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Abstract. Unlike computer algebra systems, automated theorem provers
have not yet achieved considerable recognition and relevance in math-
ematical practice. A significant shortcoming of mathematical proof as-
sistance systems is that they require the fully formal representation of
mathematical content, whereas in mathematical practice an informal,
natural-language-like representation where obvious parts are omitted is
common. We aim to support mathematical paper writing by integrating
a scientific text editor and mathematical assistance systems such that
mathematical derivations authored by human beings in a mathemati-
cal document can be automatically checked. To this end, we first define
a calculus-independent representation language for formal mathematics
that allows for underspecified parts. Then we provide two systems of rules
that check if a proof is correct and at an acceptable level of granularity.
These checks are done by decomposing the proof into basic steps that
are then passed on to proof assistance systems for formal verification.
We illustrate our approach using an example textbook proof.

1 Introduction

Unlike computer algebra systems (CASs), mathematical proof assistance sys-
tems have not yet achieved considerable recognition and relevance in mathe-
matical practice. Clearly, the functionalities and strengths of these systems are
generally not sufficiently developed to attract mathematicians on the edge of re-
search. For applications in e-learning and engineering contexts their capabilities
are often sufficient, though. However, current systems suffer from several major
drawbacks. First, instead of supporting the language the mathematician is used
to, most systems impose their own formal language on the user and require a
machine-oriented formalization of the mathematical content to allow for pow-
erful automatic inference capabilities. As a result, the line of reasoning is often
unnatural and obscured. Next, the proofs are at a level of excruciating detail
spelling out many logically necessary steps, which a human would nevertheless
consider trivial or obvious. Thus, the proofs are often illegible and incompre-
hensible. Finally, the acceptance of mathematical assistant systems would be
increased by integrating them with scientific WYSIWYG text editors. Indeed,



current word processors regularly employ spell checkers to check the correct
spelling of the words and sometimes grammar checkers to check the correct
application of the grammar rules in the sentences. Our aim is to support the
practice of mathematical paper writing in the scientific text editor by employ-
ing proof assistance systems that provide definitions, lemmas and theorems from
mathematical databases and automatically check the derivations spelled out in a
mathematical document. The vision is to achieve the possibility to verify math-
ematical documents fully automatically. We envision a scientific text editor that
allows the author to write semantically annotated mathematical content. The
semantic annotations can then be exploited to generate a formal representation
of the mathematical content (cf. Autexier et al. [2]), which allows for further
automatic processing. The first step towards this end is to provide the formal
language that can represent human-authored mathematical content.

Since the 1960ies, the Automath project [9] has been addressing the prob-
lem of developing a formal language with a natural-language-like syntax that
allows both for the exact formalization of mathematical content and for the easy
reading and authoring of the documents by mathematicians [8]. Whereas the
original Automath language is very mechanical and thus tedious to author, its
derivatives Mathematical Vernacular [4], Weak Type Theory [10] and MathLang
[7] are close to a natural language. Since the 1970ies, the Mizar1 project aims
at supporting mathematical publications by means of a formal language that
allows for automatic consistency checks of documents and for references to other
articles published in the same formal language. A similar, more recent approach
is taken in Isabelle/Isar [11], where proofs can be entered in a formal language of
mathematics, which are readable for both human and machine (in fact, the Isar
language is very similar to Mizar’s language [14]). In another approach in the
same tradition, Abel and colleagues [1] present a formal language for first-order
intuitionistic logic used in a tutorial system for intuitionistic logic. The student
writes proofs directly in this language, which are then automatically checked
using a system of proof checking rules for intuitionistic logic.

A more sophisticated approach with respect to human readability is taken
in the grammatical framework [12], a formalism based on a typed λ-calculus
that allows for the definition of context-free grammars for fragments of natural
language. However, only simple linguistic structures can be captured in this
approach.

The major drawback of these approaches is that they do not sufficiently suc-
ceed in combining two diverging requirements, namely automatic processibility
and readability. Automatic processing requires exact formalization, which in turn
requires many details that humans consider obvious or trivial. Whereas detailed
steps can be abstracted from in formal proofs by using lemmas, all steps must be
included in the formal proof, even if they are easily inferable by the human user.
Conversely, because of the omission of easily inferable steps, human-authored
derivations often turn out to have gaps when scrutinized formally. The men-
tioned systems sacrifice the readability in favor of the processibility.

1 http://www.mizar.org
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Therefore, we suggest a formal representation language for human-authored
proofs where the gaps are filled in by underlying proof assistance systems (with-
out committing ourselves to a specific prover or proof procedure). This formal
language mediates between the semantically-annotated natural language repre-
sentation of the mathematical document in the scientific text editor, where the
user enters his input, and the logic representation required by proof assistance
systems that check the mathematical content of the documents and fill in gaps.
The core idea is to define a formal language that allows for underspecified parts
and two systems of rules that check if a proof is correct and at an acceptable
level of granularity. These checks are done by decomposing the proof into basic
steps that are passed on to proof assistance systems for formal verification.

Clearly, which level of granularity is acceptable depends on many factors, the
most prominent ones being the knowledge and skills of the intended audience,
the mathematical theory the proven theorem belongs to and the personal style
of the author. We do not cope with these factors in this paper, but define one
specific level of granularity based on Hilbert’s ideas [5] to demonstrate how a
specific notion of granularity can be captured by constraining the proof checking
rules.

This paper is organized as follows: We start with an overview of our approach.
Then, we introduce our formal language for human-oriented proofs, and define
a proof checking system for the proofs in that language. Finally, we experiment
with means to formally capture notions of granularity. More specifically, we
investigate how granularity can be defined as a restriction of the proof checking
system.

2 Our Approach

Since many details of a proof, although logically required for a correct deriva-
tion, are considered obvious or trivial by human beings, they should be omitted
from the proof. For our purposes, we capture the level of granularity using the
following two distinct aspects:

First, the level of concept, at which a proof is done, can be described in terms
of the definitions and theorems that can be used in the proof. More precisely, we
can identify a mathematical theory , to which the theorem that is being proved
belongs, as a logical collection of axioms, assumptions, definitions, lemmas and
theories (collectively called assertions) as well as proofs. We consider a whole
hierarchy of theories maintained in a mathematical database, where one theory
draws on underlying theories. Now, if the theorem we want to prove belongs to
some theory T , then we define the level of concept of the proof as the collection
of assertions in theories underlying T plus the assertions of T that logically come
before the theorem to be proved.

Second, the amount of detail in a proof refers to all facts and inference rules
that are explicitly mentioned in the proof. Human-authored proofs are often
imprecise in several respects, namely the used inference rule is not mentioned,
some of the premises needed for a step in the derivation are not mentioned, and
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some steps of the derivation are completely omitted. That natural language texts
and utterances are inherently imprecise (i.e., several readings of a sentence are
possible) is a well-known phenomenon in linguistics, called underspecification.
Thus, automated processing of the content of human-authored texts requires
the resolution of underspecification by singling out one possible reading.

Our work has been inspired by the work of Abel and colleagues [1], who
worked on a tutorial system for intuitionistic logic. In their approach, they de-
fined a linear syntax to represent first-order natural deduction proofs at the
assertion level in intuitionistic logic and combined it with a deductive system of
proof checking rules for that logic. Thus, the student can write proofs directly
in this language and the proofs are automatically checked for correctness. The
representation language, however, allows for one possible reading only.

In our approach, we adopt this idea of separating the representation lan-
guage from the set of checking rules. However, we extend the approach in two
dimensions:

First, we suggest a formal representation language for mathematical content
detached from any particular logic or calculus. This allows us to represent arbi-
trary content regardless of the underlying logic. Moreover, the language allows
us to represent both different levels of concept and underspecification and is thus
particularly well-suited to represent proofs that are authored in a natural way
by humans.

Second, we add two deductive systems, namely one for checking the correct-
ness of proofs and one for checking the level of concept. The former decomposes
the proof into basic steps, which either can be verified directly by one of the
rules of the system or is passed on to an external proof assistance system that
checks its correctness, and, if it is successful, provides a correctness proof. As
a side effect, underspecified parts of such a basic proof step are resolved. The
second deductive system similarly decomposes the proof into basic steps, but
now checks if the steps are justified using acceptable inference rules.

We envision that our approach can serve as a first step towards an integra-
tion of a scientific text editor with mathematical proof assistance systems. In
particular, the deductive systems show how mathematical proof assistance sys-
tems can be employed. To achieve the overall goal, however, many additional
problems must be tackled, most notably a natural language analysis component
that transforms the human-authored proofs into proofs in our representation
language. Thus, we require for the time being that the author enter semantically
annotated text by using LATEX-style macros. These macros can then be expanded
into a formal representation (cf. [2]), such as our representation language.

3 A Formal Representation Language

In this section we present the formal representation language for proofs (cf.
Fig. 1). The language accommodates the mostly linear structure of textual proofs
by representing complete proofs as a “;”-separated sequence of proof steps. In
order to account for the internal structure of the proofs, the language allows
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S ::= A; S | Trivial | ε
A ::= Fact N : F by R∗ from R∗

| Subgoals (N : F)+ in S+ to obtain N : F by R∗ from R∗

| Assume H∗ in S to obtain N : F by R∗ from R∗

| Assign (VAR := TERM | CONST := TERM)
| Or(S‖ . . . ‖S)
| Cases F+ : (Case N : F : S End)+ to obtain N : F

H ::= N:F CONST ::= const N

| CONST: TYPE? VAR ::= var N

| VAR: TYPE?
R ::= (N, F, P) N ::= STRING | .

F ::= FORMULA | . P ::= POSITION | .

Fig. 1. The grammar of the formal proof language

for complex structures such as the introduction of subgoals or hypotheses, case
analysis and induction. In each proof step, which either introduces subgoals or
derives a fact, we distinguish in the syntax between the used concepts to justify
that proof step (denoted by the keyword by in the language) and to which
premises or goals the concepts have been applied (denoted by from). Finally,
in order to support the linguistic analysis of mathematical documents, which
is not always able to uniquely categorize a given text fragment, we introduce a
nondeterministic branching over possible proofs (Or) to represent the different
alternative interpretations.

For the definition of the language we assume languages for formulas, terms,
and types referred to by the nonterminal grammar symbols FORMULA, TERM,
and TYPE, respectively. In the proof language, ε denotes an empty (sub)proof
while Trivial indicates that the (sub)proof should be completed now, for in-
stance, if there is a formula that occurs both as a goal and a hypothesis. The
step “Fact N : F by R∗ from R∗” indicates that a fact F has been derived
from the objects referenced in the from slot using the objects referenced in
the by slot and has been assigned the name N. A reference consists of three
parts: the name of a formula, a formula and a position denoting a sub-object
of that formula or the one referenced by the name; each component of the
reference can be left open, which is made explicit by a period (“.”). Thus,
the sub-language for references explicitly allows for underspecification. A proof
step “Subgoals (N : F)+ in S+ to obtain N : F by R∗1 from R∗2” represents
the fact that we introduced a list of subgoals (N : F)+ for some previous goals
R∗2 and the proofs in S+ are the subproofs for these subgoals. Note that the
facts used to perform that goal reduction may be given in R∗

1
. A proof step

“Assume H∗ in S to obtain N : F by R∗1 from R∗2” is used to decompose goals R∗2
into the new hypotheses H∗ and the new goal F of name N. The hypotheses can be
either named formulas N : F, or new constants and variables, possibly with some
type. A proof step “Assign var x := t” allows us to assign a value t to some
variable x and “Assign const c := t” encodes the introduction of an abbrevi-
ation c for some expression t. The expression “Or(S1 ‖ . . . ‖ Sn)” describes a
situation, where the linguistic analysis identifies several possible interpretations
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If A and B are sets such that x ∈ A implies that x ∈ B (that is, every element
of A is also an element of B), then we shall say that A is contained in B, or that
B contains A, or that A is a subset of B, and we shall write A ⊆ B or B ⊆ A.
[. . . ]
1.1.1 Definition Two sets A and B are equal if they contain the same elements.
If the sets A and B are equal, we write A = B.
[. . . ]
1.1.4 Theorem Let A, B, C, be any sets, then
[. . . ]
(d) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), [. . . ]
[. . . ]

In order to give a sample proof, we shall prove the first equation in (d). Let
x be an element of A ∩ (B ∪ C), then x ∈ A and x ∈ B ∪ C. This means that
x ∈ A, and either x ∈ B or x ∈ C. Hence we either have (i) x ∈ A and x ∈ B,
or we have (ii) x ∈ A and x ∈ C. Therefore, either x ∈ A ∩ B or x ∈ A ∩ C, so
x ∈ (A∩B)∪ (A∩C). This shows that A∩ (B∪C) is a subset of (A∩B)∪ (A∩C).

Conversely, let y be an element of (A∩B)∪(A∩C). Then, either (iii) y ∈ A∩B,
or (iv) y ∈ A ∩ C. It follows that y ∈ A, and either y ∈ B or y ∈ C. Therefore,
y ∈ A and y ∈ B ∪C so that y ∈ A∩ (B ∪C). Hence (A∩B)∪ (A∩C) is a subset
of A ∩ (B ∪ C).

In view of Definition 1.1.1, we conclude that the sets A ∩ (B ∪ C) and (A ∩
B) ∪ (A ∩ C) are equal.

Fig. 2. A textbook example.

1. Assume . : x ∈ A ∩ (B ∪ C) in
1.1 Fact . : x ∈ A ∧ x ∈ B ∪ C by . from .;
1.2 Fact . : x ∈ A ∧ (x ∈ B ∨ x ∈ C) by . from .;
1.3 Fact . : (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C) by . from .;
1.4 Fact . : (x ∈ A ∩ B) ∨ (x ∈ A ∩ C) by . from .;
1.5 Fact . : x ∈ (A ∩ B) ∪ (A ∩ C) by . from .;
to obtain . : A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) by . from .;

2. Assume . : y ∈ (A ∩ B) ∪ (A ∩ C) in
2.1 Fact . : y ∈ A ∩ B ∨ y ∈ A ∩ C by . from .;
2.2 Fact . : y ∈ A ∧ (y ∈ B ∨ y ∈ C) by . from .;
2.3 Fact . : y ∈ A ∧ (y ∈ B ∪ C) by . from .;
2.4 Fact . : y ∈ A ∩ (B ∪ C) by . from .;
to obtain . : (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) by . from .;

3. Fact . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) by Def1.1.1 from .;
4. Trivial

Fig. 3. An example representation.
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resulting in different possible proofs. Finally, case distinctions can be introduced
by the Cases construct, where for each formula ϕ in F+ there is exactly one
case n : ϕ. However, we consider case analysis as a derived construct that can
be encoded by Subgoals and Assume proof steps. Analogously, induction proof
steps can be defined.

To examine an example, let us consider an excerpt from Chapter 1 of the un-
dergraduate analysis textbook Introduction to Real Analysis [3], which is shown
in Fig. 2. For the purposes of this paper, we neglect the representation of the
notation, the definition and the theorem, and focus only on the given proof,
which starts with “Let x be an element. . . ” The proof can then be represented
in our language as depicted in Fig. 3. Note that the labels of the proof steps are
only added for convenience and are not part of the representation language.

4 Proof Checking

Now, having a means of representing proofs, we also want to check the cor-
rectness of the represented proofs. To this end, we propose a deductive system
consisting of eight rules that allow us to check the encoded proofs by recursively
checking each individual proof step starting from the first. For each individual
proof step we need to know all declared types and constants, collected in the
signature, all declared variables, collected in the context, and all visible hypothe-
ses and previous goals, which both are lists of named formulas. The result of a
successfully checked proof step S is a set of facts derived by the subproof with
S as its root.

The deductive system does not directly encode any specific calculus, but
collects proof obligations, called lemmas, for proof steps. These lemmas need
to be verified in order to establish the validity of the corresponding steps. For
example, a Trivial proof step gives rise to a lemma Γ =⇒Triv ∆, which states
that from the hypotheses Γ some goal in ∆ follows “trivially”. Thus, we also
have to provide a specific proof strategy that decides if a proof step is trivial
or not. An example would be a simple check if some goal in ∆ also occurs in
Γ . In general, we allow for specific strategies strat to establish the validity of a
lemma Γ =⇒strat ∆. For the purposes of this paper, however, we will not go into
the details of the strategies, but consider them as given (e.g., by a call of an
automated theorem prover such as the proof planner Ωmega [13]).

Formally, a signature Sig consists of a list of type declarations const τ : type
and constant declarations const c : τ :

Sig ::= ε | const τ : type,Sig | const c : τ,Sig

A context Ctx consists of a list of variable declarations:

Ctx ::= ε | var x : τ,Ctx

Now let Sig be a signature, Ctx a context, and S a proof. Furthermore, Γ and
∆ denote sequences consisting of named formulas N : F , abbreviations c ≡ t

and substitutions x← t. The judgments are:
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– Sig;Ctx; Γ 〈S〉∆ ↪→ Γ ′

Given the signature Sig, the context Ctx, the hypotheses in Γ and the open
goals in ∆, the (partial) proof S derives the facts Γ ′.

– P (Γ ′; ∆′) : Γ =⇒strat ∆

The proof strategy strat proves the lemma Γ =⇒strat ∆ and returns the proof
object P (Γ ′; ∆′). This notation for the proof object indicates that the proof
requires the subsequences Γ ′ and ∆′ of Γ and ∆, respectively.

The deductive system for proof checking is given in Fig. 4, where an expres-
sion e means a sequence of expressions e1, . . . , en and ] stands for the disjunctive
union. Note that we explicitly refrain from fixing a specific logic in these rules,
as we envision the use of our language in different domains. Therefore, we pa-
rameterize the proof checking system over the calculus for the specific logic. The
connection to the calculus is established via the strategies for the lemmas arising
during proof checking.

The individual kinds of lemmas are Triv to establish proof steps considered
as trivial by the author, Fact to ensure the validity of derived facts, Subgoal to
prove valid goal reductions, Ass to show that the stated fact can be inferred
from some assumptions, Type to verify type correctness, and Subst to ensure the
admissibility of a substitution.

To illustrate some of the lemmas arising during proof checking, let SigG de-
note the general signature, which contains, among others, the symbols const A :
set, const B : set, const C : set, const ∪ : set × set → set, const ∩ : set × set →
set, and const ⊆: set × set → o. The initial context Ctx is empty, ΓG denotes
the logical context, in which the proof takes place, and contains, among others,
the Definition 1.1.1, the definitions of ∪ and ∩ (Def(∪), Def(∩)), and the abbre-
viating notation ⊆, which we denote by Abbrv(⊆)2. Furthermore, let ∆G be the
conclusion A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) of Theorem 1.1.4.

In order to check Step 1 of the proof, the rule Assume requires to first check the
subproof 1.1–1.5 where the context is augmented by the local variable x of type
elem and the local set of assertions contains the hypothesis . : x ∈ A ∩ (B ∪ C).
The proof checking of Step 1.1 is then as follows: Assume S ′ are the proof steps
1.2-1.5, then the Fact proof checking rule is invoked as

SigG; const x : elem; ΓG, . : x ∈ A ∩ (B ∪ C)
〈Fact . : x ∈ A ∧ x ∈ (B ∪ C) by . from .; S ′〉∆G

Checking that proof step requires to check the following judgments (cf. the
rule Fact from Fig. 4):

1. We first have to check whether the given fact formula is actually deriv-
able from the current assertions (ΓG, . : x ∈ A ∩ (B ∪ C)) and the current
goal (∆G). We pass the corresponding lemma to the strategy (indicated by
=⇒Fact) which we use to establish that lemma. The lemma is:

ΓG, . : x ∈ A ∩ (B ∪ C) =⇒Fact . : x ∈ A ∧ x ∈ (B ∪ C), ∆G

2 Assuming, for instance, a higher-order logic language for formulas and terms, the
abbreviation ⊆ could be written as ⊆≡ λA,B : set . ∀x : elem . x ∈ A ⊃ x ∈ B.
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Sig;Ctx; Γ 〈ε〉∆ ↪→ .
Empty

P (.; N : F ) : Γ =⇒Triv ∆

Sig;Ctx; Γ 〈Trivial〉∆ ↪→ N : F
Trivial

Sig;Ctx; Γ
〈

Si, S′
〉

∆ ↪→ Γ ′

i

Sig;Ctx; Γ
〈

Or(S1 ‖ . . . ‖ Sn); S′
〉

∆ ↪→ Γ ′

i

Or

var x : τ ∈ Ctx
Sig;Ctx =⇒Type t : τ
P : Γ =⇒Subst x← t, ∆
Sig;Ctx; Γ, . : x← t 〈S〉∆ ↪→ Γ ′

Sig; Ctx; Γ 〈Assign var x := t; S〉∆ ↪→ x← t, Γ ′
Assign

P (ΓR, Γ̃ ; N : F, ∆R, ∆̃) : Γ =⇒Fact N : F, ∆
Sig;Ctx; Γ, N : F 〈S〉∆ ↪→ Γ ′

Sig;Ctx; Γ
〈

Fact N : F by R from R′; S
〉

∆ ↪→ N : F, Γ ′
Fact

where ΓR ] Γ̃ ⊆ Γ , ∆R ] ∆̃ ⊆ ∆ and ΓR and ∆R

are respectively the subsets of Γ and ∆ denoted

by R and R′.
Sig;Ctx =⇒Type t : τ
const c : τ /∈ Sig

Sig;Ctx; Γ, c ≡ t 〈S〉∆ ↪→ Γ ′

Sig;Ctx; Γ 〈Assign const c := t; S〉∆ ↪→ Γ ′
Abbrv

P (ΓR, Γ̃ , . : (F1 ∧ . . . ∧ Fk); N : F, ∆R, ∆̃)
: Γ, . : (F1 ∧ . . . ∧ Fk) =⇒Subgoal N : F, ∆

Sig;Ctx; Γ 〈S1〉N1 : F1, ∆ ↪→ Γ1

. . .
Sig;Ctx; Γ 〈Sk〉Nk : Fk, ∆ ↪→ Γk

Sig;Ctx; Γ, N : F
〈

S′
〉

∆ ↪→ Γ ′

Sig;Ctx; Γ

〈

Subgoals N1 : F1 | . . . | Nk : Fk

in S1 | . . . | Sk

to obtain N : F by R from R
′
; S′

〉

∆

↪→ N : F, Γ ′

Subgoals

where ΓR ] Γ̃ ⊆ Γ , ∆R ] ∆̃ ⊆ ∆ and ΓR and ∆R are

respectively the subsets of Γ and ∆ denoted by R and

R′.
xk /∈ Ctx

cl /∈ Sig

S, const cl : τl; C, var xk : τk; Γ, Nm : Fm 〈S〉∆ ↪→ Γs

P (ΓR, Γ ′, . : (
∧

m

i=1
Fi) ⊃ (

∧

F∈Γs

F ); N : F, ∆R, ∆′) : Γ, . : (
∧

m

i=1
Fi) ⊃ (

∧

F∈Γs

F ) =⇒Ass N : F, ∆

Sig;Ctx; Γ, . : (
∧

F∈Fm
var x

k
F ) ⊃ (

∧

F∈Γ
var x

k
s

F ), N : F
〈

S′
〉

∆ ↪→ Γ ′

Sig;Ctx; Γ

〈

Assume var xk : τk, const cl : τl, Nm : Fm in S

to obtain N : F by R from R; S′

〉

∆ ↪→ . : (
∧

F∈Fm
var x

k
F ) ⊃ (

∧

F∈Γ
var x

k
s

F ), N : F, Γ ′

Assume

where ΓR (resp. ∆R) is the subset of Γ (resp. ∆) denoted by R and R
′
and Γ

var x
k

s (resp. Fm

var x
k ) is the subset of formulae

from Γs (resp. Fm), which do not contain free variables from var xk (i.e., Assume serves as a binder for the variables var xk).

Fig. 4. Proof Checking Rules
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From the strategy (for instance a prover or a tactic) we require not only
to prove that lemma, but also to return a proof object P . From that proof
object we require that it must “rely” on the named formulas provided by
the references in the “by” and “from” (denoted as ΓR and ∆R) slots as well
as on the given fact (. : x ∈ A∧x ∈ (B ∪C)). The fact that they must occur
in the proof object is indicated by making them part of the arguments of P ,
i.e.

P (ΓR, Γ̃ ; , ∆R, ∆̃)

In the present case there are no references, and hence ΓR and ∆R are empty.
The list Γ̃ (resp. ∆̃) denotes all further assertions from ΓG (resp. goals
from ∆G) on which the proof object P relies. Those lists provide us with
the missing references. In our case the proof object is P (Def(∩), . : x ∈
A∩(B∪C); . : x ∈ A∧x ∈ B∪C) which provides the non-specified reference
to the definition of ∩.

2. After checking the lemma, the proof checking recurs over the proof steps S ′

by adding the new fact to the list of usable assertions, which is expressed by
SigG;CtxG, const x : elem; ΓG, . : x ∈ A ∧ x ∈ (B ∪ C) 〈S′〉∆G. This returns
a list of facts Γ ′ derived in that subproof S ′, which is denoted by ↪→ Γ ′. In
our case Γ ′ is . : x ∈ (A∩B)∪ (A∩C), . : (x ∈ A∩B)∨ (x ∈ A∩C), . : (x ∈
A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C), . : x ∈ A ∧ (x ∈ B ∨ x ∈ C) (in that order).

From that last list the result of the proof checking of the fact Step 1.1 are all the
named formulas derived in the subproof S ′ plus . : x ∈ A ∧ x ∈ B ∪ C. This is
expressed by ↪→ N : F, Γ ′, which in the present case is . : x ∈ A ∧ x ∈ B ∪ C, . :
x ∈ (A ∩ B) ∪ (A ∩ C), . : (x ∈ A ∩ B) ∨ (x ∈ A ∩ C), . : (x ∈ A ∧ x ∈ B) ∨ (x ∈
A ∧ x ∈ C), . : x ∈ A ∧ (x ∈ B ∨ x ∈ C). This list is the result of the subproof
inside the Assume part and we denote this list by Γs. Validating the Assume

step then requires to prove the lemma

ΓG, . : x ∈ A ∩ (B ∪ C) ⊃













. : x ∈ A ∧ x ∈ B ∪ C

∧. : x ∈ (A ∩ B) ∪ (A ∩ C)
∧(. : (x ∈ A ∩ B) ∨ (x ∈ A ∩ C))
∧(. : (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C))
∧. : x ∈ A ∧ (x ∈ B ∨ x ∈ C













=⇒Ass . : A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C), ∆G.

The proof object for that lemma is P (. : x ∈ A∩(B∪C) ⊃ (
∧

F∈Γs
F ), Abbrv(⊆); . :

A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C)), and provides the missing references to the
abbreviation of ⊆ and the used premise . : x ∈ A ∩ (B ∪ C) ⊃ (

∧

F∈Γs
F ).

The result of proof checking this Assume-proof step consists of (1) the result Γ ′

obtained from checking the remaining proof, (2) the obtained (named) formula
. : A∩(B∪C) ⊆ (A∩B)∪(A∩C), and (3) all formulas derived in the subproof of
Assume, which are not dependent on any local variables. The latter is expressed
by the (schematic) formula (

∧

F∈Fm

var x
k

F ) ⊃ (
∧

F∈Γ
var x

k
s

F ), where Γ var xk

s

expresses the filtering.3

3 Note that this way any substitution—expressed by an equation x = t—for a local
variable x inside the subproof of Assume is also removed.
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Proof checking of the next Assume-proof step 2—inclusive its subproof—also
succeeds using the rules in Fig. 4. The set of derived facts up to before Step 3 is

– From Assume-proof step 1 we obtain Γ1 := . : A∩ (B ∪C) ⊆ (A∩B)∪ (A∩
C), ΓG.

– From Assume-proof step 2 we obtain Γ2 := . : (A∩B)∪ (A∩C) ⊆ A∩ (B ∪
C), Γ1.1.

Checking the Fact-proof step 3 requires to establish the lemma

Γ2 =⇒Fact . : A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), ∆G

Furthermore, we require from the proof of this lemma which is returned by the
strategy, that (i) it uses the goal formula . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
and (ii) it uses the indicated Definition 1.1.1. This is expressed by

P (Def1.1.1, Γ̃ ; . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), ∆R, ∆̃)

In this case, the used facts from Γ2 are those obtained in the Assume-proof steps,
i.e. Γ̃ is . : A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C), . : (A∩B)∪ (A∩C) ⊆ A∩ (B ∪C)
(note that ∆̃ is empty). Checking the final Trivial -proof step reduces to establish
the lemma

Γ2, . : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) =⇒Triv ∆G

The lemma is trivially provable, since ∆G := Thm(1.1.4) : A ∩ (B ∪ C) =
(A ∩ B) ∪ (A ∩ C), which completes the proof checking of our example proof.

5 Granularity

In this section we investigate the problem how we can check that a proof is at a
specific level of granularity. Our focus here is how at all notions of granularity
could be captured formally, in order to design proof procedures that not only
check the correctness of a (partial) proof, but also if it is at a given level of
granularity. Knowing how granularity can be defined is a necessary prerequisite
before we can move on to analyze which level of granularity is appropriate in
which context and how it could be made user-adaptive.

In general, proof sketches can be at some specific, appropriate level of gran-
ularity, without being correct proofs. Conversely, a proof sketch can be correct,
but not at a desired level of granularity. In other words, the notion of granular-
ity and correctness do only overlap, but there is not necessarily a subsumption
relation in whichever direction. Comparing both notions with respect to the ex-
isting means for their formalization, there is a long tradition and a large class of
formalisms to represent correct proofs — one of them has been presented in the
previous section. On the contrary, there are to our knowledge neither formal-
izations to check whether a proof is at some specific level of granularity (aside
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from, for instance, being a calculus-level proof), nor any other means to reduce
the inspection of the granularity to computation.

As we pointed out earlier, there is an overlap between correctness and granu-
larity. In this section we consider this overlap, since there we can hope to exploit
the available formalisms for correctness and adapt them to accommodate some
notion of granularity. However, it is not obvious a priori, whether any notion of
granularity can be captured simply by refining the notion of correctness. With
the work presented in the following we explore some aspects of that problem by
defining a notion of granularity through restricting the notion of correctness.

The set of proofs which are accepted by the proof checking rules strongly
depends on the strength of the strategies used to discharge the arising lemmas
and on the knowledge, that is, facts and subgoals, the strategies can use during
the proof attempt. However, the strength of the strategies can not be controlled
at the level of our proof representation language. Moreover, finding and imple-
menting the right strategies is difficult as it strongly depends on the individual
authors. The only information we can control is which knowledge is actually
passed to the strategies, which in turn can be influenced via two criteria: (1)
The selection of locally available knowledge for the strategies and (2) the global

flow of knowledge between different parts of the proof. So far in the proof check-
ing rules (1) all locally visible assumptions and subgoals are used, and (2) all
possible derived facts from earlier proof steps are passed to subsequent proof
steps.

We now show how a specific, intuitive notion of granularity can be formalized
by imposing restrictions for (1) and (2). The notion of granularity we define here
is inspired by the assertion level proofs by Huang [6] and by a description of what
a proof is by Hilbert [5]. This level of granularity can intuitively be described
by What-You-Need-Is-What-You-Stated Granularity, that is, all necessary facts,
assertions and rules are stated explicitly in the proof and the proof is performed
at the assertion level. For instance, when we use some fact, we should have stated
it before explicitly and not assume it is inferable from the context.

To formally define granularity, we introduce the judgment

Sig;Ctx; Γ 〈S〉∆ . Γ ′

which intuitively means that given the signature Sig, the context Ctx, the hy-
potheses in Γ and the open goals in ∆, the proof S derives the facts Γ ′ at the
given level of granularity.

The deductive system to check the granularity (cf. Fig. 5) is derived from
the proof checking system, by imposing restrictions with respect to criterion (1)
for Trivial, Fact, and Subgoals proof steps, and restrictions with respect to both
criteria (1) and (2) for Assume proof steps.

For the Fact and Subgoals proof steps, we restrict the rules by selecting from
Γ and ∆ only those formulas that are explicitly referenced in the proof step
description, as well as all substitutions x ← t and abbreviations c ≡ t. Further-
more, we require that the proof object P returned by the strategy strat rely on
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Sig; Ctx; Γ 〈ε〉∆ . .
Empty

N ′ : F ∈ Γ or F is True.

Sig;Ctx; Γ 〈Trivial〉∆ . N : F
Trivial

Sig;Ctx; Γ
〈

Si, S′
〉

∆ . Γ ′

i

Sig;Ctx; Γ
〈

Or(S1 ‖ . . . ‖ Sn); S′
〉

∆ . Γ ′

i

Or

P (ΓR; N : F, ∆R) : ΓR =⇒Fact N : F, ∆R

Sig;Ctx; Γ, N : F 〈S〉∆ . Γ ′

Sig;Ctx; Γ
〈

Fact N : F by R from R′; S
〉

∆ . N : F, Γ ′
Fact

where ΓR and ∆R are respectively the subsets

of Γ and ∆ denoted by R and R′ extended by
all substitutions and abbreviations.

var x : τ ∈ Ctx

Sig;Ctx =⇒Type t : τ
P : Γ =⇒Subst x← t, ∆
Sig;Ctx; Γ, . : x← t 〈S〉∆ . Γ ′

Sig;Ctx; Γ 〈Assign var x := t; S〉∆ . x← t, Γ ′
Assign

P (ΓR, . : (F1 ∧ . . . ∧ Fk); N : F, ∆R)
: ΓR, . : (F1 ∧ . . . ∧ Fk) =⇒Subgoal N : F, ∆R

Sig;Ctx; Γ 〈S1〉N1 : F1, ∆ . Γ1

. . .
Sig;Ctx; Γ 〈Sk〉Nk : Fk, ∆ . Γk

Sig;Ctx; Γ, N : F
〈

S′
〉

∆ . Γ ′

Sig;Ctx; Γ

〈

Subgoals N1 : F1 | . . . | Nk : Fk

in S1 | . . . | Sk

to obtain N : F by R from R
′
; S′

〉

∆

.N : F, Γ ′

Subgoals

where ΓR and ∆R are respectively the sub-
sets of Γ ∪ Γ1 ∪ . . . ∪ Γk and ∆ denoted by

R and R′ extended by all substitutions and
abbreviations.

Sig;Ctx =⇒Type t : τ
const c : τ /∈ Sig

Sig;Ctx; Γ, c ≡ t 〈S〉∆ . Γ ′

Sig;Ctx; Γ 〈Assign const c := t; S〉∆ . Γ ′
Abbrv

xk /∈ Ctx
cl /∈ Sig

S, const cl : τl; C, var xk : τk; Γ, Nm : Fm 〈S〉∆ . Γs

P (ΓR, . : (
∧

m

i=1
Fi) ⊃ (

∧

F∈Γs

F ); N : F, ∆R) :

ΓR, . : (
∧

m

i=1
Fi) ⊃ (

∧

F∈Γs

F ) =⇒Ass N : F, ∆R

Sig;Ctx; Γ, N : F
〈

S′
〉

∆ . Γ ′

Sig;Ctx; Γ

〈

Assume var xk : τk, const cl : τl, Nm : Fm in S

to obtain N : F by R from R
′
; S′

〉

∆ . N : F, Γ ′

Assume

where ΓR (resp. ∆R) is the subset of Γ (resp. ∆) denoted by R and R
′

extended by all substitutions and abbreviations.

Fig. 5. What-You-Need-Is-What-You-Stated Granularity Checking Rules

all the referenced formulas, that is, the deletion of any of these formulas renders
the lemma unprovable.

For instance, the Fact and Subgoals rules are strengthened by requiring that
the references R and R′ denote exactly the set of assumptions and conclusions
necessary to derive the new fact. Note that this requires all references to be
defined.

The Assume rule is strengthened similarly, but in addition we restrict the in-
formation flow to subsequent proof parts by omitting the formula . : (

∧m
i=1 Fi) ⊃

Γ var xk

s , as it is only implicitly known and not explicitly stated, and thus violates
the intuitive What-You-State-Is-What-You-Need condition.

The Trivial rule is restricted by removing the call to the Triv strategy. Instead
we require that either there is a trivially valid formula N : F in the accumulated
goals or one of the goal formulas occurs as an assumption. This makes this rule
analogous to an Axiom rule in a sequent-style calculus.

Let us consider again our example proof to illustrate the checking of the
granularity. If we check the granularity of the proof object given in Fig. 3, the
check fails. For instance, in Step 1.1, a reference to the definition of ∩ is missing,
and in Step 3 the references to the two derived subgoals are missing. Note that
in Step 1 and 2 no information about ⊆ is needed, since Bartle and Sherbert [3]
introduced ⊆ as an abbreviating notation and not as a defined concept, and
abbreviations are globally visible to prove the lemmas arising during granularity
check.

Patching the proof object from Fig. 3 by including the missing references as
suggested by the granularity checker consists of: (1) the inclusion of the references
to the definitions of ∪ and ∩ for all but the last Fact proof steps, and (2) for
the last Fact proof step the inclusion of the references to the used premises.
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In order to give a sample proof, we shall prove the first equation in (d). Let x

be an element of A ∩ (B ∪ C), then x ∈ A and x ∈ B ∪ C by the definition of
∩. This means that x ∈ A, and either x ∈ B or x ∈ C by the definition of ∪.
Hence we either have (i) x ∈ A and x ∈ B, or we have (ii) x ∈ A and x ∈ C by the
distributivity of “and” over “or”. Therefore, either x ∈ A∩B or x ∈ A∩C by
the definition of ∩, so x ∈ (A∩B)∪ (A∩C) by the definition of ∪. This shows
that A ∩ (B ∪ C) is a subset of (A ∩ B) ∪ (A ∩ C). (1)

Conversely, let y be an element of (A∩B)∪(A∩C). Then, either (iii) y ∈ A∩B,
or (iv) y ∈ A ∩ C by the definition of ∪. It follows that y ∈ A, and either y ∈ B

or y ∈ C by the definition of ∩ and the distributivity of “and” over “or”.
Therefore, y ∈ A and y ∈ B ∪ C by the definition of ∪ so that y ∈ A ∩ (B ∪ C)
by the definition of ∩. Hence (A ∩ B) ∪ (A ∩ C) is a subset of A ∩ (B ∪ C). (2)

In view of Definition 1.1.1, we conclude from (1) and (2) that the sets
A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are equal.

Fig. 6. The patched textbook proof example.

Exploiting the relationship of the proof steps to individual sentences in the text,
we can propagate the additional information back into the textual representation.
The resulting proof is shown in Fig. 6, where the added text fragments are set
in boldface italics font.

6 Conclusion

In this paper, we presented a calculus-independent formal representation lan-
guage for human-authored proofs and two deductive systems that allow for
checking the correctness and the level of granularity of the proofs. This formal
language mediates between the semantically-annotated natural language repre-
sentation of the mathematical document in a scientific text editor, where the
user enters his input, and the logic representation required by proof assistance
systems that check the mathematical content of the documents and fill in gaps.
Using an example textbook proof, we showed how this proof is represented in our
language and checked its correctness and granularity. We based a first notion of
granularity on Hilbert’s approach that demands that everything that is needed
in the proof must be stated explicitly. This, however, resulted in the failure of the
granularity check of the example textbook proof, such that a patch was required
that added missing references to used definitions and previously derived facts.

Putting the patched proof under scrutiny, we see that it is now easier to
follow the line of reasoning in the proof. However, one could argue that the
proof now contains too many details. Therefore, we plan to enhance our notion
of granularity in order to allow for implicit references as well. To do so, we need
a flexible model of granularity that captures when a reference must be explicit
and when it can be implicit, which can only be obtained via empirical studies.

In addition to granularity, a notion of conciseness would be desirable, which
could be used to check if a proof is more involved than necessary. It is unclear,
though, how such a notion could be captured formally.

14



Yet, we envision the approach presented in this paper to be a first step to-
wards an integration of a scientific text editor with mathematical proof assistance
systems. In particular, the deductive systems show how mathematical proof as-
sistance systems can be employed via the strategies to prove raised lemmas. To
achieve the overall goal, however, many additional problems must be tackled,
among them the connection to a scientific text editor, and, most notably, a nat-
ural language analysis component that transforms the human-authored proofs
into proofs in our representation language.
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