Reasoning in Description Logics:
Expressive Power vs. Computational Complexity

Carsten Lutz

University of Bremen, Germany
Description Logic is a subfield of KR concerned with terminological knowledge:

Describe the central notions of the application domain (its terminology) and their interrelations.

E.g. in medical applications:

Tissue, Inflammation, Pericadium, Pericarditis, etc.

DLs play an important role as logical foundation of ontology languages:

- OWL is the W3C-standard for a Web Ontology Language
 - OWL 1 in 2004
 - OWL 2 in 10/2009

- OWL is essentially a description logic with an XML syntax
Main reason for popularity:

attractive compromise between expressive power and computational complexity

<table>
<thead>
<tr>
<th>Propositional Logic</th>
<th>First-Order Logic</th>
<th>Modal Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient reasoning via SAT solvers, but often too inexpressive</td>
<td>Very expressive reference formalism, but reasoning too costly</td>
<td>\approx</td>
</tr>
</tbody>
</table>

Not one DL, but a large toolbox of formalisms:

- DLs cover broad range of responses to “complexity vs. expressive power”
- OWL 2 contains different profiles (3 inexpressive, 1 expressive, 1 not a logic)
Before break:

- brief introduction to description logics
- complexity and expressive power of expressive DLs
- complexity and expressive power of lightweight DLs, part I

After break:

- complexity and expressive power of lightweight DLs, part II
- instance data and query answering
Introduction to Description Logics
Some DL Basics

Knowledge is (mainly) stored in the TBox, e.g.:

\[
\begin{align*}
\text{Pericardium} & \sqsubseteq \text{Tissue} \sqcap \exists \text{partOf.Heart} \\
\text{Pericarditis} & \doteq \text{Inflammation} \sqcap \exists \text{location.Pericardium} \\
\text{Inflammation} & \sqsubseteq \text{Disease} \sqcap \exists \text{actsOn.Tissue} \\
\text{Tissue} \sqcap \text{Disease} & \sqsubseteq \bot
\end{align*}
\]

\(\text{TBox} = \text{“Terminology Box”;} \ \text{modern \ view: \ TBox = ontology}\)

Formally, a TBox is a finite set of

concept inclusions \(C \sqsubseteq D\) \quad \text{and} \quad \text{concept definitions} \ C \doteq D

where \(C, D\) are concepts (\(\approx\) formulas) in the DL used.
Some DL Basics

Different concept constructors give rise to different DLs / OWL dialects:

\[\text{PTIME} \subseteq \text{EL} \subseteq \text{ACC} \subseteq \text{SHIQ} \subseteq \text{SHOIQ} \approx \text{OWL 1} \subseteq \text{SROIQ} \approx \text{OWL 2} \]

\[\text{PTIME} \subseteq \text{ExpTime} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq 2\text{NExpTime} \]
The Description Logic \(\mathcal{ALC} \)

Fix a countably infinite supply of

- concept names (\(\sim \) unary predicates)
- role names (\(\sim \) binary predicates)

Concept language of \(\mathcal{ALC} \):

\[C ::= A \mid \top \mid \bot \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists r.C \mid \forall r.C \]

\(\exists r.C \): existential restriction

\(\forall r.C \): universal restriction / value restriction

For example:

\[\text{Disease} \sqcap \exists \text{actsOn.} \text{Organ} \sqcap \forall \text{cause.} \neg \text{Genetic} \]
The Description Logic \mathcal{ALC}

DL interpretation \mathcal{I}:

FO structure with only unary+binary predicates = Kripke structure

DL-style notation: interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ with

- $\Delta^\mathcal{I}$ a non-empty set, the **domain**
- $\cdot^\mathcal{I}$ the **interpretation function** which assigns
 - a set $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$ to each concept name A
 - a binary relation $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$ to each role name r

We now extend $\cdot^\mathcal{I}$ to composite concepts
DL concepts \approx FO formulas with exactly 1 free variable \approx modal formulas

\[
\begin{align*}
A & \quad A(x) & \quad \mathcal{P}_A \\
\neg C & \quad \neg C(x) & \quad \neg C \\
C \sqcup D & \quad C(x) \lor D(x) & \quad C \lor D \\
C \sqcap D & \quad C(x) \land D(x) & \quad C \land D \\
\exists r. C & \quad \exists y. (r(x, y) \land C(y)) & \quad \langle r \rangle . C \\
\forall r. C & \quad \forall y. (r(x, y) \rightarrow C(y)) & \quad [r] . C
\end{align*}
\]

Note: 2 variables / guarded formulas suffices

We use $C^\mathcal{I}$ to denote the set \{ $d \in \Delta^\mathcal{I} \mid \mathcal{I} \models C(d)$ \}
TBoxes correspond to FO sentences:

\[C \subseteq D \quad \quad \forall x.(C(x) \rightarrow D(x)) \]

\[C \models D \quad \quad \forall x.(C(x) \leftrightarrow D(x)) \]

\[\exists \varphi \quad \quad \bigwedge_{\varphi \in \mathcal{T}} \varphi \]

Example:

\[\text{Pericardium} \subseteq \text{Tissue} \cap \exists \text{partOf.Heart} \]

translates to

\[\forall x. (\text{Pericardium}(x) \rightarrow (\text{Tissue}(x) \land \exists y. (\text{partOf}(x, y) \land \text{Heart}(y)))) \]
Reasoning

Traditional reasoning problems:

- **satisfiability**: given C and \mathcal{T}, is there a model \mathcal{I} of \mathcal{T} with $C^\mathcal{I} \neq \emptyset$?

 used for detecting **modelling mistakes**

- **subsumption**: given C, D and \mathcal{T}, does $\mathcal{T} \models C \subseteq D$?

 i.e., do all models \mathcal{I} of \mathcal{T} satisfy $C^\mathcal{I} \subseteq D^\mathcal{I}$?

 used to arrange all concepts in a TBox in a **subsumption hierarchy**

 makes structure explicit, facilitates **browsing** and **navigation**
Reasoning

Traditional reasoning problems:

- **satisfiability**: given C and \mathcal{T}, is there a model \mathcal{I} of \mathcal{T} with $C^\mathcal{I} \neq \emptyset$?

 used for detecting **modelling mistakes**

- **subsumption**: given C, D and \mathcal{T}, does $\mathcal{T} \models C \sqsubseteq D$?

 i.e., do all models \mathcal{I} of \mathcal{T} satisfy $C^\mathcal{I} \subseteq D^\mathcal{I}$?

 used to arrange all concepts in a TBox in a **subsumption hierarchy**

 makes structure explicit, facilitates **browsing** and **navigation**

Note:

- C satisfiable w.r.t. \mathcal{T} iff $\mathcal{T} \not \models C \sqsubseteq \bot$

- $\mathcal{T} \models C \sqsubseteq D$ iff $C \cap \neg D$ unsatisfiable w.r.t. \mathcal{T}
On the Role of Complexity

Is DL all about computational complexity?

What complexity theory can do for us:

- help to understand the expressive power of the formalism
 to prove hardness results, one must show that something can be expressed

- provide performance guarantees or show that they do not exist

What it cannot do for us (so far):

- tell us whether something will work in practice or not
Expressive Description Logics
(i.e.: \mathcal{ALC} and above)
A Bit of History

Stone age of description logics (until mid-1990ies):

“We have to offer efficient reasoning and thus cannot include all Booleans”

“Every application needs at least conjunction and universal restriction”

(and thus reasoning is co-NP-complete)

The *SHIQ* era (since mid-1990ies):

“ExpTime DLs can be implemented efficiently” (FaCT system by Horrocks)

“We do need the Booleans and much, much more (but want to stay decidable)!”
Expressive Power of \mathcal{ALC}

Central notion for understanding expressive power of \mathcal{ALC}:

Relation $\rho \subseteq \Delta^\mathcal{I}_1 \times \Delta^\mathcal{I}_2$ is **bisimulation** between interpretations \mathcal{I}_1 and \mathcal{I}_2 if $d \rho d'$ implies that

- d and d' satisfy same concept names
- each successor of d has ρ-related counterpart at d'
- each successor of d' has ρ-related counterpart at d
$(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$: there is a bisimulation ρ between \mathcal{I}_1 and \mathcal{I}_2 with $d_1 \rho d_2$
Lemma. \(\mathcal{ALC} \) is invariant under bisimulations, i.e.,

If \((I_1, d_1) \sim (I_2, d_2)\), then \(d_1 \in C^{I_1}\) iff \(d_2 \in C^{I_2}\)

for all \(\mathcal{ALC}\)-concepts \(C\).

Together with example from previous slide:

\(\mathcal{ALC}\) lacks expressive power for counting successors!
The converse is false in general:

\[\mathcal{I}_1 \quad \mathcal{I}_2 \]

Theorem. An FO-formula \(\varphi \) with one free variable is equivalent to an ALC-concept iff it is invariant under bisimulation. [vanBenthem76]
Theorem. If an \mathcal{ALC}-concept C is satisfiable w.r.t. an \mathcal{ALC}-TBox \mathcal{T}, then there is a tree-shaped model of C and \mathcal{T}.

Proof via unraveling:
Decidability of \mathcal{ALC}

Benefits of tree model property:

- tree models *computationally much simpler* than graph models
 recall, e.g., Rabin’s theorem
- there are *powerful tools* for logics on trees (e.g. automata, games)

Theorem. In \mathcal{ALC}, satisfiability (and subsumption) is ExpTime-complete.

Many kinds of algorithms, e.g. based on:

- tree automata *(ExpTime upper bound, best case exponential)*
- tableau calculus *(no ExpTime upper bound, used by most reasoners)*
- Pratt-style *type elimination* *(ExpTime upper bound, conceptually simple)*
ExpTime-hardness: reduce word problem of alternating Turing machines whose tape is bounded polynomially [FischerLadner79]

Central ideas:

- ATMs generalize non-deterministic TMs:
 - linear TM computations generalized to ATM computation trees
- alternating PSpace = ExpTime
- polysize tape can be represented using a single domain element
 - (concept names such as $A_{a,i}$, $A_{h,i}$, A_q)
- \mathcal{ALC} tree models can represent ATM computation trees
From \mathcal{ALC} to OWL

From an application perspective, the expressive power of \mathcal{ALC} is limited

OWL enriches \mathcal{ALC} in many ways, including:

- concepts ($\leq 1 \ r$) expressing local functionality of roles

 e.g. Disease $\sqcap \exists\text{hasCause}.\text{Infection} \sqcap (\leq 1 \ \text{hasCause})$

 formal semantics: $\forall y, y'. (r(x, y) \land r(x, y') \rightarrow y = y')$

- concepts ($\leq 1 \ r^{-}$) for the converse of roles

- nominals, a new sort that identifies a unique domain element

 e.g. Pope, SoccerWorldChampion, but possibly also Red, Blue

Call the resulting description logic OWL1 Core (DL Name: \mathcal{ALCFIO})
In OWL1 Core, the tree model property is lost rather dramatically:

already in \mathcal{ALC}, we can easily generate a tree

\[
\begin{align*}
L_0 &\sqsubseteq \exists x. L_1 \cap \exists y. L_1 \\
L_1 &\sqsubseteq \exists x. L_2 \cap \exists y. L_2 \\
L_2 &\sqsubseteq \exists x. L_3 \cap \exists y. L_3
\end{align*}
\]
In OWL1 Core, the tree model property is **lost rather dramatically**:

- already in \mathcal{ALC}, we can easily generate a tree
- now make L_4 a nominal

\[
\begin{align*}
L_0 & \subseteq \exists x. L_1 \land \exists y. L_1 \\
L_1 & \subseteq \exists x. L_2 \land \exists y. L_2 \\
L_2 & \subseteq \exists x. L_3 \land \exists y. L_3
\end{align*}
\]
In OWL1 Core, the tree model property is lost rather dramatically:

- already in \mathcal{ALC}, we can easily generate a tree
- now make L_4 a nominal
- make the converses of x and y functional

\[
L_0 \subseteq \exists x. L_1 \cap \exists y. L_1 \\
L_1 \subseteq \exists x. L_2 \cap \exists y. L_2 \\
L_2 \subseteq \exists x. L_3 \cap \exists y. L_3
\]
In OWL1 Core, the tree model property is lost rather dramatically:

- already in \mathcal{ALC}, we can easily generate a tree
- now make L_4 a nominal
- make the converses of x and y functional

$$L_0 \subseteq \exists x. L_1 \land \exists y. L_1$$
$$L_1 \subseteq \exists x. L_2 \land \exists y. L_2$$
$$L_2 \subseteq \exists x. L_3 \land \exists y. L_3$$
In OWL1 Core, the tree model property is **lost rather dramatically**:

- already in \mathcal{ALC}, we can easily generate a tree
- now make L_4 a nominal
- make the converses of x and y functional

\[
\begin{align*}
L_0 &\subseteq \exists x. L_1 \cap \exists y. L_1 \\
L_1 &\subseteq \exists x. L_2 \cap \exists y. L_2 \\
L_2 &\subseteq \exists x. L_3 \cap \exists y. L_3 \\
L_4 &
\end{align*}
\]
In OWL1 Core, the tree model property is lost rather dramatically:

- already in \mathcal{ALC}, we can easily generate a tree
- now make L_4 a nominal
- make the converses of x and y functional

$$L_0 \subseteq \exists x. L_1 \cap \exists y. L_1$$
$$L_1 \subseteq \exists x. L_2 \cap \exists y. L_2$$
$$L_2 \subseteq \exists x. L_3 \cap \exists y. L_3$$
From \mathcal{ALC} to OWL

Consequences:

- the tree model property is lost in a rather dramatic way

- grids can represent computations of non-deterministic Turing machines

- with a small trick, we can generate a grid of exponential size

 (count levels in binary, not in unary)

- it follows that OWL1Core is NExpTime-hard, in fact NExpTime-complete

 \cite{tobies}

In OWL2, we can even enforce grids of 2-exponential size

\[\Rightarrow 2\text{NExpTime-completeness} \quad \text{\cite{kazakov}} \]
• OWL1 and OWL2 are rather expressive
 close to, and sometimes beyond the **2-variable fragment of FO**

• OWL1 and OWL2 are **computationally very costly** (worst case!)

• with the transition

 \[ALC \rightarrow SHIQ \rightarrow OWL1 \rightarrow OWL2 \]

 the promise of efficiency on natural inputs got **increasingly untrue**

• there are applications and reasoning tasks where this is unacceptable
Lightweight Description Logics
A Bit of History

Stone age of description logics (until mid-1990ies):

“We have to offer efficient reasoning and thus cannot include all Booleans”

“Every application needs at least conjunction and universal restriction”

(and thus reasoning is co-NP-complete)

The SHIQ era (since mid-1990ies until ??):

“ExpTime DLs can be implemented efficiently” (FaCT system by Horrocks)

“We do need the Booleans and much, much more (but want to stay decidable)!”
The \mathcal{EL} and DL-Lite era (since ≈ 2005):

“Applications need existential restrictions rather than universal ones”

“Lightweight DLs are sufficient for many applications and can be scalable”
The Description Logic EL

Dominating constructors in many large-scale ontologies:

conjunction and existential restrictions

```
Pericardium ⊑ Tissue ⊓ ∃partOf.Heart
Pericarditis ⊑ Inflammation ⊓ ∃location.Pericardium
Inflammation ⊑ Disease ⊓ ∃actsOn.Tissue
Tissue ⊓ Disease ⊑ ⊥
```

Large-scale ontologies usually require a highly abstract conceptual modeling
The Description Logic \mathcal{EL}

Concept language of \mathcal{EL} is “half of \mathcal{ALC}”:

$$C ::= A \mid \top \mid \bot \mid C \cap D \mid \exists r.C$$

Most prominent \mathcal{EL}-ontology: SNOMED CT

- large scale, professionally developed medical ontology ($\sim 400,000$ concepts)
- used to systematize health care terminology, standard e.g. in US, Canada, etc.

Satisfiability and subsumption still interreducible:

- C satisfiable w.r.t. \mathcal{T} iff $\mathcal{T} \not\models C \subseteq \bot$
- $\mathcal{T} \models C \subseteq D$ iff $C \cap A$ unsatisfiable w.r.t. $\mathcal{T} \cup \{C \cap A \cap D \subseteq \bot\}$
Central notion for understanding expressive power of \mathcal{EL}:

Relation $\rho \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is simulation from interpretation \mathcal{I}_1 to \mathcal{I}_2 if $d \rho d'$ implies that

- d' satisfies all concept names that d satisfies
- each successor of d has ρ-related counterpart at d'
- nothing else

\[\mathcal{I} \quad \frac{d}{\rho} \quad \mathcal{I}'\]

A, B

r

A, B, B'

r
(\mathcal{I}_1, d_1) \preceq (\mathcal{I}_2, d_2): \text{ there is a simulation } \rho \text{ from } \mathcal{I}_1 \text{ to } \mathcal{I}_2

\text{ with } d_1 \rho d_2
Lemma. \mathcal{EL} is preserved under simulations, i.e.,

if $(I_1, d_1) \sim (I_2, d_2)$, then $d_1 \in C_{I_1}$ implies $d_2 \in C_{I_2}$

for all \mathcal{EL}-concepts C.

Thus \mathcal{EL} cannot distinguish (I_1, d_1) from (I_2, d_2) if they mutually simulate

This is not the same as bisimulation:
Since \mathcal{EL} is a fragment of \mathcal{ALC}: \mathcal{EL} has tree model property

But \mathcal{EL} satisfies a much stronger property: it has canonical tree models

Theorem. If an \mathcal{EL}-concept C is satisfiable w.r.t. an \mathcal{EL}-TBox \mathcal{T}, then there is a tree-shaped model (\mathcal{M}, d) of C and \mathcal{T} such that for all models \mathcal{I} of \mathcal{T} and all $e \in C^\mathcal{I}$: $(\mathcal{M}, d) \preceq (\mathcal{I}, e)$

Intuition: the canonical model can be found in any other model (in terms of a simulation)
As an example, take

\[C = A \cap \exists r \cdot B \quad \quad \mathcal{T} = \{ A \subseteq \exists s \cdot B \} \]

Models of \(\mathcal{T} \) e.g.:

Canonical model:
Canonical models can be constructed in a straightforward way:

\[A \subseteq B_1 \quad B_1 \subseteq \exists r.B_1 \quad \exists r.B_1 \subseteq B_2 \]
\[B_1 \cap B_2 \subseteq \exists s.B_2 \]

- This is a (tree) model of \(A \) and \(\mathcal{T} \)
- Everything we have generated must be present in every model of \(A \) and \(\mathcal{T} \)!
Due to \bot, the canonical model construction can fail

and that happens exactly when C is unsatisfiable w.r.t. \mathcal{T}:

- If we derive \bot, then \bot is a logical consequence of C and \mathcal{T}
 thus C is unsatisfiable w.r.t. \mathcal{T}

- If we do not derive \bot, then \mathcal{M} is a model of C and \mathcal{T}
 thus C is satisfiable w.r.t. \mathcal{T}

This is the basis for a satisfiability algorithm in \mathcal{EL}.
Theorem. In \mathcal{EL}, satisfiability (and subsumption) are in PTime.

[BaaderBrandtL__05]

Proof approach:

- We cannot construct the infinite tree-shaped model \mathcal{M}

- Instead use a *compact version* of the canonical model \mathcal{M}_c
Canonical models can be constructed in a straightforward way:

\[A \subseteq B_1 \quad B_1 \subseteq \exists r. B_1 \quad \exists r. B_1 \subseteq B_2 \]
\[B_1 \cap B_2 \subseteq \exists s. B_2 \]

- The unraveling of \(\mathcal{M}_c \) is exactly \(\mathcal{M} \)
 \[\implies \] construction of \(\mathcal{M}_c \) fails iff construction of \(\mathcal{M} \) fails

- \(\mathcal{M}_c \) is of polynomial size, can be constructed in polynomial time
Some additional virtues of \mathcal{M}_c

- \mathcal{M}_c is a model of \mathcal{C} and \mathcal{T}, too.

- just like \mathcal{M}, \mathcal{M}_c simulates every model of \mathcal{C} and \mathcal{T}:

$$\sim \quad (\mathcal{I}, e)$$

$$\sim \quad (\mathcal{M}, d)$$

$$\sim \quad (\mathcal{M}_c, d)$$

Theorem. An FO-formula φ with one free variable is equivalent to an \mathcal{EL}-concept iff it is preserved under simulation and has a canonical model.

[PirolaL--Wolter10]
Extensions of \mathcal{EL}

PTime upper bound can be generalized to \mathcal{EL}^{++}, i.e., \mathcal{EL} extended with

- **range restrictions** on roles, i.e., $T \sqsubseteq \forall r.C$

(
- **domain restrictions** on roles, i.e., $T \sqsubseteq \forall r^{-}.C$
)

- **role implications**, i.e., TBox statements $r_1 \circ \cdots \circ r_n \sqsubseteq r$

 \[\cdots \]

Other extensions cause a jump back to ExpTime, e.g.

- **disjunctions** $C \sqcup D$

- **universal restrictions** $\forall r.C$

- **number restrictions** ($\geq 2^r$)

Interesting: no extension between PTime and ExpTime known (dichotomy?)
Extensions of \mathcal{EL}

Theorem. In $\mathcal{EL} + \sqcap$, satisfiability (and subsumption) are ExpTime-complete. [BaaderBrandtL_05]

Proof: **reduction from satisfiability** of concept name A_0 w.r.t. \mathcal{ALC}-TBox T

Step 1: Replace universal restrictions in T with existential ones:

$$\forall r.C \quad \text{becomes} \quad \neg \exists r.\neg C$$

Step 2: Modify T so that negation is applied only to concept names

$$A \sqsubseteq \exists s.(B' \sqcup \neg \exists r.B) \quad \text{becomes} \quad A \sqsubseteq \exists s.(B' \sqcup \neg X)$$

$$X \models \exists r.B$$

(X a fresh concept name)
Extensions of \(\mathcal{EL} \)

Theorem. In \(\mathcal{EL} + \sqcup \), satisfiability (and subsumption) are ExpTime-complete.
[BaaderBrandtL_05]

Proof: reduction from satisfiability of concept name \(A_0 \) w.r.t. \(\mathcal{ALC} \)-TBox \(T \)

Step 3: Remove negation entirely from \(T \)

- Replace each \(\neg X \) with \(\overline{X} \), \(\overline{X} \) a fresh concept name
- Ensure correct behaviour of \(\overline{X} \):

\[
T \subseteq X \cup \overline{X} \\
X \cap \overline{X} \subseteq \bot
\]

Resulting TBox \(T' \) is in \(\mathcal{EL} + \sqcup \) and \(A_0 \) sat w.r.t. \(T \) iff \(A_0 \) sat w.r.t. \(T' \)
Theorem. In $\mathcal{EL} + \forall r.C$ and $\mathcal{EL} + (\geq 2 r)$, satisfiability is ExpTime-complete.

[BaaderBrandtL_05]

Proof: reduction from satisfiability of concept name A_0 w.r.t. $\mathcal{EL} + \sqcap$-TBox \mathcal{T}

We can assume that disjunction occurs only in the form

$$A_1 \sqcup A_2 \subseteq A$$

and

$$A \subseteq B_1 \sqcup B_2$$

\[= A_1 \sqsubseteq A, A_2 \sqsubseteq A\] \hspace{1cm} \text{replace by}

$$A \sqcap \exists r.\top \sqsubseteq B_1$$

$$A \sqcap \forall r.X \sqsubseteq B_2$$

\[r, X \text{ fresh}\]
Theorem. In $\mathcal{EL} + \forall r. C$ and $\mathcal{EL} + (\geq 2 r)$, satisfiability is ExpTime-complete.

[BaaderBrandtL__05]

Proof: reduction from satisfiability of concept name A_0 w.r.t. $\mathcal{EL} + \sqcup$-$TBox T$

We can assume that disjunction occurs only in the form

\[
A_1 \sqcup A_2 \sqsubset A \quad \text{and} \quad A \sqsubset B_1 \sqcup B_2
\]

\[
= A_1 \sqsubset A, \ A_2 \sqsubset A \quad \text{replace by}
\]

\[
A \sqsubset \exists r. X \sqcap \exists r. Y
\]

\[
A \sqcap \exists r. (X \sqcap Y) \sqsubseteq B_1 \quad \text{r, X, Y fresh}
\]

\[
A \sqcap (\geq 2 r) \sqsubseteq B_2
\]
Call an extension of \mathcal{EL} convex if:

$$\mathcal{T} \models C \subseteq D_1 \cup D_2 \quad \text{implies} \quad \mathcal{T} \models C \subseteq D_i \quad \text{for some} \ i \in \{1, 2\}$$

$\mathcal{EL} + \forall r.C$ is not convex:

$$\emptyset \not\models T \subseteq \exists r. T \cup \forall r. X,$$ but $\emptyset \not\models T \subseteq \exists r. T$ and $\emptyset \not\models T \subseteq \forall r. X$

The reductions show: if an extension of \mathcal{EL} is not convex, it is ExpTime-hard.

Interestingly, the converse does not hold!

Easy to prove:

Existence of canonical models \mathcal{M} implies convexity:
Extensions of \mathcal{EL}

Consider \mathcal{EL} extended with inverse existential restrictions:

$$\exists r^- C \text{ has semantics } \{ d \in \Delta^I \mid \exists e \in C^I : (e, d) \in r^I \}$$

Theorem. $\mathcal{EL} + \exists r^- C$ is convex, but satisfiability is ExpTime-complete.

[BaaderBrandtL'05]

Here only: canonical models can become exponentially large

$$L_0 \sqsubseteq \exists r. (L_1 \cap A_1) \cap \exists r. (L_1 \cap \overline{A_1})$$

$$L_1 \sqsubseteq \exists r. (L_2 \cap A_2) \cap \exists r. (L_2 \cap \overline{A_2})$$

$$L_2 \cap \exists r^- A_1 \sqsubseteq A_1$$

$$L_2 \cap \exists r^- \overline{A_1} \sqsubseteq \overline{A_1}$$

Merging leaves destroys canonicity!
Discussion

- \mathcal{EL} is a natural ontology language for a high level of abstraction

- satisfiability and subsumption can be computed in polytime

- this has led to standardization as OWL EL profile of OWL2

- efficient reasoners are available, e.g. CEL (Dresden), SnoRocket (Brisbane)
 based on canonical models, very robust, classify SNOMED CT in < 10 min

- algorithms have been generalized to Horn-$SHIQ$

reasoner CB (Oxford)
The historic choice of **universal restrictions** instead of **existential restrictions** leads to much worse computational behaviour.

Complexity of **subsumption** in \mathcal{FL}_0, constructors \top, (\bot), \sqcap, $\forall r.C$:

- **empty TBox**: tractable [BrachmanLevesque84]
- **acyclic TBox**: co-NP-complete [Nebel90]
- **cyclic TBox**: PSpace-complete [KazakovDeNivelle03]
- **general TBox**: ExpTime-complete [BaaderBrandtL_05,Hofmann05]
A Glimpse at \mathcal{FL}_0

Clearly,

$$\forall r. (A \sqcap B) \equiv \forall r. A \sqcap \forall r. B$$

Thus, every \mathcal{FL}_0-concept is equivalent to one of the form

$$\forall r_{1,1}. \forall r_{1,2}. \cdots \forall r_{1,n_1}. A_1$$

$$\sqcap \forall r_{2,1}. \forall r_{2,2}. \cdots \forall r_{2,n_2}. A_2$$

$$\cdots$$

$$\sqcap \forall r_{k,1}. \forall r_{k,2}. \cdots \forall r_{k,n_k}. A_k$$

(finite) words over the alphabet of role names

Grouping according to concept name achieves the following normal form

$$\forall L_1. A_1 \sqcap \forall L_2. A_2 \sqcap \cdots \sqcap \forall L_m. A_m$$

finite formal languages over the alphabet of role names
We consider subsumption instead of satisfiability

Subsumption in \mathcal{FL}_0 (without TBoxes):

\[C = \forall L_1.A_1 \sqcap \forall L_2.A_2 \sqcap \cdots \sqcap \forall L_m.A_m \]

\[D = \forall M_1.A_1 \sqcap \forall M_2.A_2 \sqcap \cdots \sqcap \forall M_m.A_m \]

Then $C \sqsubseteq D$ iff $L_i \supseteq M_i$ for $1 \leq i \leq m$ \hspace{1cm} (\!*\!)

Theorem. Subsumption in \mathcal{FL}_0 without TBoxes is in PTime.

Intuitively (\!*\!) still holds with acyclic TBoxes,

but sets L_i can be described compactly, get exponentially large
A Glimpse at \mathcal{FL}_0

Reduction from 3SAT to \mathcal{FL}_0-subsumption w.r.t. TBoxes:

Take a 3-formula

$$\varphi = (l_{1,1} \lor l_{1,2} \lor l_{1,3}) \land \cdots \land (l_{n,1} \lor l_{n,2} \lor l_{n,3})$$

over the variables x_1, \ldots, x_k

Ideas:

- use two role names t and f representing “true” and “false”
- represent truth assignments as words over $\{t, f\}$ of length k
- as the target subsumption $C \sqsubseteq D$, use

$$C = \forall L_C.A, \quad L_C \text{ the set of truth assignments that make } \varphi \text{ false}$$

$$D = \forall L_D.A, \quad L_D \text{ the set of all truth assignments}$$
To be done: describe C and D with polynomial-size TBox:

D is easy:

$$L_i \equiv \forall t. L_{i+1} \cap \forall f. L_{i+1} \quad \text{for } 1 \leq i \leq n$$

$$L_{n+1} \equiv A$$

$$D \equiv L_0$$

C too (basically)

Theorem. Subsumption in \mathcal{FL}_0 w.r.t. TBoxes is co-NP-hard.
Instance Data and Query Answering
In recent years, exciting new reasoning problems have popped up; e.g.:

- **conjunctive query answering** over instance data w.r.t. a background TBox

- problems related to the **modularity of TBoxes**:
 - does a given subset \(T' \subseteq T \) say **everything** about a given signature \(\Sigma \) that \(T \) does?
 - given a signature \(\Sigma \), **extract an as-small-as-possible subset** \(T' \subseteq T \) that says the same about \(\Sigma \) as \(T \)

- problems related to **privacy issues**
 - e.g. controlled interfaces to TBox / instance data
Ontologies are increasingly used with instance data, e.g.:

Clinical document architecture (CDA) becomes standard medical data format
CDA medical codes based on SNOMED CT terminology

Ontology can be exploited for interpreting data / deriving additional answers

ABox: finite set of ground facts, e.g.:

| Patient(p) | finding(p, d) | Pericarditis(d) |

Information in ABoxes is incomplete (open world semantics)
E.g., a patient record would not include Inflammation(d), though it is true.
TBox allows more complete query answers

\[
\begin{align*}
\text{ABox} & : \quad \text{Patient}(p) \quad \text{Inpatient}(p) \\
 & \quad \text{inWard}(p, w) \quad \neg \text{Intensive}(w)
\end{align*}
\]

\[
\begin{align*}
\text{TBox} & : \quad \text{Inpatient} \sqsubseteq \exists \text{finding}.\text{Disease} \\
 & \quad \exists \text{inWard}.\neg \text{Intensive} \sqsubseteq \forall \text{finding}.\neg \text{LiveThreatening}
\end{align*}
\]

Then \(p \) is an answer to query

\[\exists y. \text{Patient}(x) \land \text{finding}(x, y) \land \neg \text{LiveThreatening}(y)\]
More formally:

- **Model of ABox** \mathcal{A}: interpretation satisfying all facts in \mathcal{A}

- **Answers** to query q for ABox \mathcal{A} w.r.t. TBox \mathcal{T}:

 Certain answers, i.e., answers common to all models \mathcal{I} of \mathcal{A} and \mathcal{T}

Closely related to query answering in incomplete databases

 (but with a different kind of schema constraints)
Query Languages

- **Instance queries**
 take the form $C(v)$, v a variable.
 technically close to subsumption, almost always of same complexity

- **Conjunctive queries**
 take the form $\exists \bar{v} . \varphi(\bar{v}, \bar{v}')$, with φ a conjunction of atoms $A(v)$ or $r(v, v')$
 \bar{v}' the answer variables, \bar{v} the quantified variables

 generalize instance queries, but are more interesting
 Select-Project-Join fragment of SQL

- **FO/SQL queries**
 generalize conjunctive queries, but: FO sentence φ valid iff $\emptyset, \emptyset \models \varphi$

 TBox ABox
In patient databases and other large-scale applications:

- **Efficiency and scalability** of query answering is crucial
- Query answering in **expressive DLs** is computationally costly

<table>
<thead>
<tr>
<th></th>
<th>satisfiability</th>
<th>query answering</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{ALC})</td>
<td>(\text{ExpTime})</td>
<td>(\text{ExpTime})</td>
</tr>
<tr>
<td>(\mathcal{ALC} + \exists r^{-}.C)</td>
<td>(\text{ExpTime})</td>
<td>(2\text{ExpTime})</td>
</tr>
<tr>
<td>(\mathcal{SHIQ})</td>
<td>(\text{ExpTime})</td>
<td>(2\text{ExpTime})</td>
</tr>
<tr>
<td>OWL1 Core</td>
<td>(\text{NExpTime})</td>
<td>decidable</td>
</tr>
<tr>
<td>OWL1</td>
<td>(\text{NExpTime})</td>
<td>decidability open</td>
</tr>
</tbody>
</table>
Most popular approach to achieve scalability:

Implement DL query answering based on relational database systems

Obvious problem: conventional RDBM unaware of TBoxes

- Solution I: query rewriting — “put TBox into query”
- Solution II: data completion — “put TBox into data”
Solution 1: query rewriting — “put TBox into query”
The query rewriting approach: [Calvanese, deGiacomo, Lenzerini et al.05]

- ABox stored in DB system as relational instance
- CQ is rewritten to FO/SQL query to incorporate TBox
- Rewritten query executed by relational DB system

Enables use of off-the-shelf DB systems!

Mission statement: given CQ q and \mathcal{T}, rewrite q into FO query q' such that

$$\mathcal{A}, \mathcal{T} \models q[a_1, \ldots, a_n] \text{ iff } db_{\mathcal{A}} \models q'[a_1, \ldots, a_n] \text{ for all } \mathcal{A}, a_1, \ldots, a_n.$$
Query Rewriting—Example 1

Query: $\exists y. (A(x) \land r(x, y) \land B(y))$

TBox: $\exists s. \top \subseteq A$ $B' \subseteq B$

Rewritten query is disjunction of:

$A \overset{r}{\longrightarrow} B$

$s \overset{r}{\longleftarrow} B$

$A \overset{r}{\longrightarrow} B'$

$s \overset{r}{\longleftarrow} B'$
Query Rewriting—Example 2

Query

TBox

Rewritten query is disjunction of:

For which DLs does this work?
Query Rewriting

Data complexity:
- In DBs: measure complexity only in size of data, not of query
- In DLs: measure complexity only in size of data, neither of query nor TBox

Theorem. The query rewriting approach only works for DLs for which
CQ entailment is in AC₀ regarding data complexity. [Calvanese et al. 05]

Proof:
- FO query answering is in AC₀ regarding data complexity
- measured input (data) is left unchanged
- measured / non-measured inputs are not mixed in the rewriting
Query Rewriting

<table>
<thead>
<tr>
<th>Data complexity of DLs we have met:</th>
<th>\mathcal{EL}</th>
<th>\mathcal{ALC} and above</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PTime-complete</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>

Why query rewriting cannot be used for \mathcal{EL}:

Query

\[A \quad A(x) \]

TBox

\[\exists r. A \sqsubseteq A \]

Rewritten query is disjunction of:

\[A \quad r \quad A \quad r \quad r \quad A \quad \ldots \]

We need $\exists y. r^*(x, y) \land A(y)$, but transitive closure not FO-expressible
DL-Lite: a lightweight DL with AC_0 data complexity [Calvanese et al.05]

Basic version: TBox statements of the form

$$C \sqsubseteq D \quad C \sqsubseteq \neg D$$

where C, D are of the form $A, \exists r. T$, and $\exists r^- T$

For example: $\text{Professor} \sqsubseteq \exists \text{teachesTo}. T \quad \exists \text{teachesTo}^- T \sqsubseteq \text{Student}$

 $\text{Professor} \sqsubseteq \neg \text{Student}$

DL-Lite:

- Inexpressive, but can encode ER diagrams and UML class diagrams
- Admits the query rewriting approach
- Underlies OWL QL profile of OWL2
Solution II: data completion — “put TBox into data”
Limitations of the query rewriting approach:

- Works only for AC_0-DLs, i.e., only for DL-Lite

- Query rewriting blows up exponentially $O(|\mathcal{I}|^{|q|})$ performance problems with large queries / large TBoxes

The data completion approach avoids both problems

in particular, it works for \mathcal{EL}-TBoxes
The data completion approach: [L__TomanWolter08]

- Incorporate TBox into the ABox, not into the query

- To deal with existential restrictions and avoid infinite databases:
 - eagerly reuse constants, producing spurious cycles (and more)
 - (similar to compact canonical model vs. canonical tree model)

- To nevertheless obtain correct answers: use query rewriting

Also enables use of off-the-shelf DB systems!
Data Completion—Example 1

TBox
\[\exists r. A \sqsubseteq A \]

ABox
\[a \xrightarrow{r} b \xrightarrow{r} c \xrightarrow{r} d \]

Completed ABox:
\[A \]
\[a \xrightarrow{r} b \xrightarrow{r} c \xrightarrow{r} d \]
\[e, A \]

Query
\[A(x) \]

Answer
\[a, b, c, e \]
Data Completion—Example 2

TBox

\[
A \sqsubseteq \exists s.B \quad \exists s.B \sqsubseteq A' \quad \exists r.(A \cap A') \sqsubseteq B
\]

ABox

\[
a \xrightarrow{r} b
\]

Completed ABox:

\[
B \xrightarrow{r} A, A'
\]

\[
a \xrightarrow{r} b \xrightarrow{s} c \quad B, \text{Ex}
\]

Query

\[B(v)\]

Answer

\[a, c\]

Rewritten query

\[B(v) \land \neg \text{Ex}(v)\]

Answer

\[a\]
Data Completion—Example 2

TBox

\[A \sqsubseteq \exists s. B \quad \exists s. B \sqsubseteq A' \quad \exists r. (A \cap A') \sqsubseteq B \]

ABox

\[a \xrightarrow{r} b \]

Completed ABox:

\[B \xrightarrow{r} A, A' \]

\[a \xrightarrow{r} b \]

\[s \]

\[c \quad B, \text{ Ex} \]

ABox completion means building the canonical model

(for an ABox instead of for a concept)
Data Completion—Example 2

General shape of canonical model built for an ABox:

Problem: canonical model can get infinite, database can’t
Data Completion—Example 3

TBox

\[A \sqsubseteq \exists r.A \]

ABox

\[A \]
\[a \]

Completed ABox:

\[A \xrightarrow{r} A' \xrightarrow{r} A'' \]

Database cannot be infinite.

⇒ build compact canonical model!
Data Completion—Example 3

TBox

\[A \subseteq \exists r.A \]

ABox

\[A a \]

\[r \]

\[A b \]

Completed ABox:

\[A a \]

\[r \]

\[A b \]

\[\text{Wrong answer to some queries, e.g.} \]

\[\exists y. r(x, y) \land r(y, y) \]

answer \(\{a, b\} \), should be \(\emptyset \)

\[\exists y. r(x, y) \land r(x', y) \land r(x, x') \]

answer \(\{(a, b)\} \), should be \(\emptyset \)
Problem:

infinite, tree-shaped canonical model \mathcal{M} gives correct answers to all queries, compact version \mathcal{M}_c does not

Solution:

Rewrite CQ q into FO query q' so that

answers to q' in $\mathcal{M}_c =$ answers to q in \mathcal{M}

Implementation: add query conjuncts expressing that

- Variable on a query cycle cannot be mapped to an Ex element
- If $r(x, y), s(x', y)$ in query and $r \neq s$, then y not mapped to Ex
- If $r(x, y), r(x', y)$ in query and y mapped to Ex, then $x = x'$
Data Completion—Example 3

TBox

\[A \sqsubseteq \exists r.A \]

ABox

\[
\begin{align*}
A & a \\
 r & \\
A & b \\
\end{align*}
\]

Completed ABox:

\[
\begin{align*}
A & a \\
r & \\
A & b \\
A & c \\
r & \\
Ex & \\
\end{align*}
\]

\[q = \exists y. r(x, y) \land r(y, y) \]
answer \{a, b\}

\[q' = \exists y. r(x, y) \land r(y, y) \land \neg\text{Ex}(x) \land \neg\text{Ex}(y) \]
answer \emptyset
Data Completion—Example 3

TBox

\[A \sqsubseteq \exists r . A \]

ABox

\[A \ a \]

\[r \]

\[A \ b \]

Completed ABox:

\[A \ a \]

\[r \]

\[A \ c \]

\[r \]

\[A \ b \]

\[r \] \[A \ b \]

\[Ex \]

\[r \]

\[A \]

\[r \]

\[A \ c \]

\[r \]

\[Ex \]

\[r \]

\[q = \exists y . r(x, y) \land r(x', y) \land r(x, x') \] answer \(\{(a, b)\} \)

\[q' = \exists y . r(x, y) \land r(x', y) \land r(x, x') \] \land \neg\text{Ex}(x) \land \neg\text{Ex}(x') \land (\text{Ex}(y) \rightarrow x = x') \] answer \(\emptyset \)
Data Completion

Wrapup:

- Data completion approach works for EL and DL-Lite [KR10], results only in polynomial blowup of the query

- Requires authority over the data, blows up the data (polynomially)

- Extends to role hierarchies, domain and range restrictions
 (but transitive roles and general role inclusions are challenging)

- Limitation: for DLs whose data complexity is not in PTime
 there must be a (worst case) exponential blowup of the data
Questions?

PS: Slides are on my homepage

PPS: Somebody interested in a PhD/Postdoc position?