May 2007

Theoretical Aspects of Logistics

Modelling of Processes (Part 2)

This is to introduce a precise notion of configurations and steps.

A configuration is

- (A) a Boolean or a truth value, TRUE or FALSE ($BOOL = \{TRUE, FALSE\}$),
- (B) a natural number $n \in \mathbb{N}$,
- (C) an integer (or real number) $z \in \mathbb{Z}$ (\mathbb{R}),
- (D) a symbol of an alphabet, an element of an enumeration type, $a \in A$,
- (E) a tuple or vector of configurations,
- (F) a sequence of configurations,
- (G) a set of configurations,
- (H) a mapping from a set of configurations into a set of configurations.

This notion may be extended later if something is missing.

The various types of configurations are equipped with basic operations.

(A) *BOOL* with the Boolean operators $\neg, \land, \lor, \Longrightarrow, \Leftrightarrow$,

(B+C) $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ with the usual arithmetic operations $+, -, \cdot, \ldots$ and the usual predicates $\langle \leq, =, \neq, \geq \rangle$.

(D) Usually, one assumes an equality predicate = only. If the elements are enumerated in some order, this may be used to induce an order predicate <.

(E) Given some k-tuple (c_1, \ldots, c_k) , one may pick the i-th component c_i for $i \in [k]$. This defines the i-th projection $pr_i(c_1, \ldots, c_k) = c_i$.

(F) Given some sequence $c_1 \ldots c_n$ of configurations c_1, \ldots, c_n for $n \in \mathbb{N}$, one can add configurations to the right $c_1 \ldots c_n c$ or to the left $cc_1 \ldots c_n$. Moreover, one may concatenate two sequences $c_1 \ldots c_m$ and $c'_1 \ldots c'_m$ into $c_1 \ldots c_m c'_1 \ldots c'_m$. It is also convenient to assume that the length of a sequence $|c_1 \ldots c_n|$ is given by n.

(G) For sets of configurations, we may assume to have the whole machinery of set-theoretic operations available like union (\cup) , intersection (\cap) , set difference (-). Moreover, given a finite set X, #X denotes the number of elements of X.

(H) Given two mappings $f: A \to B$ and $g: B \to C$, there is at least the sequential composition $g \circ f: A \to C$ defined by $g \circ f(x) = g(f(x))$ for all $x \in A$.

Without further details, we can also assume that these operations on the various types of configurations have the usual properties like associativity, compativity, distributivity, etc. where it applies. A step $c \to c'$ from a configuration c to a configuration c' is given by some proper combination of the basic operations applied to c yielding c'.

Example:

To illustrate the notion of configurations and steps, the Traveling Salesman Problem is modeled.

TSP

configurations: $(G = (V, E, s, t), dist \colon E \to \mathbb{N}, N, trip)$

where G is a directed graph with a set of nodes V, a set of edges E, and two mappings $s: E \to V$ and $t: E \to V$ assigning a source s(e) and a target t(e)to each edge $e \in E, dist: E \to \mathbb{N}$ is a mapping, $N \in \mathbb{N}$ is an upper bound, and $trip \in V^*$ is a sequence of nodes representing the current travelling tour.

steps: $(G, dist, N, trip) \rightarrow (G, dist, N, trip v)$ if $v \notin set(trip), dist(trip v) \leq N$

 $\begin{array}{l} (set\colon V^*\to 2^v \text{ is defined by } set(\lambda)=\emptyset \text{ and } set(xu)=\{x\}\cup set(n); dist\colon V^*\to \mathbb{N}^\infty \text{ is defined by } dist(\lambda)=0, dist(x)=0 \text{ and } dist(xyu)=dist(xy)+dist(yu) \text{ with } dist(xy)=\min\{dist(e)\mid s(e)=x,\ t(e)=y\}; \mathbb{N}^\infty=\mathbb{N}\cup\{\infty\} \text{ with } n+\infty=\infty+n=\infty \text{ and } \min \emptyset=\infty). \end{array}$

initial: $(G, dist, N, \lambda)$

terminal: (G, dist, N, trip) with |trip| = #V and set(trip) = V