
A Generic Modular Data Structure for Proof

Attempts Alternating on Ideas and Granularity

Serge Autexier1,2, Christoph Benzmüller1, Dominik Dietrich1, Andreas Meier2,
Claus-Peter Wirth1

1 FR Informatik, Saarland University, Saarbrücken, Germany,
{autexier|chris|dodi|cp}@ags.uni-sb.de

2 DFKI GmbH, Stuhlsatzenhausweg, Saarbrücken, Germany, ameier@dfki.de

Abstract. A practically useful mathematical assistant system requires
the sophisticated combination of interaction and automation. Central in
such a system is the proof data structure, which has to maintain the
current proof state and which has to allow the flexible interplay of vari-
ous components including the human user. We describe a parameterized
proof data structure for the management of proofs, which includes our
experience with the development of two proof assistants. It supports and
bridges the gap between abstract level proof explanation and low-level
proof verification. The proof data structure enables, in particular, the
flexible handling of lemmas, the maintenance of different proof alterna-
tives, and the representation of different granularities of proof attempts.

1 Introduction

A careful and objective inspector of the history of automated theorem proving
in the last fifty years would come to the following hypothesis:

Stand-alone automated theorem provers will never develop into practi-
cally useful mathematical assistant systems.

To achieve the original design goal of a practically useful mathematical assistant
system, we aim at interactive systems with a high degree of automated sup-
port. To combine interaction and automation into a synergetic interplay and to
bridge between abstract level proof explanation and low-level proof verification
is an enormous task. It requires sophisticated achievements from logic, tactics
programming, proof planning, agent-based architectures, graphical user inter-
faces, and integration of other reasoning tools on the one hand, and a deeper
experience in informal and formal human proof construction on the other hand.

The main task of the proof data structure in the center of such a system is
to maintain the current states of the proof attempts with their open goals and
available lemmas. To further the communication between a theorem proving
system on the one hand and a human user, another system, or a proof archive
on the other hand, an appropriate representation and transformation of proof
attempts is necessary. In this paper we describe a new proof data structure
(PDS) for this purpose. It generalizes both the existing PDS (with its features
for granularity) of the Ωmega system [8, 16, 5] and the proof forests (with their
alternative proof attempts and lemmatization) of the QuodLibet system [3]
and incorporates the experience gained in the last dozen years.

2 S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, C.-P. Wirth

The basic ideas are:

– Each conjectured lemma gets its own proof tree (actually a directed acyclic
graph (dag)).

– In this proof forest, each lemma can be applied in each proof tree; either as
a lemma in the narrower sense, or as an induction hypothesis in a possibly
mutual induction process, see [18].

– Inside its own tree, the lemma is a goal to be proved reductively. A reduction
step reduces a goal to a conjunction of sub-goals w.r.t. a justification.

– Several reduction steps applied to the same goal result in alternative proof
attempts, which either represent different proof ideas or the same proof idea
with different granularity (or detailedness).

Although the application of a lemma of one tree (generative step) results in a
reductive step inside another tree, we do not overemphasize reduction by this:

– For purely generative abstract theory expansion we may assume some trivial
reductions, which can later be refined to the reductions that will be neces-
sarily involved in this generation on the concrete level of a logical calculus.

– All steps in a traditional sequent or tableau calculus as well as backward and
forward steps in Natural Deduction can be realized as reduction steps.

A parallel representation of different granularities of proof attempts is necessary
for increasing granularity from proof sketches to the actual elaboration of the
concrete proofs, and for decreasing the granularity from huge automatically gen-
erated proofs to tactical descriptions of a size that can be stored and archived.
Moreover, the inspection of proof attempts by human users requires different
granularities and the possibility to switch between them for size management
and modular focusing according to their varying intentions and different exper-
tise. An important new feature compared to the existing PDS of the Ωmega

system is that granularity does not have to be linearly ordered: there may be
two incomparable subtrees that both represent a more fine-grained version of a
reduction step. Note that we do not have well-defined levels of granularity be-
cause we have no means (yet?) to define such levels from our experience, neither
as mathematicians nor as theorem-proving engineers.

Our novel data structure is generic insofar as it is parameterized in both the
justifications of the reductions (ranging from tentative hopes based on insecure
knowledge to inference steps in a formal logic calculus) and in the data type
of the goals, which may reach from sentences in natural languages to the proof
task data structure of the CORE system [10]. Note, however, that we cannot
distinguish yet between levels of abstraction realized by different data types for
goals. For example, we do not distinguish between different levels of abstraction
in the language of our goals and have no means for signature morphisms at the
level of our PDS.

Although the above-mentioned tasks of the CORE system are not the subject
of this paper, they may help (in form of a concrete instance) to describe the form
of our novel PDS: Roughly speaking, a task is simply a disjunctive list of formulas
(i.e. the simplest form of a sequent in classical logic) with some augmentations
for different purposes, such as—among others—a distinction on one formula as

A Generic Modular Proof Data Structure 3

the focus, rendering the conjugates of the other formulas as context formulas to
be assumed when reasoning on the focus, such as a weight term for generating
the ordering constraints in applications of induction hypotheses, and such as
colorings for heuristic guidance.

The paper is structured as follows. We start in Section 2 with a brief summary
of the old data structures of the Ωmega and the QuodLibet systems and
motivate their unification and generalization in the new data structure. Section 3
provides a formal description of the new generic proof data structure. Its usage
is illustrated in Section 4 by a sample proof development. In Section 5 we give
our answer to the question on fundamental design alternatives and Section 6
concludes the paper.

2 Ωmega’s and QuodLibet’s Old Proof Data Structures

Ωmega’s Proof Data Structure. Ωmega (see [16] for an overview and a
list of further literature) is a mathematical assistant system that supports proof
development in mathematical domains at a user-friendly level of abstraction.
It is a modular system in which supplementary subsystems are placed around a
central proof data structure (PDS) such that the subsystems can work together
to construct a proof whose status is stored in the PDS. The facilities provided
by the subsystems include support for interactive and mixed-initiative theorem
proving incorporating the user, proof planning, access to external systems such as
automated theorem provers and computer algebra systems, and proof expansion
to and proof checking at the basic level of an underlying logic calculus (which,
however, is of no interest to the human user of Ωmega). These facilities require,
in particular, the representation of proof steps at different granularities ranging
from abstract human-oriented justifications to logic-level justifications.

Technically speaking, the old PDS [5] is a dag consisting of nodes, justifica-
tions and hierarchical edges. Each node represents a sequent and can be open or
closed. An open node corresponds to a sequent that is to be proved and a closed
node to a sequent which is already proved or reduced to other sequents using an
inference rule R := A1...Ak

B
. Such a rule says that from A1, . . . , Ak we can con-

clude B or reading it the other way round that B can be reduced to A1, . . . Ak.
Such an inference step is represented by a justification which connects sequents
A1, . . . Ak stored in nodes n1, . . . nk with a node nb containing B. If a node has
more than one outgoing justification, each of them represents a proof attempt
of the sequent stored in the source node, but at different granularity. These
have to be ordered with respect to their granularity using hierarchical edges.
A hierarchical edge connects two justifications j1 and j2 with the meaning that
justification j1 represents a more detailed proof attempt than justification j2.

If proofs of different granularity are linked together by hierarchical edges, the
user normally just wants to see one proof at a specific granularity. By selecting
the granularity for each node he gets a view onto the graph, called PDS-view.

An example is given in Fig. 1: It shows a node n which has two outgoing jus-
tifications j1 and j2, which are connected by an hierarchical edge from j1 to j2.
The user can decide whether to see the more detailed version of the proof given
by j1 (and its subtree t1) or the more abstract version given by j2 (and its

4 S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, C.-P. Wirth

n

j2 t2

j1 t1

h n

j2 t2

j1 t1

h

Fig. 1. Possible views of proofs at different granularities inside a PDS

subtree t2). The different possible views are indicated by shading the respective
nodes and justifications.

QuodLibet’s Proof Data Structure. Although Ωmega’s old PDS can rep-
resent proofs at different granularity within one data structure, it still has some
weaknesses compared to QuodLibet’s PDS:

– Alternative proof steps cannot be represented. That is, it is not possible for
the user to tackle different proof ideas in parallel within the same proof data
structure. This holds for both the reduction of a goal to some sub-goals as
well as for the expansion of a complex proof step to a lower granularity. For
both cases different alternatives may exist whose parallel inspection should
be supported.

– An explicit handling of lemmas is not supported by Ωmega’s old PDS. That
is, it is one monolithic dag and lemmas cannot be maintained in separated
dags.

QuodLibet [3] is a tactic-based inductive theorem proving system for first-order
clauses. It does not pursue the push-bottom technology for inductive theorem
proving, but it manages more complicated proofs by an effective interplay be-
tween interaction and automation. Basically, the system does all the routine
work and asks the user as early as possible if intelligence or semantic knowl-
edge is needed. QuodLibet has been applied mostly successfully to nontrivial
mathematical research, e.g. the comparison of different formalizations of the
lexicographic path ordering and their properties.

The difference compared to the new PDS of the following sections is that the
proof forests of QuodLibet consist of real trees instead of dags and there are
no means for changing granularity. Although the user interface admits powerful
tactic programming, the proofs are always represented on the calculus level.
A decade ago, this seemed reasonable: The calculus was carefully developed over
years of practical evaluation to meet the requirement of being as human-oriented
as possible, some of its inference steps would take ten to a hundred steps of other
calculi implemented for inductive theorem proving, and the system programmer’s
interface admits the addition of new inference rules for further coarse grain
inference steps, such as computation and decision procedures. In the current
improvement phase, however, it became obvious that the system’s restriction to
the finest grain is a problem growing with the power of the system, and that we
need the possibility for vast changes in granularity in the proof data structure.

A Generic Modular Proof Data Structure 5

3 Generic Proof Data Structure

The described features of the proof data structures successful in Ωmega and
QuodLibet are obviously orthogonal. Their combination and further gener-
alization, including a relaxation of the granularity restrictions—following the
guidelines of Section 1—result in a new proof data structure whose features ex-
ceed the features of its origins. In particular, the new data structure supports:

– the representation of alternative proof steps for both the reduction of a goal
as well as for the expansion of a complex proof step to lower granularity

– the structuring of proof parts (i.e. lemmatization) into separate but con-
nected parts of the data structure

– the generic representation of proof statements and justifications, biased nei-
ther to any specific calculus nor to any specific formalism for representing
abstract proof plans

In the remainder of the section, we give a formal definition of the new generic
proof data structure. We start with a formal definition of the basic PDS. We then
formally define PDS-views and finally we extend a single PDS to conglomerates
of PDSs, so-called forests. Note that the major technical challenge to devise a
mathematically sound formulation was to consistently integrate alternative proof
steps for both alternatives for the reduction of goals as well as alternatives for
the expansion of a complex proof step to a lower granularity.

3.1 The PDS

Our basic PDS essentially is a directed acyclic graph (dag) whose nodes contain
the proof statements. The representation to be chosen for the latter is by no
means constrained in our framework. The PDS has two sorts of links: justifica-
tion hyper-links describe a relation of goal nodes to their sub-goal nodes, and
hierarchical edges point from justifications to other justifications they refine.

Definition 1 (PDS). A PDS is composed of nodes, justifications and hierarchi-
cal edges. Each such component x of a PDS is labeled with a pair label(x) = (c, t),
where c maintains arbitrary content and t ∈ N is a timestamp. The time infor-
mation enables us to define an order in which the objects have been created.
The content of the labels can be freely instantiated, for instance, with proof
statements in the case of proof nodes or with names of proof rules, tactics, and
methods in the case of justifications. That is, our approach is parameterized over
this sort of information that is typically very specific to different proof assistants.
Formally, a PDS is defined as a triple P := 〈N ,J ,H〉 where

– N is a nonempty finite set of nodes. Each node n ∈ N has a label l, denoted
as label(n).

– J is a finite set of justifications. Each justification j ∈ J is a triple (s, T, l).
s ∈ N , T ⊆ N , and l specify the source, the targets, and the label of j.
They are denoted as source(j), targets(j), and label(j), respectively. We will

also denote justifications as s
l→ T . Generally, a justification s

l→ T rep-
resents a proof step in which proof node s is reduced to the nodes T by

6 S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, C.-P. Wirth

application of the operator l. For each node n ∈ N , we define the set of
incoming justifications by In := {j ∈ J |n ∈ targets(j)}, and the set of out-
going justifications by On := {j ∈ J |source(j) = n}. The graph of J is
{(source(j), n)|j ∈ J ∧ n ∈ targets(j)}; we require it to be acyclic.

– We require that there exists exactly one node nr ∈ N with Inr
= ∅, called

the root node.
– H is a finite set of hierarchical edges on J . Each hierarchical edge h ∈ H

is a triple (j1, j2, l). j1 ∈ J , j2 ∈ J , and l specify the source, the target
and the label of h. They are denoted as source(h), target(h), and label(h),
respectively. We will denote hierarchical edges also as j1

h→lj2. The graph of
H is defined as the set of pairs {(source(h), target(h))|h ∈ H}; we require it
to be acyclic. For all hierarchical edges j1

h→lj2 we require:
• source(j1) = source(j2) (i.e. hierarchical edges may only connect justifi-

cations sharing the same source node), and
• for each n2 ∈ targets(j2) there exists an n1 ∈ targets(j1) such that

(n1, n2) is in the reflexive and transitive closure of the graph of J (i.e.
j1 is the first proof step of a derivation that refines the proof step char-
acterized by j2).

As opposed to Ωmega’s old PDS, this definition supports alternative justifica-
tions and alternative hierarchical edges. In particular, several outgoing justifi-
cations of a node n, which are not connected by hierarchical edges, are OR-
alternatives. That is, to prove a node n, only the targets of one of these justi-
fications have to be solved. Hence they represent alternative ways to tackle the
same problem n. This describes the horizontal structure of a proof. Note fur-
ther that we allow sharing of refinements; i.e., two abstract justifications may be
refined by one and the same justification at lower levels. Sharing justifications
in refinements is motivated, for instance, as follows: Consider a justification j
which represents the call to an external system that generates a set of n dif-
ferent solutions, all represented in a single successor node of j with outgoing
alternative subproofs starting with j1 . . . jn, one for each solution. Then, for any
i ∈ {1, . . . , n}, we may abstract a coarse-grain justification ai corresponding
to a path starting with 〈j, ji〉, represented by a hierarchical edge from j to ai.
Not supporting the sharing of justifications would in this scenario require the
duplication of the justification j, which is both cumbersome and not adequate.

From the problem-solving point of view we need to know if a problem—
including all its related subproblems—has already been solved or which sub-
problems still need to be solved. We introduce the following terminology to
distinguish the different situations:

Definition 2 (Open/Closed Nodes). Let P = 〈N ,J ,H〉 be a PDS and n ∈
N be a node of P . n is called locally closed if and only if there exists a j ∈ J
with source(j) = n and target(j) = ∅; i.e. n is justified without reducing it to
new subproblems. n is called tree-wide closed if it is locally closed or if there is
a j ∈ On such that all m ∈ targets(j) are tree-wide closed. The latter says that
n is justified by a reduction to subproblems m ∈ targets(j) which are all already
(recursively tree-wide) closed. A node is called locally/tree-wide open if it is not
locally/tree-wide closed.

A Generic Modular Proof Data Structure 7

3.2 PDS-View

Hierarchical edges construct the vertical structure of a proof. They distinguish
between upper layer proof steps and related derivations which refine them at a
more granular layer. This mechanism supports both recursive expansion and ab-
straction of proofs. A proof may be conceived at a high level of abstraction and
then expanded to a finer grain. As opposed thereto, abstraction means the process
of successively contracting fine-grain proof steps to more abstract proof steps.1

Furthermore, the PDS generally supports alternative and mutually incomparable
refinements of one and the same upper layer proof step. This horizontal struc-
turing mechanism—together with the possibility to represent OR-alternatives at
the vertical level—provides very rich and powerful means to represent and main-
tain proof attempts. In fact, such multidimensional proof attempts may easily
become too complex for humans to keep an overview as a whole. In particular,
since a human does not have to work simultaneously on different granularities
of a proof, elaborate functionalities to access only selected parts of a PDS are
useful. They are required, for instance, for user-oriented presentation of a PDS,
in which the user should be able to focus on the parts of the PDS he is cur-
rently working at, while being always able to choose whether he wants to see
more details for some proof step or, on the contrary, needs to be shown a coarse
structure when he is lost in the details.

We define in this subsection the notion of a PDS-view. A PDS-view extracts
from a given PDS only a horizontal structure of the represented proof attempt
at chosen granularities, but with all its OR-alternatives. As an example consider
the PDS fragments in Fig. 2. In the fragment on the left-hand side, the node n1

has two alternative proof attempts and each at alternative granularities. The
fragment on the right-hand side gives a PDS-view which results by selecting a
certain granularity for each alternative proof attempt, respectively. The sets of
alternatives may be selected by the user and define the granularity on which he
currently wants to inspect the proof. The resulting PDS-view is a slice plane
through the hierarchical PDS and is—from a technical point of view—also a
PDS, but without hierarchies, i.e. without hierarchical edges.

In the remainder of this subsection, we give a formal definition of a PDS-view.
First, we introduce some technical prerequisites.

Definition 3 (H-Induced Orderings < and ≤).
Given a PDS S = 〈N ,J ,H〉 we define < to be the transitive closure of the graph
of H and ≤ to be the reflexive closure of <.

Note that < and > are well-founded orderings because the graph of H is acyclic
and finite.

1 An application of recursive expansion in the Ωmega system is, for instance, proof
planning [14]. Proof planning first establishes a proof at an abstract level. After-
wards, to be proof checked, this proof plan may have to be expanded to a (very
granular) underlying calculus. An application of recursive abstraction in Ωmega is,
for instance, the abstraction of Natural Deduction proofs to assertion level proofs
which are better suited for presentation [9].

8 S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, C.-P. Wirth

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

n1

j1 subproblems

j4 subproblems

(a) PDS-node with all outgoing partially
hierarchically ordered justifications, and
j1, j4 in the set of alternatives. Justifica-
tions are depicted as boxes.

(b) PDS-node in the PDS-view ob-
tained for the selected set of alterna-
tives j1, j4.

Fig. 2.

A PDS-node can have multiple outgoing justifications, representing alter-
native proof attempts or proofs at different granularity. During the proof con-
struction or presentation, we want to restrict this set of justifications to get a
complete set of alternatives at some specific granularity:

Definition 4 (Set of Alternatives). Let 〈N ,J ,H〉 be a PDS, n ∈ N , and
A ⊆ On a set of justifications for n.

– A is adequate if there are no k, k′ ∈ A such that k<k′.
– A is complete if for all k ∈ On there is a k′ ∈ A such that k≤k′ or k′≤k.
A is a set of alternatives for n if it is adequate and complete. Given j1, j2 ∈ On,
j1 and j2 are comparable, if j1≤j2 or j2≤j1; otherwise they are not comparable.

The adequacy property ensures that at most one descendant is selected for each
alternative, whereas the completeness property says that there must be at least
one.

For instance, the node n1 on the left-hand side of Fig. 2 has five outgoing
justifications. ≤ splits these justifications into 2 classes: {j1, j2} and {j3, j4, j5},
where the elements of a class represent the same proof alternative but at a
different granularity. A set of alternatives for n is, for instance, {j1, j4}.
Definition 5 (PDS-View). Let P := 〈N ,J ,H〉 be a PDS, N = {n1, . . . , nm}
and let An1

, . . . , Anm
be sets of alternatives for the nodes n1, . . . , nm respectively.

A PDS-view is a PDS 〈N ′,J ′, ∅〉 such that N ′ ⊂ N and J ′ ⊂ J are the smallest
sets with: (1) The root node nr of P is in N ′, (2) if n ∈ N ′ then An ⊆ J ′, and

(3) if s
l→ T ∈ J ′ then T ⊆ N ′.

From a procedural point of view the computation of a PDS-view is a recursive
process that starts at the root node nr of a given PDS. For each node contained
in the PDS-view, its set of alternatives are introduced as justifications of the
PDS-view. The target nodes of these introduced justifications are then added
to the nodes of the PDS-view etc. As an example consider the PDS-node and
justifications on the right-hand side of Fig. 2 which are the corresponding part
of the PDS-node on the left-hand side in the PDS-view.

A Generic Modular Proof Data Structure 9

Note that this definition of a PDS-view is not the only possible one. An alter-
native would be, for instance, to choose not only among hierarchical alternatives
but also among the vertical alternatives. The result would be a PDS-view that
contains neither hierarchical nor vertical alternatives.

3.3 Forests

We now extend the structure of a single PDS to a so-called PDS-forest, i.e. a
set of PDSs which can be interdependent, indicated by special links between
their graphs. The intuition is as follows: to prove a conjecture, further axioms,
lemmas and theorems—uniformly called lemmas—can be used. The lemmas are
either already proved or have been synthesized during proof search and are not
yet proved. To accommodate either situation, new PDSs which live in the same
forest as the PDS of the conjecture are introduced for the lemmas. A proof step
in some PDS can then be justified by a lemma by linking the justification link
to the root node the PDS for that lemma.

Definition 6 (Forest). Let I be an index set. A forest is a pair 〈(PDSi)i∈I
,F〉

where

– (PDSi)i∈I
= (〈Ni,Ji,Hi〉)i∈I

is a family of disjoint PDSs.
– F is a finite set of forest edges between PDSs. Each forest edge f ∈ F is

a pair (j, nr) consisting of the source source(f) = j, which is a justification
from some Ji, i ∈ I, and the target target(f) = nr, which is the root node
of some PDS PDSi′ , nr ∈ Ni′ , i

′ ∈ I. We denote a forest link (j, nr) by
j nr.

Given a justification j ∈ Ji for some i ∈ I, the set of outgoing forest links for
that justification is denoted by Fj := {f ∈ F|source(f) = j}.
Applying a new lemma on some justification j in a PDS p results in introducing a
new PDS p′ with root node nr and a forest edge that connects j to nr. Although
we intuitively apply lemmas to a goal stored in a node, a forest edge starts at
a justification of this node. This is necessary to determine in which alternative
the lemma is to be applied. The node n is eventually tree-wide closed by the
justification j, but n remains forest-wide open until the nr in the PDS p′ (just
as the target nodes targets(j)) are (forest-wide) closed.

Note that forest edges can produce cycles. This allows us to apply a lemma to
itself, which is needed to represent induction in the form of descente infinie [18].
Moreover, due to our AND-OR proof trees these cycles may refer to different
choices of AND proofs.

We now extend the notion of a PDS-view to the notion of a forest.

Definition 7 (Forest-View). Let 〈PDS ,F〉 be a forest. A forest-view with
respect to some p ∈ PDS is a forest 〈PDS ′,F ′〉, such that PDS ′ and F ′ are the
smallest sets with:

– The PDS-view for p is in PDS ′.
– For all justifications j in some PDS-view from PDS ′ and for all forest edges
j nr ∈ F , nr ∈ p′:
j nr and the PDS-View for p′ are contained in F ′ and PDS ′, respectively.

10 S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, C.-P. Wirth

4 Sample Application

Our application of the proof data structure presented in this paper within the
Ωmega project instantiates the framework with so-called proof tasks ; i.e. they
become the nodes of our proof data structure. Tasks were developed originally to
represents proof situations in Ωmega’s proof planner Multi [13]. We extended
tasks as a general technique for “natural” reasoning with abstract steps [10].
That is, the task framework allows for all kinds of steps with tasks ranging
from formal steps like rewrite steps or definition expansion/contraction steps to
abstract steps involving computations of external systems or merely sketching
proof ideas and their flexible combination.

Proof tasks can be seen as sequents ϕ1, . . . ϕn ` ψ1, . . . , ψm where there is
always one formula—the so-called focus—annotated as the currently active one.
The focus may be an antecedent or a succedent formula. For example, ϕ1, . . . ϕn `
ψ1, ψ2, . . . , ψm describes a task where we have the context ϕ1, . . . ϕn ` ψ2, . . . , ψm

available for showing the focus ` ψ1. In a user-interface we may want to present
tasks as

ϕ1, . . . ϕn

ψ1, . . . , ψm

and use colors to further distinguish antecedent and succedent formulas, e.g. the
negative formulas in red and the positive ones in black.

In the remainder of this section, we discuss the construction of a PDS with
tasks for the example theorem “

√
12 is irrational”. The general proof technique

we shall apply to this problem works as follows: Given is the conjecture “ j
√
l is

irrational”. Assume that
j
√
l is rational. Then there are integers n,m, which have

no common divisor and for which holds that j
√
l = n

m
. Derive a contradiction to

the assumption by showing that, indeed, n,m have a common divisor. Potential
candidates for the common divisor are the prime factors of l.

4.1 Proof Construction in a PDS

In a first step, we construct a PDS in the way a human mathematician would
like to prove the given conjecture; see the proof sketch above. This is supported
by so-called interactive island planning (see [17, 16] for details), a technique
that expects an outline of the proof and has the user provide main subgoals,
called islands. The details of the proof, eventually down to the logic level, are
postponed. Hence, the user can write down his proof idea in a natural way with
as many gaps as there are open at this first stage of the proof. Technically, in
our framework the islands are tasks and all justifications between islands state
island, i.e., they just indicate the intention that an island should follow from
several other islands.

Step 0. The proof starts with the initial task ` ¬rat(
√

12) and the initial PDS
show on the left of Fig. 3

A Generic Modular Proof Data Structure 11

¬rat(
√

12) ¬rat(
√

12)
Island

rat(
√

12)

⊥

Fig. 3. PDS trees respectively after step 0 and step 1

Step 1. In the first step we introduce the indirect argument and reduce the ini-
tial task to rat(

√
12) ` ⊥ in which we assume that rat(

√
12) holds and the basic

contradiction ⊥ is to be proved. This action extends the PDS to one viewed on
the right of Fig. 3 where the justification Island states that the action introduces
a new island node.

Step 2. In the second step we derive from the assumption rat(
√

12) that there

exist two integers n,m, which have no common divisors and for which
√

12 = n
m

holds. This action further refines the PDS to

¬rat(
√

12)
Island

rat(
√

12)

⊥ Island

rat(
√

12), int(n), int(m),

¬commondiv(n,m),
√

12 = n
m

⊥

with the new task rat(
√

12), int(n), int(m),¬commondiv(n,m),
√

12 = n
m

`⊥

Step3 + 4. To complete the proof a common divisor is needed. Since 12 has
the prime factors 2 and 3 there are two potential candidates. Moreover, for each
candidate we have to show that both n and m are divided by it. This results
in the PDS (shown below) with OR-branches (outgoing edges of PDS-nodes, e.g.

rat(
√

12), int(n), int(m),¬commondiv(n,m),
√

12 = n
m

` ⊥) and AND-branching (outgoing

links of justification nodes, e.g. Island), where Σ abbreviates all so far available

` ¬rat(
√

12)

Island

rat(
√

12) ` ⊥

Island

rat(
√

12), int(n), int(m),¬commondiv(n,m),
√

12 = n
m

` ⊥

Island

Σ ` div(n, 3) ∧ div(m, 3)

Island

Σ ` div(n, 3) Σ ` div(m, 3)

Island

Σ ` div(n, 2) ∧ div(m, 2)

Island

Σ ` div(n, 2) Σ ` div(m, 2)

assumptions: rat(
√

12), int(n),
int(m), ¬commondiv(n,m),√

12 = n
m

. To accomplish a proof
we have now 2 possibilities:
either we solve the two tasks
Σ ` div(n, 3) and Σ ` div(m, 3),
which demand to prove that
both n and m have divisor
3, or we solve the two tasks
Σ ` div(n, 2) and Σ ` div(m, 2),
which demand to prove that
both n and m have divisor 2.

Step 5 + We omit the further construction of the PDS in detail and just
sketch the missing steps to derive a proof. We cannot show that both n and m

12 S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, C.-P. Wirth

have divisor 2 in the given context. Hence, the right branch of the PDS does not
represent any progress. However, both n and m have divisor 3. From

√
12 = n

m

follows that m2 ∗ 12 = n2. Hence, n2 has divisor 12 and thus also divisor 3.
Then n also has divisor 3, since 3 is a prime number. This implies that n = 3 ∗ k
for an integer k. Substituting n by 3 ∗ k in the equation m2 ∗ 12 = n2 results
in m2 ∗ 12 = 9 ∗ k2. This equation can be simplified to m2 ∗ 4 = 3 ∗ k2. This
implies that m2 has divisor 3, from which follows that m has divisor 3 since 3 is
a prime number. The introduction of all these steps closes the left branch, i.e.
one alternative, of the last PDS and results in a closed PDS.

We want to remark that a proof along this idea can also be automatically
proof planned in Ωmega; for further details we refer to [16].

4.2 Proof Expansion in a PDS

So far, our proof has been developed and sketched only at an intuitive, abstract
level and logical details have been neglected. Verification of this proof requires
expanding it to a logic-calculus layer. How much “effort” this expansion causes
and whether it succeeds depends on the island steps and the gaps they represent.
In general, an island step can be arbitrarily difficult, so that each island step may
again represent a proof problem in its own right. Nevertheless, the expansion can
be supported by automated tools. For instance, automated theorem provers can
try to solve subproblems, computer algebra systems can perform computations,
and model generators can create counterexamples, which can point out missing
facts in the proof. We omit a detailed discussion of automated expansion support
here and refer the interested reader to [17] and [16]. Rather, we briefly discuss
the expansion of two steps in our current example PDS and sketch the resulting
extended and refined PDS.

¬rat(
√

12)
Island

rat(
√

12)

⊥
Expansion 1. Consider the first step in
the current PDS, which reduces the task
` ¬rat(

√
12) to the task rat(

√
12) ` ⊥:

¬rat(
√

12)
¬I rat(

√
12)

⊥

This step is already an instance of a proof
step on calculus level. Indeed, it is a nega-
tion introduction step (¬I). Hence, an ex-
pansion of this step simply results in a jus-
tification with ¬I deriving ` ¬rat(

√
12) from task rat(

√
12) `⊥ by a calculus

step. The resulting PDS fragment is shown above.

rat(
√

12)

⊥ Island

rat(
√

12), int(n), int(m),

¬commondiv(n,m),
√

12 = n
m

⊥

Expansion 2. The second
step in the proof reduced
the task rat(

√
12) ` ⊥ to

the task rat(
√

12), int(n),
int(m),¬commondiv(n,m),

√
12 = n

m
` ⊥, which is represented by the PDS

fragment above. This step implicitly encapsulates the application of the theo-
rem that each rational number equals the fraction of two integers that have no
common divisor. In the database of Ωmega this theorem is called Rat-Criterion:

A Generic Modular Proof Data Structure 13

` ¬rat(
√

12)

Island

rat(
√

12) ` ⊥

Island

rat(
√

12), int(n), int(m),¬commondiv(n, m),
√

12 = n

m
` ⊥

Island

Σ ` div(n, 3) ∧ div(m, 3)

Island

Σ ` div(n, 3) Σ ` div(m, 3)

Island

Σ ` div(n, 2) ∧ div(m, 2)

Island

Σ ` div(n, 2) Σ ` div(m, 2)

ApplyLemma(Rat-Criterion)

rat(
√

12), ∃y:int, z:int
√

12 = y

z
∧ ¬commondiv(y, z) ` ⊥

Decomposition

h

¬I
h

` ¬rat(
√

12)

Island

rat(
√

12) ` ⊥

ApplyLemma(Rat-Criterion)

rat(
√

12), ∃y:int, z:int
√

12 = y

z
∧ ¬commondiv(y, z) ` ⊥

Decomposition

rat(
√

12), int(n), int(m),¬commondiv(n, m),
√

12 = n

m
` ⊥

Island

Σ ` div(n, 3) ∧ div(m, 3)

Island

Σ ` div(n, 3) Σ ` div(m, 3)

Island

Σ ` div(n, 2) ∧ div(m, 2)

Island

Σ ` div(n, 2) Σ ` div(m, 2)

Fig. 4. (Left) Complete PDS for the running example with alternative proof attempts
and different layers of granularities. (Right) A possible PDS-View determined by se-
lection of a set of alternatives for each PDS-node in the complete PDS.

Rat− Criterion ::= ∀x : Rat. ∃y, z : int.
(

x = y
z
∧ ¬commondiv(y, z)

)

It says that for all rational x there exists integers y,z, which have no common
divisor and furthermore x = y

z
.

The expansion of the abstract step makes the application of the Rat-Criterion
theorem explicit. This works as follows: The application of Rat-Criterion to the
assumption rat(

√
12) in the task rat(

√
12) ` ⊥ derives the new assumption

∃y, z : int.
(√

12 = y
z
∧ ¬commondiv(y, z)

)

, which results in the corresponding

new task rat(
√

12), ∃y, z : int.
(√

12 = y
z
∧ ¬commondiv(y, z)

)

` ⊥. Decom-
position of the composed new assumption then derives the task

rat(
√

12), int(n), int(m), ¬commondiv(n,m),
√

12 =
n

m
` ⊥

rat(
√

12) ` ⊥

ApplyLemma(Rat-Criterion)

rat(
√

12), ∃y:int, z:int
√

12 = y
z
∧ ¬commondiv(y, z) ` ⊥

Decomposition

rat(
√

12), int(n), int(m),¬commondiv(n,m),
√

12 = n
m

` ⊥

Altogether the resulting ex-
panded PDS fragment at a lower,
more granular level has the form
viewed on the right. Depending
on the underlying basic calculus
these steps either present already
calculus steps or they can be fur-
ther expanded. For instance, in
the CORE system lemma appli
cation is already a basic step.

As opposed thereto, in the old Ωmega system lemma applications have to
be further expanded to derive Natural Deduction proofs.

The complete PDS maintaining simultaneously the initial abstract, less gran-
ular proof sketch and the lower, more granular verification of it is shown on the
left-hand side in Fig. 4. It also contains the hierarchical edges .

h→. which connect
the different vertical layers. It supports four different PDS-views which result

14 S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, C.-P. Wirth

from alternative levels of granularity of the outgoing justifications of the initial
node ` ¬rat(

√
12) and of the outgoing justifications of the node rat(

√
12) ` ⊥ . Selecting

the upper justification for the set of alternatives for the first node and the lower
justification for the latter node results in the PDS-view shown on the right-hand
side in Fig 4.

5 Fundamental Alternatives for Modeling a PDS?

On a first glance, our modeling of a PDS may seem arbitrarily chosen among
fundamentally different possibilities and dual or isomorphic structures. After
deeper consideration, however, we believe that this is not quite the case:

Just as tasks are structured into proof attempts by recursive reduction to
subtasks, alternative proof attempts result from multiple reduction of the same
task. These can be considered as a hierarchy (Fig. 5): (1) multiple proof at-
tempts, (2) task reduction to subtasks within one proof attempt, and (3) task
composition from formulas.

level subject subunits
connection
of subunits

reason for the modus of
the logical connection

1st Alternative Proof parallel reductions disjunctive area of application

2nd Reduction subtasks conjunctive
disjunctive normal form

together with level 1

3rd Task [signed] formulas disjunctive
conjunctive normal form

together with level 2

Fig. 5. Why the Logical Connections are not Arbitrary in Duality

Contrary to forms of political or juristic argumentation where total evidence is
the sum of the evidences of alternative “proofs”, in our area of application it
typically suffices to establish a task only once, simply because a second proof
does not give more evidence (under the current set of axioms) than a single one.

As multiple mathematical proofs (1st level, Fig. 5) are thus connected dis-
junctively, it is advantageous to connect the subtasks resulting from a reduction
(2nd level, Fig. 5) conjunctively, because the two levels together further the nor-
malization of proof constructions to disjunctive normal form, resulting in a cer-
tain style. On the one hand, this style helps human beings to understand foreign
proofs and maintain their own ones, and, on the other hand, makes it easier for
automatic proof heuristics to recognize the triggering structures and applicable
lemmas.

For the same reasons, it is advantageous to connect formulas inside a task
(3rd level, Fig. 5) disjunctively. Indeed, we do not know of the dual choice of a
conjunctive instead of a disjunctive connection of the formulas of a task in the
literature. By tradition, both in informal human mathematical practice (starting
form Aristotle’s syllogisms and ending with lemmas in a modern textbook) and
in formal logic calculi (Hilbert, resolution, Natural Deduction, tableau, sequent,
and matrix calculi), tasks have a disjunctive structure.

A Generic Modular Proof Data Structure 15

6 Conclusion

This paper describes the PDS, a new generic proof data structure, which orig-
inates from and extends the successful data structures of the Ωmega and
QuodLibet systems. Among its key features are:

– the representation of alternative proof steps for both the reduction of a goal
as well as for the expansion of a complex proof step to lower granularity

– the structuring of proof parts (i.e. lemmatization) into separate but con-
nected parts of the data structure

– the generic representation of proof statements and justifications, biased nei-
ther to any specific calculus nor to any specific formalism for representing
abstract proof plans

The explicit introduction of hierarchical levels within one data structure sup-
ports the bridging between intuitive, abstract level proof development, proof
explanation and proof verification. Whereas proofs are typically developed and
presented at an abstract and intuitive level, proof verification typically requires
some underlying calculus at a very low granularity. The PDS provides, for in-
stance, the flexibility to perform alternative expansions of some abstract proof
steps to represent the same proof idea in different underlying calculi. Maintain-
ing simultaneously the proof at different levels of granularity accommodates, for
instance, proof explanation systems, which can start with a presentation of the
high-level proof, and on-demand generate presentations for expansions of some
chosen proof steps [7]. Furthermore, the hierarchies represent the parts of the
search space taken by automatic proof techniques, like for instance proof plan-
ning methods, tactics, and methodicals. Representing the search space as well as
explored alternatives to represent the branches of the search space is well suited
for debugging new proof techniques [6].

The PDS provides a flexible and general framework for storing and represent-
ing proofs under construction. However, the proof manipulations and refinements
manipulating the PDS have to be determined and controlled by the proof system
making use of the PDS. This proof system has to handle and control operations
such as backtracking, instantiation of variables, collection of constraints etc.
Moreover, it has to decide about whether to allow and how to realize features
such as local definitions and cyclic structures in the PDS.2

Many proof assistants actually provide proof data structures, e.g. Coq [4],
Inka [11], Isabelle [15], NuPrl [12], TPS [1], and VSE [2] to mentioned only
a few. However, to the best of our knowledge none of them has been designed to
support such a horizontal and vertical representation mechanism for proofs as
presented in this paper.

We implemented the generic PDS described in this paper in Allegro Lisp
and defined a content independent XML format for exporting and importing
forests, trees, or parts of them. Furthermore, we are able to visualize our three-
dimensional graphs. For the interaction with the user, however, PDS-views are
essential.

2 Technically, cyclic structures can be realized by cyclic lemmas in PDS forests, [18].

16 S. Autexier, C. Benzmüller, D. Dietrich, A. Meier, C.-P. Wirth

References

1. P.B. Andrews, M. Bishop, and C.E. Brown. System description: TPS: A theorem
proving system for type theory. In Proc. of the 17th Int. Conf. on Automated
Deduction (CADE-17), LNCS, pages 164–169. Springer, 2000.

2. S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock, A. Schairer,
W. Stephan, R. Vogt, and A. Wolpers. VSE: Formal methods meet industrial
needs. International Journal on Software Tools for Technology Transfer, Special
issue on Mechanized Theorem Proving for Technology, Springer, september 1998.

3. J. Avenhaus, U. Kühler, T. Schmidt-Samoa, and C.-P. Wirth. How to prove in-
ductive theorems? QuodLibet! In Proc. of the 19th Int. Conf. on Automated
Deduction (CADE-19), number 2741 in LNAI, pages 328–333. Springer, 2003.

4. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment — Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science, An EATCS Series. Springer, 2004.

5. L. Cheikhrouhou and V. Sorge. PDS — A Three-Dimensional Data Structure for
Proof Plans. In Proc. of the Int. Conf. on Artificial and Computational Intelligence
for Decision, Control and Automation in Engineering and Industrial Applications
(ACIDCA’2000), 2000.

6. L. Dixon. Interactive and hierarchical tracing of techniques in IsaPlanner. In Proc.
of UITP’05, 2005.

7. A. Fiedler. Dialog-driven adaptation of explanations of proofs. In Proc. of the 17th
International Joint Conference on Artificial Intelligence (IJCAI), pages 1295–1300,
Seattle, WA, 2001. Morgan Kaufmann.

8. The OMEGA Group. Proof development with Ωmega. In Proc. of the 18th Int.
Conf. on Automated Deduction (CADE-18), number 2392 in LNAI, pages 143–148.
Springer, 2002.

9. X. Huang. Reconstructing proofs at the assertion level. In Proc. of the 12th Int.
Conf. on Automated Deduction (CADE-12), LNAI, pages 738–752. Springer, 1994.

10. M. Hübner, S. Autexier, C. Benzmüller, and A. Meier. Interactive theorem proving
with tasks. Electronic Notes in Theoretical Computer Science, 103(C):161–181,
November 2004.

11. D. Hutter and C. Sengler. INKA - The Next Generation. In Proc. of the 13th
International Conference on Automated Deduction (CADE–13), LNAI. Springer,
1996.

12. C. Kreitz, L. Lorigo, R. Eaton, R.L. Constable, and S.F. Allen. The nuprl open
logical environment, 2000.

13. Andreas Meier. Proof Planning with Multiple Strategies. PhD thesis, Saarland
Univ., 2004.

14. E. Melis and J. Siekmann. Knowledge-Based Proof Planning. Artificial Intelligence,
115(1):65–105, 1999.

15. L.C. Paulson. Isabelle: A Generic Theorem Prover. LNCS. Springer, 1994.
16. J. Siekmann, C. Benzmüller, A. Fiedler, A Meier, I. Normann, and M. Pollet. Proof

Development in OMEGA: The Irrationality of Square Root of 2, pages 271–314.
Kluwer Academic Publishers, 2003.

17. J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, and M. Pollet. Proof devel-
opment with OMEGA: Sqrt(2) is irrational. In Logic for Programming, Artificial
Intelligence, and Reasoning, 9th Int. Conf., LPAR 2002, number 2514 in LNAI,
pages 367–387. Springer, 2002.

18. C.-P. Wirth. Descente infinie + Deduction. Logic J. of the IGPL, 12(1):1–96, 2004.

