Theoretical Aspects of Logistics

Modelling of Processes (Part 3)

This note lists a few interesting properties of processes. To introduce them formally, let $proc = (\mathcal{C}, \rightarrow, \mathcal{I}, \mathcal{T})$ be a process. Moreover, a size function $size: \mathcal{C} \rightarrow IN$ is assumed which can be chosen properly. For example, the size of a sequence may be its length, the size of a set its number of elements, the size of a natural number the number itself (or the length of its decimal representation).

- 1. A process is potentially *nondeterministic* meaning that there may be steps $x \to y$ and $x \to z$ with $y \neq z$.
- 2. A process is *deterministic* if y = z for each two steps $x \to y$ and $x \to z$.

Note that this includes the case that there may be no y_0 with $x_0 \to y_0$ for some x_0 .

- 3. For each $x \in \mathcal{C}$, one may consider the set of *direct neighbours* $dn(x) = \{y \mid x \to y\}$.
- 4. The number of direct neighbours of x is called the *branching degree* of x and denoted by bd(x), i.e. bd(x) = #dn(x).
- 5. A process is polynomially branching if there are constants c_{size} and n such that $bd(x) \leq c_{size} \cdot (size(x))^n$.
- 6. A process has potentially infinite runs meaning that there may be an infinite sequence $(x_i)_{i \in \mathbb{N}}$ with $x_i \to x_{i+1}$ for all $i \in \mathbb{N}$.

Note that a process may also have infinitely many runs of finite length.

- 7. A process is *terminating* if there is no infinite run.
- 8. A process has the steps number bound $b: \mathcal{C} \to \mathbb{N}$ if $x \xrightarrow{k} y$ implies $k \leq b(x)$ for all $x \in \mathcal{C}$.
- 9. A process is *polynomial* if there are constants c and n such that $x \xrightarrow{k} y$ implies $k \leq c \cdot (size(x))^n$.

Note that a polynomially bounded number of steps is only significant as a time bound if single steps take only times that are also polynomially bounded.

10. Accordingly, a process is *linear* (quadratic, cubic, etc.) if n = 1 (n = 2, n = 3, etc.).

The linear (quadratic, cubic, etc.) number of steps is a time bound if single steps have a constant time bound.

While the properties above are concerned with the step relation, the following properties are related to the semantic relation.

- 11. A process solves the problems $prob \subseteq \mathcal{C} \times \mathcal{C}$ correctly if prob = SEM(proc).
- 12. A process assigns a set of results $RES(x) = \{y \in \mathcal{T} \mid x \xrightarrow{*} y\}$ to each $x \in \mathcal{I}$.
- 13. A process is potentially *partial* meaning that there may be some x_0 with no results, i.e. $RES(x_0) = \emptyset$.
- 14. A process is *total* if $RES(x) \neq \emptyset$ for all $x \in \mathcal{I}$.
- 15. A process is potentially non-functional meaning that there may be some $x_0 \in \mathcal{I}$ with more than one result, i.e. $\#RES(x_0) \geq 2$.
- 16. A process is functional if $\#RES(x) \leq 1$ for all $x \in \mathcal{I}$.

In other terms, *proc* is functional if $x \xrightarrow{*} y$ and $x \xrightarrow{*} y'$ with $x \in \mathcal{I}$ and $y, y' \in \mathcal{T}$ implies y = y' always.

- 17. A process is *injective* if $x \xrightarrow{*} \overline{x}$ and $y \xrightarrow{*} \overline{y}$ with $x, y \in \mathcal{I}, \overline{x}, \overline{y} \in \mathcal{T}$ and $x \neq y$ implies $\overline{x} \neq \overline{y}$ always.
- 18. A process is *surjective* if for each $y \in \mathcal{T}$ there is an $x \in \mathcal{I}$ with $x \xrightarrow{*} y$.