
A Generic Modular Data Structure for
Proof Attempts Alternating on Ideas and

Granularity
Serge Autexier, Christoph Benzmüller, Dominik Dietrich, Andreas Meier, Claus-Peter Wirth

serge@ags.uni-sb.de

DFKI GmbH & CS Department, Saarland University, Saarbrücken, Germany

MKM’05, July 15th 2005

IU Bremen, Germany

MKM’05, July 15th 2005 – p.1

Source: Autexier

ΩMEGA ’s Old PDS

Assertion Level

External Systems Tactic level(s)

Interactive proof sketches
(modeled by special "Island" method)

NL Proof presentation

CAS Computations
Automated Theorem
 Provers

User

OANTS

Multi−Strategy Proof Planner

Method level(s)

Adaptive NL Proof explanation

Higher−Order Natural Deduction Calculus

MKM’05, July 15th 2005 – p.2

Source: Autexier

Features

� Simultaneous representation of the proofs at different levels of
granularity

MKM’05, July 15th 2005 – p.3

Source: Autexier

Features

� Simultaneous representation of the proofs at different levels of
granularity

◮ Representation of abstract proof ideas and their refinement
(Proof Planning)

MKM’05, July 15th 2005 – p.3

Source: Autexier

Features

� Simultaneous representation of the proofs at different levels of
granularity

◮ Representation of abstract proof ideas and their refinement
(Proof Planning)

◮ Representation of external systems proofs/computations
and their refinement

MKM’05, July 15th 2005 – p.3

Source: Autexier

Features

� Simultaneous representation of the proofs at different levels of
granularity

◮ Representation of abstract proof ideas and their refinement
(Proof Planning)

◮ Representation of external systems proofs/computations
and their refinement

◮ Definable level of granularity (slices through the hierarchy)

MKM’05, July 15th 2005 – p.3

Source: Autexier

Features

� Simultaneous representation of the proofs at different levels of
granularity

◮ Representation of abstract proof ideas and their refinement
(Proof Planning)

◮ Representation of external systems proofs/computations
and their refinement

◮ Definable level of granularity (slices through the hierarchy)
• Interactive proof development

MKM’05, July 15th 2005 – p.3

Source: Autexier

Features

� Simultaneous representation of the proofs at different levels of
granularity

◮ Representation of abstract proof ideas and their refinement
(Proof Planning)

◮ Representation of external systems proofs/computations
and their refinement

◮ Definable level of granularity (slices through the hierarchy)
• Interactive proof development
• Adaptive natural language proof explanations

MKM’05, July 15th 2005 – p.3

Source: Autexier

Features

� Simultaneous representation of the proofs at different levels of
granularity

◮ Representation of abstract proof ideas and their refinement
(Proof Planning)

◮ Representation of external systems proofs/computations
and their refinement

◮ Definable level of granularity (slices through the hierarchy)
• Interactive proof development
• Adaptive natural language proof explanations

� Allows to postpone verification (expansion) of higher-level
proof steps

MKM’05, July 15th 2005 – p.3

Source: Autexier

Drawbacks

� No alternative proof attempts (on the same level of granularity)

MKM’05, July 15th 2005 – p.4

Source: Autexier

Drawbacks

� No alternative proof attempts (on the same level of granularity)

◮ Alternatives represented internally to the
algorithms/programming language

MKM’05, July 15th 2005 – p.4

Source: Autexier

Drawbacks

� No alternative proof attempts (on the same level of granularity)

◮ Alternatives represented internally to the
algorithms/programming language

◮ No means to communicate to other “participants”

MKM’05, July 15th 2005 – p.4

Source: Autexier

Drawbacks

� No alternative proof attempts (on the same level of granularity)

◮ Alternatives represented internally to the
algorithms/programming language

◮ No means to communicate to other “participants”

� No good support for lemmatization

MKM’05, July 15th 2005 – p.4

Source: Autexier

Drawbacks

� No alternative proof attempts (on the same level of granularity)

◮ Alternatives represented internally to the
algorithms/programming language

◮ No means to communicate to other “participants”

� No good support for lemmatization

� Almost impossible to exchange the base calculus and have
something different than the methods and tactics as abstract
justifications

MKM’05, July 15th 2005 – p.4

Source: Autexier

QUODLIBET’s Proof Representation

Quodlibet

� Tactic-based inductive theorem prover specialized on induction
in the style of Descente infinie
[Avenhaus,Kühler,Schmidt-Samoa,Wirth]

The quodlibet proof representation

� Alternative proof attempts (OR-branching)

� Support for lemmatization by

◮ forests of proof trees

◮ links between proof trees
Theorem Lemma2Lemma1

MKM’05, July 15th 2005 – p.5

Source: Autexier

Goals for the New PDS

� Preserve hierarchical representation of the proof at different
granularity

� Support representation of alternative proof ideas

� Be independent of specific justifications and content of node

� Support for lemmatization

MKM’05, July 15th 2005 – p.6

Source: Autexier

Generic PDS Node & Justifications

� Each PDS node has a content c

For instance:

◮ a single-conclusion sequent Γ =⇒ ϕ.

◮ tasks ϕ1, . . . ϕn ⊢ ψ1, ψ2, . . . , ψm: multi-conclusion sequents
with a selected focus of attention

MKM’05, July 15th 2005 – p.7

Source: Autexier

Generic PDS Node & Justifications

� Each PDS node has a content c

For instance:

◮ a single-conclusion sequent Γ =⇒ ϕ.

◮ tasks ϕ1, . . . ϕn ⊢ ψ1, ψ2, . . . , ψm: multi-conclusion sequents
with a selected focus of attention

� A PDS justification links a PDS node to a set of PDS nodes
and is annotated with information about the used reasoning
technique
For instance:

◮ Some lemma rat(
√

12) ⊢ ⊥

ApplyLemma(Rat − Criterion)

rat(
√

12),∃y:int, z:int
√

12 = y
z
∧ ¬commondiv(y, z) ⊢ ⊥

MKM’05, July 15th 2005 – p.7

Source: Autexier

Generic PDS Node & Justifications

� A rule of the base calculus: ⊢ ¬rat(
√

12) ¬I rat(
√

12) ⊢ ⊥

� In general n j

s1

...

sk

“Given justifications for s1, . . . , sk, j justifies n”

MKM’05, July 15th 2005 – p.8

Source: Autexier

Alternatives

� Vertical alternatives: Layers of granularity

Alternative justifications at different layers of granularity

n1

j3 subproblems

j4 subproblems

j5 subproblems
h

h

◮ Totally ordered set of justifications. 1:1

MKM’05, July 15th 2005 – p.9

Source: Autexier

Alternatives

� Vertical alternatives: Layers of granularity

Alternative justifications at different layers of granularity

n1

j3 subproblems

j4 subproblems

j5 subproblems
h

h

n1 j4 subproblems

◮ Totally ordered set of justifications. 1:1

◮ Select a layer of granularity by selecting a justification.

MKM’05, July 15th 2005 – p.9

Source: Autexier

Selection of a level of Granularity

Selecting one justification for each node . . .
PDS PDS Views

. . . determines a specific layer of granularity to view the PDS

=⇒ (Old ΩMEGA PDS)

MKM’05, July 15th 2005 – p.10

Source: Autexier

Alternatives

� Horizontal alternatives:

Alternative proof ideas on the same level of granularity

n1

j2 subproblems

j4 subproblems

Unordered set of justifications

MKM’05, July 15th 2005 – p.11

Source: Autexier

Bringing Alternatives together

The simple approach:

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

� Disjoint sets of totally ordered justifications.

MKM’05, July 15th 2005 – p.12

Source: Autexier

Bringing Alternatives together

The simple approach:

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

n1

j1 subproblems

j4 subproblems

� Disjoint sets of totally ordered justifications.

� Select layer of granularity by selecting one justification from each set.

MKM’05, July 15th 2005 – p.12

Source: Autexier

What cannot be modeled yet. . .

� We cannot model alternative refinements of a same abstract
justification n:1

For instance: Abstract justification “By induction” cannot be refined

MKM’05, July 15th 2005 – p.13

Source: Autexier

What cannot be modeled yet. . .

� We cannot model alternative refinements of a same abstract
justification n:1

For instance: Abstract justification “By induction” cannot be refined

◮ by using different induction orderings or

MKM’05, July 15th 2005 – p.13

Source: Autexier

What cannot be modeled yet. . .

� We cannot model alternative refinements of a same abstract
justification n:1

For instance: Abstract justification “By induction” cannot be refined

◮ by using different induction orderings or

◮ doing the induction proof in different base logics

MKM’05, July 15th 2005 – p.13

Source: Autexier

What cannot be modeled yet. . .

� We cannot model alternative refinements of a same abstract
justification n:1

For instance: Abstract justification “By induction” cannot be refined

◮ by using different induction orderings or

◮ doing the induction proof in different base logics

� We cannot share common initial proof sequences among the
refinements of different abstract justifications 1:m

For instance: Sharing a same initial simplification tactic among the

refinements of alternative, high-level proof attempts

MKM’05, July 15th 2005 – p.13

Source: Autexier

What cannot be modeled yet. . .

� We cannot model alternative refinements of a same abstract
justification n:1

For instance: Abstract justification “By induction” cannot be refined

◮ by using different induction orderings or

◮ doing the induction proof in different base logics

� We cannot share common initial proof sequences among the
refinements of different abstract justifications 1:m

For instance: Sharing a same initial simplification tactic among the

refinements of alternative, high-level proof attempts

� To support this, we have to allow for a single set of partially
ordered justifications

(instead of disjoint sets of totally ordered justifications)
MKM’05, July 15th 2005 – p.13

Source: Autexier

Bringing Alternatives together

The advanced approach:

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

h

� A single set of partially ordered set of justifications n:m

MKM’05, July 15th 2005 – p.14

Source: Autexier

Bringing Alternatives together

The advanced approach:

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

h

� A single set of partially ordered set of justifications n:m

� How to consistently select a layer of granularity?
MKM’05, July 15th 2005 – p.14

Source: Autexier

Bringing Alternatives together

The advanced approach:

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

h

n1

j1 subproblems

j4 subproblems

? (not adequate)

� A single set of partially ordered set of justifications n:m

� How to consistently select a layer of granularity?
MKM’05, July 15th 2005 – p.14

Source: Autexier

Bringing Alternatives together

The advanced approach:

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

h

n1

j1 subproblems

j4 subproblems

? (not adequate)

n1

j2 subproblems

j4 subproblems

� A single set of partially ordered set of justifications n:m

� How to consistently select a layer of granularity?
MKM’05, July 15th 2005 – p.14

Source: Autexier

Bringing Alternatives together

The advanced approach:

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

h

n1

j1 subproblems

j4 subproblems

? (not adequate)

n1

j2 subproblems

j4 subproblems

n1 j4 subproblems ? (not complete)

� A single set of partially ordered set of justifications n:m

� How to consistently select a layer of granularity?
MKM’05, July 15th 2005 – p.14

Source: Autexier

Formally: Sets of Alternatives

Assume a straightforward mathematical formalization of a PDS as
an acyclic graph with justifications as hyperlinks and hierarchical
links among justifications.

Let [...] A ⊆ On [be] a set of justifications for n.

� A is adequate if there are no k, k′ ∈ A such that k<k′.

� A is complete if for all k ∈ On there is a k′ ∈ A such that k≤k′ or

k′≤k.

A is a set of alternatives for n if it is adequate and complete.

MKM’05, July 15th 2005 – p.15

Source: Autexier

Selection of A level of Granularity

Fix a set of alternatives for each node of the PDS. . .
PDS PDS Views

. . . gives you a proof on a specific granularity including all alternative

proof ideas with that granularity.

MKM’05, July 15th 2005 – p.16

Source: Autexier

Goals for the New PDS

� Preserve hierarchical representation of the proof at different
granularity

� Support representation of alternative proof ideas

� Be independent of specific justifications and content of node

� Support for lemmatization

MKM’05, July 15th 2005 – p.17

Source: Autexier

Support for Lemmatization

� Make a forest of PDSs

� Allow inter-PDS-edges (forest-edges) from a justification to
some root node of a PDS

Theorem Lemma2Lemma1

Intuitively: the lemma of the referenced PDS is used in the
justification

� Forest-View is a “forest” of PDS-views (consistent)

MKM’05, July 15th 2005 – p.18

Source: Autexier

Example Abstract PDS

⊢ ¬rat(
√

12)

Island

rat(
√

12) ⊢ ⊥

Island

rat(
√

12), int(n), int(m),¬commondiv(n,m),
√

12 = n
m

⊢ ⊥

Island

Σ ⊢ div(n, 3) ∧ div(m, 3)

Island

Σ ⊢ div(n, 3) Σ ⊢ div(m, 3)

Island

Σ ⊢ div(n, 2) ∧ div(m, 2)

Island

Σ ⊢ div(n, 2) Σ ⊢ div(m, 2)

MKM’05, July 15th 2005 – p.19

Source: Autexier

Example Complete PDS

Complete PDS

⊢ ¬rat(
√

12)

Island

rat(
√

12) ⊢ ⊥

Island

rat(
√

12), int(n), int(m),¬commondiv(n,m),
√

12 = n
m

⊢ ⊥

Island

Σ ⊢ div(n, 3) ∧ div(m, 3)

Island

Σ ⊢ div(n, 3) Σ ⊢ div(m, 3)

Island

Σ ⊢ div(n, 2) ∧ div(m, 2)

Island

Σ ⊢ div(n, 2) Σ ⊢ div(m, 2)

ApplyLemma(Rat − Criterion)

rat(
√

12),∃y:int, z:int
√

12 = y
z
∧ ¬commondiv(y, z) ⊢ ⊥

Decomposition

h

¬I
h

MKM’05, July 15th 2005 – p.20

Source: Autexier

Example Complete PDS

Complete PDS A PDS View

⊢ ¬rat(
√

12)

Island

rat(
√

12) ⊢ ⊥

Island

rat(
√

12), int(n), int(m),¬commondiv(n,m),
√

12 = n
m

⊢ ⊥

Island

Σ ⊢ div(n, 3) ∧ div(m, 3)

Island

Σ ⊢ div(n, 3) Σ ⊢ div(m, 3)

Island

Σ ⊢ div(n, 2) ∧ div(m, 2)

Island

Σ ⊢ div(n, 2) Σ ⊢ div(m, 2)

ApplyLemma(Rat − Criterion)

rat(
√

12),∃y:int, z:int
√

12 = y
z
∧ ¬commondiv(y, z) ⊢ ⊥

Decomposition

h

¬I
h

⊢ ¬rat(
√

12)

Island

rat(
√

12) ⊢ ⊥

ApplyLemma(Rat − Criterion)

rat(
√

12),∃y:int, z:int
√

12 = y
z
∧ ¬commondiv(y, z) ⊢ ⊥

Decomposition

rat(
√

12), int(n), int(m),¬commondiv(n,m),
√

12 = n
m

⊢ ⊥

Island

Σ ⊢ div(n, 3) ∧ div(m, 3)

Island

Σ ⊢ div(n, 3) Σ ⊢ div(m, 3)

Island

Σ ⊢ div(n, 2) ∧ div(m, 2)

Island

Σ ⊢ div(n, 2) Σ ⊢ div(m, 2)

MKM’05, July 15th 2005 – p.20

Source: Autexier

Implementation

� Implemented the generic PDS in Common Lisp

◮ Basic functionality to introduce new justifications and
changing the view

◮ Provides dependency directed pruning for backtracking

◮ Parameterized over generic classes for content of nodes
and justifications

� Defined a content independent XML format for exporting and
importing forests, trees, or parts of them.

� Storing proofs, alternative proofs, proofs under construction in
our Mathematical Knowledge Base

MKM’05, July 15th 2005 – p.21

Source: Autexier

XML Representation for the PDS

Parameterized over node and justification contents
<!ELEMENT forest (time,treelist,fedgelist)>

<!ELEMENT treelist (tree*)>

<!ELEMENT tree (time, assume?, (node|hedge|justification)*)>

<!ELEMENT assume (node|hedge|justification)*)>

<!ELEMENT content (#PCDATA)>

<!ELEMENT node (symid,time,content)>

<!ELEMENT justification (symid,time,content,source,targetlist)>

<!ELEMENT hedge (symid,time,content,source,target)>

<!ELEMENT symid (#PCDATA)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT source (symid)>

<!ELEMENT target (symid)>

<!ELEMENT targetlist (symid*)>

<!ELEMENT fedgelist (fedge)>

<!ELEMENT fedge (time, content, source, targetlist)>

<!ATTLIST justification

selected (0|1) "0" >

MKM’05, July 15th 2005 – p.22

Source: Autexier

Conclusion

The presented PDSs and Forests support:

� the representation of alternative proof steps for both

MKM’05, July 15th 2005 – p.23

Source: Autexier

Conclusion

The presented PDSs and Forests support:

� the representation of alternative proof steps for both

◮ the reduction of a goal as well as

MKM’05, July 15th 2005 – p.23

Source: Autexier

Conclusion

The presented PDSs and Forests support:

� the representation of alternative proof steps for both

◮ the reduction of a goal as well as

◮ for the expansion of a complex proof step to lower granularity

MKM’05, July 15th 2005 – p.23

Source: Autexier

Conclusion

The presented PDSs and Forests support:

� the representation of alternative proof steps for both

◮ the reduction of a goal as well as

◮ for the expansion of a complex proof step to lower granularity

� the structuring of proof parts (i.e. lemmatization) into separate
but connected parts of the data structure

MKM’05, July 15th 2005 – p.23

Source: Autexier

Conclusion

The presented PDSs and Forests support:

� the representation of alternative proof steps for both

◮ the reduction of a goal as well as

◮ for the expansion of a complex proof step to lower granularity

� the structuring of proof parts (i.e. lemmatization) into separate
but connected parts of the data structure

� the generic representation of proof statements and
justifications, biased

MKM’05, July 15th 2005 – p.23

Source: Autexier

Conclusion

The presented PDSs and Forests support:

� the representation of alternative proof steps for both

◮ the reduction of a goal as well as

◮ for the expansion of a complex proof step to lower granularity

� the structuring of proof parts (i.e. lemmatization) into separate
but connected parts of the data structure

� the generic representation of proof statements and
justifications, biased

◮ neither to any specific calculus

MKM’05, July 15th 2005 – p.23

Source: Autexier

Conclusion

The presented PDSs and Forests support:

� the representation of alternative proof steps for both

◮ the reduction of a goal as well as

◮ for the expansion of a complex proof step to lower granularity

� the structuring of proof parts (i.e. lemmatization) into separate
but connected parts of the data structure

� the generic representation of proof statements and
justifications, biased

◮ neither to any specific calculus

◮ nor to any specific formalism for representing abstract proof plans

MKM’05, July 15th 2005 – p.23

Source: Autexier

Conclusion

The presented PDSs and Forests support:

� the representation of alternative proof steps for both

◮ the reduction of a goal as well as

◮ for the expansion of a complex proof step to lower granularity

� the structuring of proof parts (i.e. lemmatization) into separate
but connected parts of the data structure

� the generic representation of proof statements and
justifications, biased

◮ neither to any specific calculus

◮ nor to any specific formalism for representing abstract proof plans

� Any further semantics must be provided by the using system

(e.g. scope of variables, resolution of cycles introduced by forest links, . . .)

MKM’05, July 15th 2005 – p.23

Source: Autexier

This allows. . .

� Represent alternative proof ideas (Horizontal alternatives)

� Represent the same proof idea in different underlying calculi.

Organize proof with subproofs in different calculi

(Generic, Hierarchies, Alternative Expansions)

� Sharing of common initial proof parts for expansions

(Hierarchies, alternative expansions)

� Represent the search space explored by automated proof techniques

can serve for debugging of automated proof techniques

� XML for storing proofs, alternative proofs, proofs under construction

Discussion: suitable extension for OMDOC to represent proofs of a
same theorem with different formalisms and/or different proof ideas

MKM’05, July 15th 2005 – p.24

	{OMEGA }'s Old PDS
	Features
	Drawbacks
	{QUODLIBET }'s Proof Representation
	Goals for the New PDS
	Generic PDS Node & Justifications
	Generic PDS Node & Justifications
	Alternatives
	Selection of a level of Granularity
	Alternatives
	Bringing Alternatives together
	What cannot be modeled yetldots
	Bringing Alternatives together
	Formally: Sets of Alternatives
	Selection of A level of Granularity
	Goals for the New PDS
	Support for Lemmatization
	Example Abstract PDS
	Example Complete PDS
	Implementation
	XML Representation for the PDS
	Conclusion
	This allowsldots

