Description Logics

Carsten Lutz and Ulrike Sattler

TU Dresden, Germany

Part Vb: What we left out.
I. Other means of expressivity

- n-ary relations
- role value maps: DLs without the tree model property
- concrete domains: numbers and arithmetics in concepts
- temporal extensions of Description Logics

II. Non-standard reasoning problems

- Least Common Subsumer (LCS)
- Most Specific Concept (MSC)
- Rewriting
- Approximation

For more: see upcoming DL handbook!!
Description Logics with \(n \)-ary relations

Idea: replace binary roles by \(n \)-ary relations.

- Nice for encoding ER-diagrams without reification of relations
- How can \(n \)-ary relations be handled without introducing variables?

The Description Logic \(DLR \):

Concepts \(C \) and relations \(R \) of arbitrary arity

Universal restrictions: \(\forall[1](R \rightarrow 2 : C) \sqcap \forall[1](R \rightarrow 3 : D) \)

Existential restrictions: \(\exists[1](R \sqcap 2 : C \sqcap 3 : D) \)

+ number restrictions, general TBoxes, etc.

\[
\text{Son} \triangleq \text{Male} \sqcap \exists[3](\text{Parenthood} \sqcap 1 : \text{Mother} \sqcap 2 : \text{Father})
\]

Reasoning with \(DLR \) is \(\text{ExpTime-complete} \).
\(\mathcal{ALC} \) extended with constructor \((R_1 \circ \cdots \circ R_k \sqsubseteq S_1 \circ \cdots \circ S_\ell)\)

Semantics:

\[
(R_1 \circ R_2 \sqsubseteq S_1 \circ S_2)
\]

Having no half brothers and sisters: \((\text{mother} \circ \text{child} \sqsubseteq \text{father} \circ \text{child})\)

\[\cap \quad \text{(father} \circ \text{child} \sqsubseteq \text{mother} \circ \text{child})\]

Satisfiability of \(\mathcal{ALC} \)-concepts with role value maps is \textit{undecidable} (without TBoxes).

Restricted variants:
- role chains of length 1: decidability simple
- role chains of equal length: open problem
\textbf{\textit{ALCF}}: \textbf{ALC} + another restriction of role value maps:

1. introduce a new kind of role called \textbf{feature}

 features \(f \) are interpreted in \textbf{partial functions} \(f^I \):

 \[\{(d, e_1), (d, e_2)\} \subseteq f^I \text{ implies } e_1 = e_2 \]

2. replace role value maps by \textbf{feature agreements} and \textbf{disagreements}:

 \[(f_1 \circ \cdots \circ f_k \downarrow f'_1 \circ \cdots \circ f'_\ell) \quad (f_1 \circ \cdots \circ f_k \uparrow f'_1 \circ \cdots \circ f'_\ell) \]

\begin{center}
\begin{tikzpicture}
 \node (f1) at (0,0) {\(f_1 \)};
 \node (f1p) at (1,0) {\(f'_1 \)};
 \node (fk) at (0,-1.5) {\(f_k \)};
 \node (fl) at (0,-3) {\(f'_\ell \)};
 \node (flp) at (1,-3) {\(f'_\ell \)};

 \draw[->] (f1) to (f1p);
 \draw[->] (f1) to (fk);
 \draw[->] (fk) to (fl);
 \draw[->] (fl) to (flp);
 \draw[->] (f1) to (fk);

 \node (f1p) at (2.5,0) {\(f'_1 \)};
 \node (fk) at (2.5,-1.5) {\(f_k \)};
 \node (fl) at (2.5,-3) {\(f'_\ell \)};
 \node (flp) at (4,-3) {\(f'_\ell \)};

 \draw[->] (f1p) to (fk);
 \draw[->] (fk) to (fl);
 \draw[->] (fl) to (flp);
 \draw[->] (f1p) to (fk);
 \node (flp) at (4,-3) {\(f'_\ell \)};

 \node[coordinate] (a) at (2.5,-4) {\(\neq \)};
\end{tikzpicture}
\end{center}

Satisfiability of \textbf{\textit{ALCF}}-concepts is in \textbf{PSPACE} (without TBoxes).
Feature (Dis)Agreements and TBoxes

Decidability / complexity are fragile w.r.t. the addition of TBoxes:

1. Satisfiability of \mathcal{ALCF}-concepts w.r.t. general TBoxes is undecidable.

2. Satisfiability of \mathcal{ALCF}-concepts w.r.t. acyclic TBoxes is NExpTime-complete.

Only very few DLs exhibit such behaviour: in the majority of cases,

1. adding general TBoxes preserves decidability

2. adding acyclic TBoxes does not even change the complexity class
Referring to numerical data in concepts is important issue:

- **In knowledge representation:**

 "Frank earns €500 per month which is less than his boss earns."

- **For reasoning about ER diagrams:**

 ![ER Diagram]

 How can such numerical database constraints be expressed in DLs?
Concrete Domains

A concrete domain $\mathcal{D} = (\Delta_{\mathcal{D}}, \Phi_{\mathcal{D}})$ consists of

- a set $\Delta_{\mathcal{D}}$ and
- a set $\Phi_{\mathcal{D}}$ of predicate names; each $P \in \Phi_{\mathcal{D}}$ is equipped with an arity n

a fixed extension $P^\mathcal{D} \subseteq \Delta_{\mathcal{D}}^n$.

Examples:

1. the natural numbers \mathbb{N} and predicates $=_{n}, <, >, =$
2. the real numbers \mathbb{R} and predicates $=_{r}, <, >, =, +, \ast$
3. the subsets of \mathbb{R}^2 and "spatial" predicates $\approx_{\text{polygon}}, \text{overlaps}$, etc.
The Description Logic $\mathcal{ALC}(\mathcal{D})$

$\mathcal{ALC}(\mathcal{D})$: extension of \mathcal{ALC} with concrete domain \mathcal{D}

New atomic types:
- (abstract) features f are functional roles
- concrete features g are mapped to partial functions $g^\mathcal{I}: \Delta^\mathcal{I} \rightarrow \Delta_{\mathcal{D}}$

Path: sequence of features $u = f_1 \cdots f_n g$ with f_1, \ldots, f_n abstract and g concrete

New concept constructor:
An Example $\mathcal{ALC}(\mathcal{D})$ Concept

Process $\sqcap \exists \text{subprocess1}.\text{Process} \sqcap \exists \text{subprocess2}.\text{Process}$

$\sqcap =_{25} (\text{duration})$

$\sqcap ((\text{subprocess1} \circ \text{duration}) < (\text{subprocess2} \circ \text{duration}))$

$\sqcap + ((\text{subprocess1} \circ \text{duration}), (\text{subprocess2} \circ \text{duration}), \text{duration})$
Complexity and decidability depend on the concrete domain used!

- Concrete domain \mathbb{N} with predicates $=_{n}$, $=$, $+$, \ast
 - $\mathcal{ALC}(\mathcal{D})$-concept satisfiability is undecidable (without TBoxes)

- Concrete domain \mathbb{N} with predicates $=_{n}$, $=$, $+$
 - $\mathcal{ALC}(\mathcal{D})$-concept satisfiability PSPACE-complete.
 - $\mathcal{ALC}(\mathcal{D})$-concept satisfiability w.r.t. general TBoxes undecidable.

- Concrete domain \mathbb{N} with predicates $=_{n}$, $=$, $<$, $>$
 - $\mathcal{ALC}(\mathcal{D})$-concept satisfiability PSPACE-complete.
 - $\mathcal{ALC}(\mathcal{D})$-concept satisfiability w.r.t. general TBoxes EXPTIME-complete.
General decidability and complexity results:

\(\mathcal{D} \)-satisfiability: satisfiability of finite conjunctions \(P_1(\overline{x_1}) \land \ldots \land P_k(\overline{x_k}) \)

Decidability without TBoxes:
If \(\mathcal{D} \)-satisfiability is decidable, then \(ALC(\mathcal{D}) \)-concept satisfiability is decidable

Complexity without TBoxes:
If \(\mathcal{D} \)-satisfiability is in \(PSPACE \), then \(ALC(\mathcal{D}) \)-concept satisfiability is \(PSPACE \)-complete.

Complexity with acyclic TBoxes:
If \(\mathcal{D} \)-satisfiability is in \(NP \), then \(ALC(\mathcal{D}) \)-concept satisfiability w.r.t. acyclic TBoxes is in \(NEXPTIME \).

and very often \(NEXPTIME \)-hard
Observations:

- Knowledge is time dependent:
 “Lucy lives in Paris now but will live in Bombay next year.”

- Time is important for defining concepts:
 “A designated minister is someone who will become minister in the future.”

Idea:

Introduce temporal logic operators \circlearrowleft, \square, \Diamond, and \mathcal{U} as concept constructors

Lucy $\rightarrow \forall \text{livesin.Paris} \sqcap \circlearrowleft (\forall \text{livesin.Bombay})$

DesignatedMinister $\models \text{Human} \sqcap \Diamond \text{Minister}$
A temporal interpretation for \mathcal{ALC} is an infinite sequence

$\mathcal{I}_0, \mathcal{I}_1, \ldots$

of standard interpretations.
Many Degrees of Freedom

Apply temporal operators to concepts, roles, or concept equations?

EternalHusband = Male \sqcap \exists\exists \text{married-to.Female}

\square (T = Country \sqcap \exists \text{location.Euroland} \rightarrow \forall \text{currency.Euro})

It is often natural to constrain interpretation domains:

- **varying domains**: no restriction
- **increasing domains**: \(\Delta \mathcal{I}_0 \subseteq \Delta \mathcal{I}_1 \subseteq \cdots \)
- **decreasing domains**: \(\Delta \mathcal{I}_0 \supseteq \Delta \mathcal{I}_1 \supseteq \cdots \)
- **constant domains**: \(\Delta \mathcal{I}_0 = \Delta \mathcal{I}_1 = \cdots \)

constant domains are the most general case!

Which temporal operators should be admitted? \(\square \)? \(\Diamond \)? \(\Box \)? \(\mathcal{U} \)?

Do we want past operators? Future operators? Both?
Some Results

Assumed setting: - constant domains
 - temporal operators \bigcirc, \diamond, \square, and \mathcal{U}.
 - temporal operators for both past and future.

Decidability and complexity results:

- Temporal operators applicable to concepts only
 \[\text{PTL}_{\text{ALC}} \text{-concept satisfiability w.r.t. general TBoxes is } \text{ExpTime-complete}. \]

- Temporal operators applicable to concepts and concept equations
 \[\text{PTL}_{\text{ALC}} \text{-concept satisfiability w.r.t. general TBoxes is } \text{ExpSpace-complete}. \]

- Temporal operators applicable to concepts and roles
 \[\text{PTL}_{\text{ALC}} \text{-concept satisfiability w.r.t. general TBoxes is undecidable}. \]
Least Common Subsumer (LCS)

Intuition:

The LCS of two concepts C and D is a concept describing
the **commonalities** of C and D.

Helps knowledge engineers to build up large knowledge bases.

Definition:

E is the LCS of C and D if

1. $C \sqsubseteq E$ and $D \sqsubseteq E$
2. for every F with $C \sqsubseteq F$ and $D \sqsubseteq F$, we have $E \sqsubseteq F$.

Only meaningful in DLs without disjunction:

\mathcal{FL}_0: \sqcap and \forall

\mathcal{EL}: \sqcap and \exists

\mathcal{ALE}: (\neg), \sqcap, \forall, and \exists

\mathcal{ALEQI}: (\neg), \sqcap, \forall, \exists, QNR, R^-

LCS usually exists and is computable, but can be hard to find

(e.g. EXPTIME for \mathcal{ALE})
Most Specific Concept (MSC)

Idea:

Allow the knowledge engineer to define concepts by giving examples:

1. examples given by ABox individuals
2. for each example, compute the most specific concept describing the inidividual
3. extract their commonalities by computing the LCS

Definition:

The MSC of an individual \(a \) in an ABox \(\mathcal{A} \) is the concept \(C \) such that

1. \(\mathcal{A} \models a : C \)
2. for each \(D \) with \(\mathcal{A} \models a : D \), we have \(C \sqsubseteq D \)

Does not always exist (for example in \(EL \) and \(ALC \))

\(\implies \) consider only acyclic ABoxes or the “\(k \)-approximation”
Rewriting

Motivation:

Concepts computed by LCS and MSC algorithms can become exceedingly long.

Idea:

Rewrite long concepts into smaller one using concept names defined in a TBox.

Results:

Finding the smallest rewriting:

e.g. NP-complete for \mathcal{AL}, PSPACE-complete for \mathcal{ALC}

But approximations do a very good job!

Note:

in the worst case, the steps

$\text{MSC} \rightarrow \text{LCS} \rightarrow \text{Rewriting}$

may yield an exponentially large concept.
Observation:
- It can be difficult to read complex concepts.
- especially disjunction and full negation are hard for the average user

Idea:
Approximate an \mathcal{ALC}-concept C with an \mathcal{ALE}-concept D
preserving as much information as possible.

Definition:
An \mathcal{ALE}-concept D is the approximation of an \mathcal{ALC}-concept C if
1. $C \subseteq D$
2. for each \mathcal{ALE}-concept E with $C \subseteq E$, we have $D \subseteq E$

Research has just started!
Description Logics...

...are a lively and versatile area of research
...provide lots of research opportunities for logicians
...have many exciting applications

Most importantly: Description Logics are fun!

More information:

Our slides (available on the web at http://lat.inf.tu-dresden.de/~clu/)
The Description Logic Handbook
Send us a mail: {lutz,sattler}@tcs.inf.tu-dresden.de