Prof. Dr. Hans-Jörg Kreowski, Dr. Sabine Kuske

Studiengang Informatik

Linzer Str. 9a OAS 3001, 3005

Tel.: 2956, 2335, 3697 (Sekr.), Fax: 4322

E-Mail: {kreo,kuske}@informatik.uni-bremen.de

www.informatik.uni-bremen.de/theorie

6. Juni 2006 Aufgaben 3

(15%)

Theoretische Informatik 2

3. Übungsblatt

1. Minimaler Aufwand

Bisher wurde der Aufwand von Operationen genau ermittelt oder nach oben abgeschätzt. Hier sollen nun untere Schranken für den Aufwand untersucht werden.

- (a) Betrachte die Spezifikation **mergesort** aus Abschnitt 3.7 des Skripts. Gib für alle $m, n \geq 1$ Eingabewörter $u, v \in A^*$ der Längen length(u) = m und length(v) = n an, so dass die Auswertung von merge(u, v) mindestens m+n Schritte braucht.
- (b) Betrachte die Spezifikation **quicksort** vom 2. Übungsblatt. Zeige, dass die Auswertung von qsort(w) für Eingabewörter w der Länge n, die falsch herum sortiert sind, mindestens n^2+3n Schritte braucht. Dabei ist ein Wort w falsch herum sortiert, falls für jedes Zeichen x in w alle nachfolgenden kleiner als x sind. Gilt das auch für Eingabewörter, die richtig herum sortiert sind? (25%)

2. Matrizenmultiplikation

Der klassische Algorithmus zur Multiplikation von (n,n)-Matrizen benötigt n^3 Multiplikationen und n^3-n^2 Additionen. Dagegen verwendet der Algorithmus von Winograd $\frac{1}{2}n^3+n^2$ Multiplikationen und $\frac{3}{2}n^3+2n^2-2n$ Additionen.

- (a) Für welche $n \in \mathbb{N}$ arbeitet der Algorithmus von Winograd effizienter, wenn eine Multiplikation gegenüber einer Addition fünfmal soviel Zeit benötigt? (15%)
- (b) Zeige, dass der Algorithmus von Winograd zur Matrizenmultiplikation nicht effizienter ist als der klassische, wenn Addition und Multiplikation gleich viel Zeit benötigen. (15%)

3. Aufwandsklassen

Für Funktionen $f, g: \mathbb{N} \to \mathbb{N}$ gilt $g \in O(f)$ genau dann, wenn natürliche Zahlen c, n_0 existieren, so dass $g(n) \leq c \cdot f(n)$ für alle $n \geq n_0$.

- (a) Zeige, dass $n^2 < 2^n$ gilt für alle $n \in \mathbb{N}$ mit n > 4. (Hieraus folgt, dass $O(n^2) \subseteq O(2^n)$.) (15%)
- (b) Zeige, dass $n \notin O(\operatorname{ld} n)$. (15%)

Die bearbeiteten Übungsaufgaben sind spätestens in der Woche vom 19.06.04 abzugeben.