typical predecessors of more modern diagrams like the UML diagrams.

A well-structured flow diagram has a unique entry ( ) and a unique exit
( ) and is composed of basic statements and decisions indicated by boxes and
diamonds resp. (cf. Fig. 1). A diamond is inscribed with a Boolean expres-
sion. A basic statement may have an empty box or a box inscribed with an
assignment statement. The empty box represents a nonterminal placeholder
for another well-structured flow diagram. The first three rules in Fig. 1 show
that such a placeholder may be replaced by an assignment, a compound state-
ment, or by a while-loop. The control flow in the well-structured flow diagram
is given by the direction of the edges. While the exit is never the source of
further control flow, each other node is followed by a unique basic statement
or decision. The two edges leaving a decision diamond are labelled with T (for
true) and F (for false), resp., indicating that the direction of the control flow
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rules : ::= Xi:=e | |
b

T F

e ::= 0 | succ(Xj) | pred(Xj) and b ::= Xi �=Xj for 1 ≤ i, j ≤ k

Fig. 1. Rules to refine well-structured flow diagrams

⇒
X3:=0

⇒
X3 := 0

X2 �=X3

T F
⇒

X3:=0

X2�=X3

T F

X2:=e2

X1:=e1

Fig. 2. An example of a derivation sequence

depends on the evaluation of the Boolean expression. Moreover, we assume
the natural numbers N as the only data type and k variables X1, . . . , Xk for
some k ∈ N. Then the textual rules in Fig. 1 say that the available arithmetic
expressions (to be assigned to a variable) are 0, successor or predecessor of a
variable and that the inequality predicate of two variables is the only Boolean
expression.

Altogether, the rules describe all possible refinements of well-structured
flow diagrams. Fig. 2 shows a sample derivation which refines a compound
statement with two nonterminal boxes into an assignment followed by a while-
loop; the derivation of the textual inscription is omitted.

The example comprises all the ingredients of the computational framework
of while-programming (see, e.g., Kfoury, Moll, and Arbib [16]).

3 Regulated rule application

But a set of rules is rarely enough to describe what one wants. In grammatical
frameworks, derivations start in some initial configuration and end in terminal
configurations. In the area of Petri nets, the firing of transitions begins with
an initial marking. In the area of term rewriting, only ground terms or reduced
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terms are accepted as results of evaluations. Moreover, sometimes one likes
to regulate the process of rule application. Examples are the parallel mode
of rewriting in L systems and evaluation strategies for terms like leftmost-

innermost or parallel-outermost.

Formally, we may assume a set C of control conditions where a control
condition C ∈ C provides semantically a binary relation SEM (C) ⊆ K ×K.

This allows one to consider a pair (P, C) consisting of a set P ⊆ R of rules
and a control condition C ∈ C as a rule-based system with the intersection of
∗

=⇒
P

and SEM (C) as relational semantics:

SEM (P, C) =
∗

=⇒
P

∩ SEM (C).

4 Input-output relations

A typical example of a control condition is a pair (I, T ) where I specifies a
set K(I) ⊆ K of initial configurations and T a set K(T ) ⊆ K of terminal

configurations. Then the system (P, (I, T )) models an input-output relation
by

SEM (P, (I, T )) =
∗

=⇒
P

∩ (K(I) × (K(T )).

This notion covers many computational models like Turing machines, term
rewrite systems, graph transformation systems, etc.

In this case, the rule application graph can also be extended as an alter-
native semantics by Graph(P, (I, T )) = (K,

∗
=⇒

P
,K(I),K(T )) where the nodes

corresponding to initial and terminal configurations are distinguished accord-
ingly.

Example

In Fig. 3, we supplement the rules in Fig. 1 by an initial flow diagram consisting
of a single empty box and accept everything as terminal except the empty
box and the nonterminal letters e and b. This rule-based system specifies the
language of while-programs in form of well-structured flow diagrams as all
terminal configurations that are derivable from the only initial diagram by
the given rules.
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well-structured flow diagrams

initial:

rules: ::= Xi:=e | |
b

T F

e ::= 0 | succ(Xj) | pred(Xj) and b ::= Xi �=Xj for 1 ≤ i, j ≤ k

terminal: no , e, b

Fig. 3. A rule-based system specifying all well-structured flow diagrams

5 Interpreter semantics

Rules and control conditions together with the rule application graphs or the
iterated rule application relations provide the framework for interpreter se-
mantics. Typically, an abstract interpreter is specified in some rule-based
language. If the abstract syntax of a language is represented by textual ex-
pressions or terms, it is usual to use the same representation for the states
of the interpreter and term rewrite rules to model the operations of the in-
terpreter. Analogously, if the abstract syntax of a model is represented by
diagrams or graphs, it is meaningful to represent the states of the interpreter
by graphs and to model its operations by graph transformation rules (see, e.g.,
[2,22,29]).

In the latter case, one can distinguish two main approaches. Graph trans-
formation rules may be used as the graphical counterparts of classical ap-
proaches to semantics like rewriting logic [25] or the chemical abstract machine
[4] while graphical deduction rules follow the structural operational semantics
paradigm. The former are often simpler to write because each rule represents
a complete interpreter step (see, e.g., [13,15]), while the latter allow a more
modular view of the behavior (see, e.g., [7,10,14]).

Example

The semantics of a while-program with the variables X1, . . . , Xk can be mod-
elled by state transformation. As the variables are global and all of the type of
natural numbers, a state is a vector (n1, . . . , nk) ∈ N

k. The initial state can be
chosen arbitrarily. The evaluation starts at the entry and follows the unique
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evaluation

initial:

well-
structured

flow
diagram

current
X1

n1

. . .
Xk

nk

ni ∈ N for i = 1 . . . k

rules: r1:

Xi:=0

current
Xi

ni
::= Xi:=0

current

Xi

0

r2:

Xi:=f(Xj)

current
Xi

ni

Xj

nj
::= Xi:=f(Xj)

current

Xi

f(nj)

Xj

nj

f ∈ {succ, pred}

r3:

Xi �=Xj

T F

current
Xi

ni

Xj

nj
::= Xi �=Xj

T F

current

Xi

ni

Xj

nj

ni �= nj

| Xi �=Xj

T F

current

Xi

ni

Xj

nj

ni = nj

terminal: reduced forms

Fig. 4. Rule-based evaluation of well-structured flow diagrams

control flow where the current node is indicated by a respective pointer in each
case. If the current node is followed by the assignment Xi:=e, the expression
is evaluated according to the actual state and the resulting value is assigned
to Xi yielding the new current state. If the current node is followed by a
decision with the Boolean expression Xi �=Xj , the actual state is not changed.
But the new current node depends on the evaluation of Xi �=Xj according to
the actual state. It is the target of the T -edge if ni �=nj and the target of the
F -edge otherwise. The rules in Fig. 4 describe these evaluation steps. The
initial configurations are well-structured flow diagrams with a current pointer
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at the entry together with a simple graphical representation of a state. The
evaluation terminates if no further rule is applicable meaning that the reached
configuration is in reduced form. This is the case if and only if the current
pointer has reached the exit. In this way, Fig. 4 provides an example of an
interpreter semantics for visual models.

6 Model transformation

If K(I) and K(T ) in Section 3 are sets of (syntactic representations of) models
of some kind, SEM (P, (I, T )) is a rule-based model transformation semantics.
An example of this type is the translation of sequence diagrams into collabo-
ration diagrams in [6].

Model transformation resembles the situation of denotational semantics if
K(I) is a set of syntactic items while K(T ) is a set of representations of seman-
tic entities. In this case, the rule-based transformation assigns a meaning to
each syntactic item according to its structure. Examples of this kind are the
translations of sequence and collaboration diagrams into meta model object
diagrams in [6] (cf. [5]).

Various proposals to use graph transformation as a framework for model
transformation point in this direction (see, e.g., [1,23,30] and also [26,28] for
earlier approaches).

Example

Besides the visual representation as well-structured flow diagrams, while-
programs can be represented textually, too, in the usual style of imperative
programs. Fig. 5 presents a rule-based transformation of the visual models
into the textual ones. The initial configurations are well-structured flow dia-
grams with a translate pointer at the entry. The rules transform the diagram
step by step into a string graph that consists of a simple path from the en-
try to the exit the edges of which are labelled with pieces of program texts.
The textual while-program is obtained by reading the labels along the path.
The translation follows the directions of the edges. An assignment statement
is easily translated because only the assignment must be kept as edge label
and the translate pointer placed to the target. The other two rules deal with
the case that the translate pointer faces a decision diamond. In this case,
the edges of the while-statement as well as the following statement must be
translated and put together in the proper order. The translation terminates
in reduced forms (i.e. no rule is applicable anymore) which is only the case if
the translate pointer has reached the exit.
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wsfd -2-while

initial:

well-
structured

flow
diagram

translate

rules: r1:

Xi := e

translate

::=
translate

Xi:=e

r2:
some

Xi �=Xj

T F

translate

::=

some

Xi �=Xj

F

while Xi �=Xj do wait

translate translate

r3: some

Xi �=Xj

F

waittranslate
other

::=

some

other od

terminal: reduced forms

Fig. 5. Transforming visual models into textual models

7 Compiler semantics and denotational semantics

The idea of compiler semantics is to translate each program, specification, or
model resp. of the source language into an executable program, specification,
or model of a target language. The executability of the target language may
be described by means of an interpreter semantics. In the case of a visual
modeling language, the executable entity can be given by a set of graph trans-
formation rules working on the graph-based representations of the states of
the model (see, e.g., [17,21,24]).

Semantics defined as a mapping from the abstract syntax into some se-
mantic domain is referred to as denotational. According to this definition,
the compiler semantics is denotational as well, with a semantic domain that
is itself operational. If possible, the mapping of programs, specifications, or
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models resp. into the semantic domain should be defined separately for each
element of the abstract syntax so that the meaning of the complete entity
can be assembled from the meaning of its elements. This compositionality
principle is typical for denotational semantics of programming languages, and
it is the basis for modular verification, analysis, and evolution of models (see,
e.g., [8]).

Assuming that the abstract syntax of visual models is represented by
graphs, one faces the problem of describing a mapping from graphs to graphs
(if the semantic domain happens to have a diagrammatic syntax, like with
Petri nets) or from graphs to text (if the semantic domain is algebraic or
logic-based, like a process calculus). For both variants, different forms of
graph transformation rules can be found in the literature (see, e.g., [3,9,11]).

Example

The model transformation in Fig. 5 may be seen as a simple example of a
compiler that translates visual source programs into textual target programs.

Moreover, while-programs have a proper denotational semantics, too. In
Fig. 4, the function on the state space computed by a while-program is speci-
fied by a rule-based interpreter that evaluates a while-program for some input
state by traversing the diagram in the proper way. In contrast to this, the
denotational semantics reflects the syntactic structure of well-structured flow
diagrams as given by the rules in Fig. 3. If the mapping that assigns the
computed function on states to each well-structured flow diagram is denoted
by � �, then � � can be defined by some kind of graphical rules as given in
Fig. 6.

8 Language generation and recognition

A single configuration (with K(S) = {S}) provides an interesting special case
of a specification of initial configurations. The relational semantics gets the
form

SEM (P, (S, T )) = {S} × {con ∈ K(T ) | S
∗

=⇒
P

con}.

As the first component of each pair of configurations is S, only the second
components are significant. In other words, the system (P, (S, T )) can be
considered as a grammar or language-generation device with

L(P, (S, T )) = {con ∈ K(T ) | S
∗

=⇒
P

con}.

Indeed, most notions of grammars that one encounters in the literature
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well-structured flow diagrams

−→
� �

state transition functions

N
k → N

k

rules :

(i)
�
� Xi:=0

�
� (n1, . . . , nk) = (n1, . . . , ni−1, 0, ni+1, . . . , nk)

(ii)
�
� Xi:=f(Xj )

�
� (n1, . . . , nk) = (n1, . . . , ni−1, f(nj), ni+1, . . . , nk)

(iii)
�
���

�
��� (n1, . . . , nk) =

	 

(

	 

(n1, . . . , nk))

(iv)
�
������

Xi �=Xj

T F

�
������ (n1, . . . , nk) =

if ni �= nj then

�
������

Xi �=Xj

T F

�
������ (n1, . . . , nk)(

	 

(n1, . . . , nk))

else (n1, . . . , nk)

Fig. 6. Denotational semantics of well-structured flow diagrams
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are covered by this case of a rule-based system. Elementary net systems and
place/transition systems are further examples of this kind where all cases resp.
markings are considered as terminal. A particular example is given in Fig. 3
specifying the language of well-structured flow diagrams. In [8], the set of all
UML sequence diagrams is generated as a language by means of graph trans-
formation rules from an initial graph.

The recognition of languages can be modeled similarly. Finite state au-
tomata and pushdown automata are examples of this kind.

9 Concluding Remark

In this paper, some basic aspects of the semantics of rule-based systems and
of visual modeling have been discussed. It has been sketched how interpreters
and compilers as well as operational and denotational semantics of visual
models can be seen as special cases of model transformation and hence defined
as rule-based systems. This may be considered as one of the first steps into the
systematic investigation of the semantics of visual modelling. Further topics
like correctness, modularity, compositionality, and others should be included
in the future studies. The structuring concepts of transformation unit (see,
e.g.,[18,20]) may be helpful in this respect.
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[25] Jóse Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, volume 96, pages 73–155, 1992.

[26] Terrence W. Pratt. Pair grammars, graph languages and string-to-graph translations. Journal
of Computer and System Sciences, 5:560–595, 1971.

[27] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, Singapore, 1997.
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