
λ →

∀
=Is

ab
el
le

β
α

The AWE Extension Package

Release 0.5 for Isabelle2007

Maksym Bortin

Universität Bremen

Einar Broch Johnsen

University of Oslo

Christoph Lüth

DFKI Bremen

January 14, 2008

Contents

1 Morphisms 2

1.1 Introduction . 2

1.2 sigmorph: Constructing a Signature Morphism 3

1.2.1 Foundations . 3

1.2.2 Syntax . 4

1.2.3 Functionality . 4

1.3 thymorph: Constructing a Theory Morphism 7

1.3.1 Foundations . 7

1.3.2 Syntax . 7

1.3.3 Functionality . 7

1.4 translate thm: Theorem Translation 9

1.5 Parametrised Theories and Instantiation 9

1.5.1 Foundations . 9

1.5.2 t instantiate . 11

1.5.3 show thymorph goals 16

1.6 Composition . 17

1.7 Construction and Transformation Commands 18

1.8 Control . 18

2 Theorem Abstraction 20

2.1 Syntax . 20

2.2 Example . 21

3 Installation and Usage 24

3.1 Installation . 24

3.2 Usage . 24

3.3 Record Patch . 25

3.4 Restrictions . 25

A Syntax Primitives 26

1

Chapter 1

Morphisms

1.1 Introduction

This chapter describes the syntax and the functionality of the AWE Extension
Package commands dealing with morphisms. In order to describe the function-
ality we will also cover the basic foundations of Isabelle, theory and signature
morphisms. We will try to explain most situations by example, so that this
document can be seen as both a reference manual and a tutorial. Furthermore,
we use a modelling of computational monads in Isabelle/HOL as a running
example.

For a detailed description of the Isabelle/Isar framework we refer to [1] and [2]. A
brief and more formal introduction to theory and signature morphisms including
advanced examples can be found in [5].

MonadOpEta MonadOpBind

MonadType

Main

MonadOps

MonadAxms

Monad

Figure 1.1: Structure of the theories modelling monads.

The monad theory is organised hierarchical as shown in Figure 1.1, and com-
prises six theories, starting with MonadType which contains only the type decla-
ration

typedecl 'a M

The theories MonadOpEta and MonadOpBind contain the declaration of the two
monad operations separately, and MonadOps is their union:

2

consts eta :: " 'a ⇒ 'a M "

consts bind :: " 'a M ⇒ ('a ⇒ 'b M) ⇒ 'b M " (in�xl "�=" 5)

Finally, MonadAxms introduces the properties of the monad operations by the
following four axioms:

axioms

mon lunit: "(eta x �= t) = t x"

mon runit: "(t �= eta) = t"

mon assoc: "(s �= t �= u) = (s �= (λx. t x �= u))"

mon eta inj: "eta x = eta y ==> x = y"

The theory Monad provides the powerful concrete syntax for monads (for ex-
ample we can write ({ x<- m; t x }) for m �= t), and contains derived
propositions.

Note that in order to use monads, we explicitly have to load the monad theory.1

After loading the theory Monad, we start an example theory as follows, and
continue to build it up in the following:

theory Example imports Main begin

1.2 Constructing a Signature Morphism

1.2.1 Foundations

Theories in Isabelle are structured hierarchically, i.e. there is a basic theory for
the meta-logic and any further theory has to extend a (�nite) set of existing
theories. This is expressed in Isabelle/Isar by the keyword imports. In other
words, theories in Isabelle form a directed acyclic graph. For a given theory T

the �nite set of its ancestor theories contains T itself together with all theories
from which a path to T exists.

The type signature of a theory consists of the set of type constructors (also called
logical types) declared in ancestors of the theory. Any type constructor has a
�xed rank denoting the number of its arguments. The set of types of a theory is
then built from the type constructors in its type signature over a �xed in�nite
set of type variables.

The operation signature of a theory consists of the set of constants declared in
ancestors of this theory. Any constant has a �xed type, taken from the set of
types of the theory. The set of terms of a theory is then built of the constants in
its operation signature over an in�nite set of meta-variables. We will consider
only well-typed terms, i.e. we assume that every term in the set of terms of a
theory has a unique type in the set of types of this theory.

The signature of a theory consists of the type and operation signatures of the
theory. For detailed description of Isabelle's types and terms, see [2].

A signature morphism relates the signatures of two Isabelle theories, the source
and the target. Given a signature morphism, the common ancestors of source
and target will be called global, while the ancestors of the source (target) which
are not the ancestors of the target (source) will be called domain (codomain) of
the signature morphism.

1When using theory morphisms, a theory may require another theory to be loaded which

is not an ancestor, so one may have to use thy a theory explicitly.

3

Further, any theory has a �nite set of axioms, i.e. terms of the meta-logical type
prop. A de�nition is a special axiom which identi�es a constant with a term
using the meta-equality ==. The special form of de�nitions ensures that they
are always conservative extensions, i.e. do not a�ect the consistency of a theory,
and allows morphisms to treat de�nitions in a special way. Axioms, which do
not have the form of a de�nition, we will for simplicity from now on just call
axioms.

We will also distinguish between logical and derived constants in a signature.
A constant f in the signature of a theory is derived if in some ancestor of the
theory there exists a de�nition "f x1 . . . xn == t" identifying f with a term t . A
constant is logical if it is not derived, i.e. without a de�nition in some ancestor.

1.2.2 Syntax

The syntax of sigmorph is given by the following diagram:

sigmorph

sigmorph
�� �
id :

���
id -->
�� �
�

�\<longrightarrow>
�� �

�

id �

�

� maps�
�

�

maps

maps
�� �
mapping mapping�

�
�

1.2.3 Functionality

The �rst identi�er is the name of the signature morphism to be constructed.
The second and third identi�er are the source and target theories, respectively.
The �rst mapping de�nes a type map, and the second an operation map. The
order is important: we will see that any operation map has to respect the type
map declared before. The rule mapping is given in Appendix A: a mapping
consists of a list of assignments (s 7→ t).

Type map

For a type map, both s and t denote arbitrary Isabelle types with the following
restrictions:

1. s is a type from the source and t from the target theory of the intended
morphism.

4

2. s has to be a type pattern, i.e. has to consist only of a single type con-
structor applied to a list of distinct type variables with the length equal
to the rank of the type constructor.

3. Any type variable which occurs in t has to occur in s.

So, for example, ("('a, 'b) C" 7→ "('b, 'b) D") is a correct type assignment,
if C and D are type constructors from the source and target respectively with
the rank 2.
A type map is correct if it contains only correct assignments and for any type
constructor from the domain there exists exactly one type pattern to which the
type map assigns a type from the target.

Operation map

For an operation map, s and t are strings and will be interpreted as identi�ers of
constants in source and target signatures of the intended morphism, respectively.
The notion of correctness of an operation map is based on a given correct type
map: an operation map is correct if it assigns to any logical constant from the
domain of the intended morphism exactly one constant in the signature of its
target w.r.t. the given type map and sorts of type variables. Let us explain this
by a simple example. Assuming we have the theory

theory Thy imports Nat begin

typedecl 'a T

consts f :: " 'b ⇒ 'b T ⇒ 'b T "

then we can start to construct a signature morphism from Thy to the HOL-
theory List starting with a type map as follows:

sigmorph test : Thy −→ List

maps [("'a T" 7→ "'a list")]

The type map is correct, but we further have to map the logical constant f

to some constant in the target correctly w.r.t to the type map. This can be
done by [("Thy.f" 7→ "List.list.Cons")], because the type of the constant
List.list.Cons is 'a ⇒ 'a list ⇒ 'a list (where the type variable 'a is of
sort HOL.type) and the same type (up to renaming of type variables) we would
also obtain replacing T by list in the type of Thy.f, since the type variable 'b

is also of sort HOL.type by default. So we can complete the signature morphism:

sigmorph test : Thy −→ List

maps [("'a T" 7→ "'a list")]

[("Thy.f" 7→ "List.list.Cons")]

Note that if we assume that the type variable in the type of the constant
List.list.Cons would be not of sort HOL.type but for example HOL.plus, then
the mapping above would be incorrect. We could repair this modi�ying the
declaration

consts f :: " ('b :: plus) ⇒ 'b T ⇒ 'b T "

in the theory Thy.

Altogether, what we have done here manually, the AWE Extension Package will
be able to derive for us. On the input

5

sigmorph test : Thy −→ List

maps [("'a T" 7→ "'a list")]

it will try to �nd an assignment for Thy.f automatically, searching among all
constants in the target signature for those which satisfy the conditions given by
the type map and sorts of type variables. Generally, there are following cases:

1. For some logical constants, more than one correct assignment in the do-
main exists. In this case the signature morphism construction would fail
with a message displaying all possibilities for all this constants. Then the
user has to choose one assignment for any of them and put it into the
operation map. In other words, the operation map has to contain enough
information to disambiguate the assignments derived automatically.

2. For all logical constants, exactly one correct assignment in the domain
exists. In this case the signature morphism will be constructed.

3. For some logical constants, no possible assignments in the domain exists.
The signature morphism construction will fail with the message showing
this constants. To repair this one can modify their types, extend the
codomain, or remove them from the domain (if possible).

In particular, on our input we will obtain the �rst case as the search result � there
is at least the common remove operation on lists having the type 'a ⇒ 'a list

⇒ 'a list. This means that we have to put ("Thy.f" 7→ "List.list.Cons")

back into the operation map in order to construct the signature morphism test

as above.

Homomorphic extension of a signature morphism

A signature morphism gives a mapping from the set of terms of its source to the
set of terms of its target theory, by replacing all types and constants according to
the type and operations maps respectively. The correctness conditions on these
maps assure that all type constructors and constants of the source signature are
indeed substituted, and that the resulting translated term is well-typed in the
target theory. This map is called the homomorphic extension of the signature
morphism.

Example

In the monad example we can construct a signature morphism with the source
theory MonadOpEta and the target theory Example as follows:

sigmorph s : MonadOpEta −→ Example

maps [("'a MonadType.M" 7→ "'a Datatype.option")]

In this case the operation Datatype.option.Some :: " 'a ⇒ 'a option " (which
is actually a constructor of the datatype option) is the unique operation in the
target satisfying type map and sort conditions as described above. Thus, we
do not need to disambiguate in this case � the following assignment will be
derived automatically:

Found: ("MonadOpEta.eta" 7→ "Datatype.option.Some")

Signature morphism s : MonadOpEta −→ Example constructed.

6

1.3 Constructing a Theory Morphism

1.3.1 Foundations

Theory morphisms extend the notion of a signature morphism to axioms (intro-
duced in Section 1.2.1) and theorems. Theorems are (as axioms) terms of type
prop. While axioms are basic propositions without a proof, theorems are de-
rived propositions having a proof built with other propositions. In other words,
a theory morphism is a signature morphism extended by an axiom map.

Domain, codomain, and global theories of a theory morphisms are the same as
for its underlying signature morphism.

1.3.2 Syntax

The syntax of thymorph is given by the following diagram:

thymorph

thymorph
�� �
id �

�
� 1

by sigmorph
�� �
id maps

�� �
mapping�
�

�

�
�2

:
���
id -->

�� �
�
�\<longrightarrow>

�� �

�

id �

�

� maps�
�

�

�

maps

maps
�� �
mapping �

�mapping �
�mapping

�

�

1.3.3 Functionality

The �rst identi�er is the name of the theory morphism to be constructed. As
shown in the diagram, there are two ways to construct a theory morphism:

7

1. by giving an identi�er of an existing signature morphism and an optional
axiom map, or

2. by giving source, target, type, operation and axiom maps.

The second possibility is actually a composed one. Internally it consists of
two steps: constructing a signature morphism of the source, target, type and
operation maps and then doing the same as before. Notice that the underlying
signature morphism is then anonymous, i.e. does not have its own identi�er.

Axiom map

An axiom map has the same syntax as an operation map: it consists of a list
of assignments (s 7→ t), where s and t are strings. For an axiom map such
an assignment is correct if s denotes a proposition from the domain of the
theory morphism to be constructed, while t denotes a proposition which can be
either global or from the codomain of the theory morphism, and the term of s
translated by the homomorphic extension of the underlying signature morphism
yields a term which is equal to the term of t up to renaming of meta-variables.

An axiom map is correct if it contains only correct assignments and maps all

axioms from the domain of the intended theory morphism.

Just as in the case of operation map, the AWE Extension Package will auto-
matically try to derive a suitable assignment for any axiom from the domain
searching among all propositions in the codomain. Since ambiguity does not
matter in this case, the search may result in:

1. For all axioms from the domain an assignment was found. In this case, a
theory morphism will be constructed.

2. For some axioms in the domain no suitable proposition in the codomain
could be found. In this case an explicit axiom map may help. Since only
propositions from the codomain are searched, suitable global propositions
may exist but will not be found automatically. These have to be either

• assigned explicitly by the axiom map, or

• made explicit in the codomain using, for instance, the Isabelle com-
mand lemmas,

otherwise the theory morphism construction will fail.

Example

We can extend the signature morphism s from Section 1.2 to a theory morphism
t by a declaration as follows:

thymorph t by sigmorph s

In this case there are no axioms at all in the domain of t.

Without referring to the signature morphism s, we can also write

thymorph t : MonadOpEta −→ Example

maps [("'c MonadType.M" 7→ "'c Datatype.option")]

with the response:

8

Found: ("MonadOpEta.eta" 7→ "Datatype.option.Some")

Theory morphism t : MonadOpEta −→ Example constructed.

1.4 translate thm: Theorem Translation

A theory morphism allows us to move theorems from its domain into its target
theory. More exactly, the statement and proof of a theorem can be translated by
a theory morphism and then replayed in its target. In order to do so, theorems
on which the particular theorem depends (i.e. uses in its proof) have to be
translated �rst. This procedure is implemented by the translate thm command
having the following syntax:

translate thm

translate thm
�� �
string as

�� �
id along
�� �
id

string is interpreted as the name of the theorem to be translated and has to
be fully quali�ed. The �rst identi�er is the name which will be assigned to
the translated proposition, while the third identi�er has to refer to an existing
theory morphism. One can also use the empty string "" as the name for the
translated proposition; in this case a new name will be generated automatically.

There is a possibility to skip the internal translation of proofs by

ML "set AWE.skip proofs"

which will have the same e�ect as constructing theories in Isar in quick and

dirty -mode. On the one hand this will make translate thm work much more
faster, but on the other hand may cause problems later, since all such translated
theorems lose their dependencies.

1.5 Parametrised Theories and Instantiation

1.5.1 Foundations

If a theory T is an ancestor of a theory T ′, i.e. T ′ extends T , then there is
a unique theory morphism i : T ↪→ T ′, the inclusion. Its type, operation and
axiom maps are empty. In Figure 1.1, all arrows are inclusions. Since inclusions
are determined by the hierarchy of theories there is no need to declare them
explicitly, unless one wants to give an explicit name to one of them in order to
use it as an argument later.

A parametrised theory consists of a tuple of theories 〈P ,B〉 such that P is an
ancestor of B , which gives the inclusion morphism i : P ↪→ B . Theory P is
called the parameter part and B the body part of 〈P ,B〉.
The instantiation of a parametrised theory is sketched by the following diagram,

9

where dotted arrows are results of instantiation:

P
t - T

B

i

?

∩

.............................
t ′

- T ′

i ′

?

∩............... (1.1)

The theory morphism t maps all type constructors, constants and axioms from
its domain to types, constants and propositions in the ancestors of the instanti-
ating theory T . Further, since B extends P , we can stepwise construct a similar
extension T ′ of T , and at the same time extend type, operation and axiom
maps of t to obtain t ′. In order to do this we need to �nd a correct assignment
for any type constructor, logical constant, and axiom occuring in the domain of
t ′ : B −→ T ′. To keep things simple, we will describe the construction for the
case when B imports only one theory, namely P .

First, it is possible to give an assignment for logical types, constants, and ax-
ioms of B explicitly during instantiation, which would actually correspond to
considering the particular element as a part of the parameter theory P . We will
call such elements explicitly instantiated.

Then, the theory morphism t ′ and the theory T ′ will be constructed as follows:

1. For any type constructor B .C introduced in B we add the type constructor
T .C with the same rank to the signature of T , and extend the type map
of t by (α1, . . . , αiB.C

)B .C 7→ (α1, . . . , αiB.C
)T .C , unless B .C is explicitly

instantiated. If T .C is already in the signature, this requires an explicit
renaming. This step gives us the type map for t ′ and the theory T1

extending T .

2. For any logical constant B .f introduced in B we add a logical constant T1.f
with a type satisfying the condition given by the type map, constructed in
the previous step, to the signature of T1, and extend the operation map
of t by B .f 7→ T1.f , unless B .f is explicitly instantiated. Here, again,
renaming could be required. This step gives us the operation map for t ′

and the theory T2 extending T1, resulting in a signature morphism s with
source in B and target in T2.

3. For any axiom B .A introduced in B we can

• either match B .A, i.e. can �nd a proposition A′ searching only in the
codomain (see Section 1.3.3) of s satisfying the condition given by
the operation map of s (see 1.3.1), so that we can extend the axiom
map of t by B .A 7→ A′, or

• insert (unless B .A is explicitly instantiated) an axiom T2.A, which
again satis�es the condition given by the operation map of s, so that
we can extend the axiom map of t by B .A 7→ T2.A.

10

This step gives us the theory T ′ extending T2 and completes the theory
morphism t ′.

Note that T has to be the currently developed theory. So, T ↪→ T1 ↪→ T2 ↪→ T ′

denote the development steps of this theory.

Since the third step may introduce new axioms, it is unsafe in the sense that the
theory T can become inconsistent during such instantiation. This leads to the
notion of proper instantiation. A proper (or non-axiomatic) instantiation would
skip the insertion in the third step above and result in a theory morphism only
if all axioms in B have been matched by theorems or axioms in T . The set of
unmatched axioms in B we will call proof obligations; they can also be displayed
with the command show thymorph goals, described in Section 1.5.3.

Proper instantiation is a conservative extension. In contrast, an axiomatic in-
stantiation uses the insertion step, i.e. it may extend the instantiating theory
non-conservatively by axioms.

The command t instantiate implements both proper and axiomatic instantia-
tions.

1.5.2 t instantiate

Syntax and functionality

The syntax of the command t instantiate is shown in Figure 1.2. Referring
again to Diagram 1.1, the �rst identi�er corresponds to the theory B and the
second to the theory morphism t . The options of t instantiate comprise:

1. A type map (see 1.2.3), which will be interpreted as explicit instantiations
for type constructors in the domain of t .

2. An operation map (see 1.2.3), which will be interpreted as explicit instan-
tiations for logical constants in the domain of t .

3. An axiom map (see 1.3.3), which will be interpreted as explicit instantia-
tions for unmatched axioms in the domain of t in any axiomatic instanti-
ation.

4. A renaming map (see the rule for renaming in Appendix A), which allows
users to change the names of type constructors, constants and axioms as
well as the mix�x syntax ot type constructors and constants to be inserted
into the theory T .

5. If the keyword axiomatic is used then the instantiation will extend the
theory T by all unmatched axioms from the domain of t , which are not
explicitly instantiated, as described in the previous section.

6. Furthermore, t instantiate will extend T by concrete syntax2 declared
in the domain theories of t , unless the keyword without syntax is used.
Apart from that, abbreviations (command abbreviation) are also sup-
ported if they have the form as presented in [3].

2These comprise concrete theory syntax built with the following Isar commands: nonter-
minals, syntax, translations, parse translation, print translation, parse ast
translation, print ast translation, token translation.

11

t instantiate

t instantiate
�� �
id mapping

�� �
id options

options

1
inst types

�� �
:
���
mapping�

�
�

�

�

� 2
inst consts

�� �
:
���
mapping�

�
�

�

�

� 3
inst axioms

�� �
:
���
mapping�

�
�

�

�

� 4
renames

�� �
:
���
renaming�

�
�

�

�

� 5
axiomatic

�� �
�
�

�

6
without syntax

�� �
�
�

�

Figure 1.2: Syntax of t instantiate

12

Example

In our monad example we have the theory morphism t : MonadOpEta −→ Example

and further the implicit inclusion i : MonadOpEta ↪→ MonadOps. This gives us a
parametrised theory with parameter MonadOpEta and body MonadOps, which we
will now instantiate by t. The input

t instantiate MonadOps mapping t

would yield the following response:

... adding logical constant

Example.bind :: "'a option ⇒ ('a ~⇒ 'b) ~⇒ 'b" (infixl "�=" 5)

Theory morphism t' : MonadOps −→ Example constructed.

where 'a ~⇒ 'b is the Isabelle/HOL's notation for a partial map, equivalent to
'a ⇒ 'b option.

Note that in this a case a non-axiomatic instantiation results in a theory mor-
phism, because there are no axioms at all in MonadOps.

We obtain the extended theory Example which contains the logical constant
bind with the same in�x annotation as MonadOpBind.bind (which is crucial for
the concrete monad syntax) and the theory morphism t' the operation map of
which contains the assignment MonadOpBind.bind 7→ Example.bind.

Alternatively, we could also make a similar instantiation involving the renaming
together with a re-de�nition of the mix�x notation:

t instantiate MonadOps mapping t

renames: [("MonadOpBind.bind" 7→ "option bind"

mix�x: (" �=*\ " [5, 6] 5))]

which yields the response:

... adding logical constant

Example.option bind :: "'a option ⇒ ('a ~⇒ 'b) ~⇒ 'b"

(" �=*\ " [5, 6] 5)

Theory morphism t' : MonadOps −→ Example constructed.

Such an instantiation can be helpful if more than one monad instance occurs in
a theory, because we can use the concrete monad syntax with only one of them.

As another alternative of the instantiation of MonadOps, let us also demonstrate
an explicit instantiation of a logical constant. First, we introduce in the theory
Example the constant:

consts

option bind :: "'a option ⇒ ('a ~⇒ 'b) ~⇒ 'b" (" �=\ " [5, 6] 5)

Now, we can instantiate:

t instantiate MonadOps mapping t

inst consts: [("MonadOpBind.bind" 7→ "Example.option bind")]

with the response:

... logical constant MonadOpBind.bind explicitly instantiated

Theory morphism t' : MonadOps −→ Example constructed.

Of course, for this small example this instantiation is not very useful: we do
here something manually what the AWE Extention Package can do for us, as
the �rst instantiation above shows.

Now let us consider the theory MonadAxms. The instantiation

13

t instantiate MonadAxms mapping t' axiomatic

would insert monad axioms as axioms into the theory Example and construct
the theory morphism t� : MonadAxms −→ Example. This would axiomatically
state that the datatype option is a monad. Here, we can actually prove the
monadic properties for option together with a suitable bind operation. So, we
choose this possibility and de�ne:

primrec

"(None �= f) = None"

"((Some x) �= f) = f x"

(note that the declaration of the constant bind and its in�x syntax have been
translated during the instantiation of MonadOps by t above),

and instantiate as follows:

t instantiate MonadAxms mapping t'

This yields the following response:

Instantiating theory MonadAxms by theory morphism

t' : MonadOps −→ Example ...

Axiom mapping found: ("MonadAxms.mon lunit" 7→ "Example.bind.simps 2")

Signature morphism t� : MonadAxms −→ Example constructed.

To prove:

lemma mon assoc:

"(s �= t �= u) = (s �= (λx. t x �= u))"

lemma mon runit:

"(t �= Some) = t"

lemma mon eta inj:

"Some x = Some y ==> x = y"

The theorem Example.bind.simps 2 was automatically derived by Isabelle's prim-
rec package for the de�nition of bind above and proves exactly the monadic left
unit property for it. mon assoc, mon runit and mon eta inj are our proof obli-
gations and are displayed already in the translated form, i.e. we can just copy
and paste them into Example and start to prove them. Done so, we write

thymorph t by sigmorph t�

which constructs the theory morphism t from MonadAxms into Example. Note
that we give to the last theory morphism the same name as for the �rst theory
morphism constructed in Section 1.3, so we cannot refer to that morphism any
more.

Finally, we instantiate the theory Monad by:

t instantiate Monad mapping t

Now we are able to get any theorem proved for monads as a theorem for option
by:

translate thm "Monad.<some monad theorem>" as <new name> along t'

Instantiation of Isabelle structures

Isabelle provides a number of very useful tools like datatypes and records for
HOL. Both concepts are based on the general type de�nition mechanism in
HOL (command typedef). Any type de�nition adds an axiom to the particular
theory and requires a non-emptyness proof (see [3]). It is a well-known fact

14

that this axiom is a conservative extension to the theory. For any instantiation
of a parametrised theory having a typedef in its body theory this means that
it should be axiomatic � a proper instantiation will fail to construct a theory
morphism because of the typedef -axiom. But since this axiom does not a�ect
the consistency of the body theory, such an axiomatic instantiation will not
a�ect the consistency of any instantiating theory. Hence, a good strategy is to
have type de�nitions in separated theories in order to ensure that no axioms
beside typedef -axioms will be translated.

For datatypes and records, the AWE Extension Package provides a smoother
instantiation possibility: if a datatype (record) is declared in the body of a
parametrised theory then the corresponding instantiated datatype (record) will
be generated by Isabelle in any instantiating theory. This, for example, has the
advantage that the instantiation does not need to be axiomatic, since underly-
ing typedef -axioms will be generated as well. Furthermore, such instantiated
datatype (record) has all its `infrastructure' (i.e. induction, cases, simpli�ers,
etc.) available in the instantiating theory.

The following paragraphs describe more details (including some restrictions) of
the instantiation of datatypes and records.

Datatypes. Let us demonstrate the instantiation of datatypes by a small
example. Consider the theory B, parametrised over two type constructors T1

and T2 :

theory P imports Main begin

typedecl T1

typedecl T2

end

theory B imports P begin

datatype T = C1 T1 T

| C2 T1

end

We could instantiate it as follows:

theory I imports Main begin

thymorph t : P −→ I

maps [("T1" 7→ "nat"),

("T2" 7→ "nat")]

t instantiate B mapping t

In this situation t instantiate will recognise that there is a datatype structure
in the theory B and try to instantiate it also as a datatype in the theory I, i.e.
the instantiation will have the same e�ect as the declaration:

datatype T = C1 nat T

| C2 nat

But such datatype instantiation can also fail in some cases. Consider an alter-
native body theory:

theory B imports P begin

datatype T = C1 T1 T2 T

| C2 T1

end

where we also use the second type parameter in the datatype. Now the same
instantiation will fail, although one could think it should just yield the datatype

15

I.T :

datatype T = C1 nat nat T

| C2 nat

in the theory I. The problem is that the datatype package has to distinguish
between T1 and T2 in B, while in I this two types coincide. So the datatype
package generates in I an internal representation for the datatype I.T, which
structurally di�ers a little from the representation of B.T.

Altogether, the essence is: one has to be very careful with the instantiation
of theories parametrised over more than one type constructor, since these can
coincide later by a non-injective instantiation.

But in lot of cases there is a way to treat such problematic parametrisations.
Consider another alternative body theory:

theory B imports P begin

datatype T = C1 "T1 * T2" T

| C2 T1

end

where we now �uncurry� the constructor C1 for our two type parameters and
obtain essentially the same (isomorphic) datatype. But, in contrast, now the
instantiation will succeed because in this case the datatype package will generate
structurally the same representation for I.T for any instantiation of T1 and T2.

Finally, consider this quite arti�cal case where this method will not work:

datatype T = C1 T1

| C2 T2

The instantiation above for this datatype will also fail and we cannot represent
our type parameters as arguments of some binary type constructor.

Records. The instantiation of a parameterised theory containing a record
works analogous to the instantiation of datatype just described. However, for
records extending other records a small patch to the standard Isabelle2007 distri-
bution is required to make some needed selectors visible. This is easily installed,
but requires Isabelle to be rebuilt; see Section 3.3 on how to install this patch.

Skipping structure instantiations. Users are able to skip the instantiation
of datatypes by

ML "set AWE.skip datatypes"

and of records by

ML "set AWE.skip records"

Then, instantiation of a parametrised theory having datatypes or records in its
body theory is the same as with type de�nitions, described at the beginning of
this section.

1.5.3 show thymorph goals

The command show thymorph goals supports the extension of a given signa-
ture morphism to a theory morphism by showing the proof obligations needed
to be proven in order to extend a signatur morphism to a theory morphism. As
mentioned in Section 1.5.1, this is useful to construct a proper instantiation.

16

Syntax and functionality. The syntax of show thymorph goals is sim-
ple:

show thymorph goals

show thymorph goals
�� �
id without syntax

�� �
�
�

�

where the identi�er has to denote an existing signature morphism. For this
morphism proof obligations (if any) will be displayed that one can copy and
paste into the target theory. Such as with a proper instantiation (Section 1.5.1)
one has then to decide which of them to prove and which to assert as axioms.
Done so, the signature morphism can be extended to a theory morphism by:
thymorph . . . by sigmorph . . .

Further, without syntax stops the concrete syntax from the source to be trans-
ferred (the same functionality as for t instantiate) into the target, so that goals
will be displayed without it. This, of course, does not a�ect the semantics.

Notice also that since show thymorph goals may change the signature mor-
phism as well as its target theory, it has to occur in the theory text whenever
it was employed.

1.6 Composition

The composition of morphisms provides the possibility to derive new morphisms
from already existing ones. The syntax of the composition of theory and signa-
ture morphisms (t compose and s compose command, respectively) is given
by the following diagram:

composition

t compose
�� �
�

�s compose
�� �

�

id ==
�� �
�

�\<equiv>
�� �

�

�

�

�id o
���
�

�\<circ>
�� �

�

id

The second and third identi�ers have to refer to already existing theory (signa-
ture) morphisms, while the �rst identi�er will be assigned to the composition
morphism. For t1 : A −→ B and t2 : C −→ D the composition t ≡ t2 ◦ t1, where
t : A −→ D , is well-de�ned if B is an ancestor of C . The type, operation and
axiom maps of t are then compositions of the particular maps of t1 and t2.

17

1.7 Construction and Transformation Commands

The AWE Extension Package commands presented so far either construct mor-
phisms between Isabelle theories or work with already constructed morphisms
constructing new morphisms and transforming theories. So, we can classify sig-

morph and thymorph as construction commands, and in contrast translate
thm, t instantiate, show thymorph goals and t compose as transformation

commands.

Since transformation commands may change theories, they should be employed
according to the following rule:

• Let t(φ) be some transformation command having morphism φ as the
argument (for composition this means the morphism t2). If t(φ) is used
in a theory T then the target of φ is an ancestor of T .

We will call this target-side development. It was demonstrated by the monad
example in the previous sections. The target-side development provides the
dynamic target extension of argument morphisms of transformation commands
as shown in Figure 1.3: the codomain of φ is dynamically adapted to the new
theory state at the point of declaration of command involving φ.

φ

φextended

target

some command involving

morphism declaration

dynamically
φ

source

Figure 1.3: Updates of morphisms for target-side development.

In contrast, a construction command can be used in any theory, i.e. it can be
for instance the target as well as the source of the intended morphism. The List
example in Section 1.2.3 uses the latter possibility, which we will call source-side
construction. Using the source-side constructions one has to take into account
that the source theory of a morphism is �xed at the state where the morphism
has been declared, so that all subsequent states will be invisible for the particular
morphism. This is pointed up in Figure 1.4: the source of the intended theory
morphism t would be not the theory state at the point of its declaration, but the
theory state at the point of the declaration of s. This means for instance, that
an axiom declared between the declarations of s and t will not be an element of
the source of t. In other words, any theory state between the both declarations
does not a�ect neither s nor t.

1.8 Control

Finally, there is a possibility to get an overview of all already existing theory
and signature morphisms, provided by the t print command, which has the

18

target

sigmorph s

source

s

thymorph t by_sigmorph s

invisible for s
theory states

and hence for t

Figure 1.4: Invisible theory states during source-side construction.

following syntax:

t print

t print
�� �
 thymorphs

�� �
�
�sigmorphs

�� �

�

Note that this is an improper command which should not be used inside a theory
text.

19

Chapter 2

Theorem Abstraction

In this chapter we want to present a technique to make a theorem more generally
applicable by making other theorems used in its proof explicit assumptions,
replacing eigenvariable operations by meta variables and eigen type variables
by type variables. It is implemented by proof term translation, and described
in [6] and [7].

The AWE Extension Package provides an Isar command in order to abstract
a proposition over given types or constants. To illustrate its use, we will give
an example, which �rst shows the equivalence of a linear-recursive and a tail-
recursive functions de�ned to sum a list of natural numbers and then employs
the command to derive a general theorem showing the equivalence of linear-
and tail-recursive functions de�ned over an arbitrary type having the monoid
properties.

2.1 Syntax

The syntax of the command is the following:

abstract

abstract thm
�� �
string over

�� �
�
�over consts

�� �

�

string �

�

��
�string and

�� �

�

as
�� �
id �

�
� expanding

�� �
string �
�string ,

���

�

�
�

�

The �rst string should denote the name of theorem to be abstracted. If it is
unquali�ed then it will be interpreted as the name of a theorem from the current

20

theory. One can refer to a theorem from another theory using a quali�ed name.

A non-empty sequence of strings after the keyword over will be interpreted as
Isabelle types to be abstracted, while the sequence of strings after the keyword
over consts as constants to be abstracted.

The identi�er stands for a name of the resulting abstracted theorem. The op-
tional non-empty sequence of strings after the keyword expanding denotes the
theorems which have to be expanded in the proof term of the theorem to be
abstracted. Next section explains how it can be employed.

2.2 Example

We start with a theory newNat which introduces the datatype nuNat with a single
function nuPlus de�ned on it.

theory newNat imports Main begin

datatype nuNat = Zero

| nuSuc nuNat

consts nuPlus :: "nuNat ⇒ nuNat ⇒ nuNat"

primrec

"nuPlus Zero x = x"

"nuPlus (nuSuc x) y = nuSuc (nuPlus x y)"

Further we prove that nuPlus satis�es the associativity law and has Zero as its
neutral element. This completes the theory newNat.

Now we start the theory TailRec extending newNat and de�ne two versions of
summation of a list of nuNat, a linear-recursive and a tail-recursive one:

consts sum :: "nuNat list ⇒ nuNat"

recdef sum "measure length"

"sum l = (if l = [] then Zero else nuPlus (hd l) (sum (tl l)))"

consts sum2 :: "(nuNat list × nuNat) ⇒ nuNat"

recdef sum2 "measure (λ(l, x). length l)"

"sum2 (l, e) = (if l = [] then e else sum2 (tl l, nuPlus e (hd l)))"

We can show that they are equivalent with the following theorems:

lemma sum Cons : " sum (x#xs) = nuPlus x (sum xs) "

lemma sum2 Cons : " sum2 (x#xs, a) = sum2 (xs, nuPlus a x) "

lemma nuPlus 1 : "nuPlus e (sum l) = sum2 (l, e)"

theorem equality : " sum l = sum2(l, Zero) "

where the �rst two arise just from the de�nitions, the third is crucial and proved
by induction on l, while the last is the main result and is proved by instantiation
e 7→ Zero in nuPlus 1.

Type abstraction over nuNat means that we want to make all implicit assump-
tions referring to nuNat in the proof explicit, such that we can replace the type
nuNat by a type variable. For the theorem equality, this is done as follows:

abstract thm "equality" over "newNat.nuNat" as abs equality

This yields the following response:

... abstracting types: nuNat

... abstracting ops: newNat.nuPlus, newNat.nuNat.Zero, TailRec nat.sum2,

TailRec nat.sum

21

... abstracting thms: TailRec nat.nuPlus 1, TailRec nat.sum2.simps,

newNat.nuPlus.simps 1, TailRec nat.sum.simps

abstracted thms

abstracted ops

abstracted types.

abs equality :

"[|

!!l. ?sum l = (if l = [] then ?Zero else ?nuPlus (hd l) (?sum (tl l)));

!!x. ?nuPlus ?Zero x = x;

!!l e. ?sum2.0 (l, e) = (if l = [] then e

else ?sum2.0 (tl l, ?nuPlus e (hd l)));

!!e l. ?nuPlus e (?sum l) = ?sum2.0 (l, e)

|]

=⇒ ?sum ?l = ?sum2.0 (?l, ?Zero)"

First, we can observe that in the resulting theorem all constants listed in the line
abstracting ops are abstracted, i.e. they became meta-variables in the derived
theorem. Further, the theorems listed in the line abstracting thms occur in
already abstracted form in the assumptions of abs equality. The reason is
that these are exactly the propositions which are used in the proof of equality.
However, note that the proposition TailRec nat.nuPlus 1 occurs among this
assumptions, which is derivable from the other ones. This can be avoided by
expanding the use of TailRec nat.nuPlus 1 in the proof of the theorem (with
the keyword expanding), so it it will not occur in the assumptions (note in
general expanding a theorem in a proof may introduce new assumptions):

abstract thm "equality" over "newNat.nuNat" as abs equality

expanding "TailRec nat.nuPlus 1"

Instead of TailRec nat.nuPlus 1, the following propositions, used in the proof
of TailRec nat.nuPlus 1, will occur:

newNat.nuPluss assoc, TailRec nat.sum2 Cons, TailRec nat.sum Cons,

newNat.nuPluss Zero Id right

As mentioned above the theorems TailRec nat.sum Cons and TailRec nat.sum2

Cons follow immediatly from the .simps theorems of the recursive de�nitions of
sum and sum2, respectively, which already occur in the assumptions of the derived
theorem. Hence, expanding TailRec nat.sum Cons and TailRec nat.sum2 Cons

will discharge these without introducing new assumptions. So, �nally we can
write:

abstract thm "equality" over "newNat.nuNat" as abs equality

expanding "TailRec nat.nuPlus 1", "TailRec nat.sum Cons",

"TailRec nat.sum2 Cons"

We obtain the following theorem:

abs equality :

"[| !!x. ?nuPlus ?Zero x = x;

!!u. ?nuPlus u ?Zero = u;

!!u ua c. ?nuPlus u (?nuPlus ua c) = ?nuPlus (?nuPlus u ua) c;

!!u. ?sum u = (if u = [] then ?Zero else ?nuPlus (hd u) (?sum (tl u)));

!!u e. ?sum2.0 (u, e) = (if u = [] then e

else ?sum2.0 (tl u, ?nuPlus e (hd u))) |]

=⇒ ?sum ?l = ?sum2.0 (?l, ?Zero)"

22

This we can interpret as follows: for any type M equipped with the constants
p :: M ⇒ M ⇒ M and e :: M satisfying the �rst three assumptions, i.e. the
monoid properties, the both functions, satisfying the equations in the fourth
and �fth assumptions, also satisfy the equation in the conclusion.

23

Chapter 3

Installation and Usage

The AWE Extension Package is easy to install and use.

3.1 Installation

First, unpack the sources; they unpack into a called directory awe-x.y (where
x.y is version number), but this can be renamed or moved arbitrarily. Change
into that directory. Installation consists of a single

./configure

To use the instantiation of records extending other records, make the steps
described in the paragraph Records, Section 1.5.2.

To make use of our extensions, Isabelle needs to be built with full proof objects.
If a logic like HOL has been built without full proofs, one may need to recompile
it with the option -p 2 (for details see [4]); if one sees a message "incomplete
proof objects" when running our extensions, this is sign of missing full proof
objects.

To integrate our extensions (in particular the new keywords) into ProofGen-
eral, you must make it load the �le isar-keywords.el in the directory etc,
for example by copying that to the directory etc in ISABELLE_HOME (usually,
isabelle/etc in your home directory). Note that isar-keywords.el as given
is for use with Isabelle/HOL, but you can change that (see etc/README).

3.2 Usage

To use our extensions, you must install them �rst (see above), and then use the
theory AWE in the Extensions directory. You can do this by saying

use_thy "<path-to-extensions>/Extensions/AWE"

in your theory, or you create a soft link from your project to the AWE.thy and
just use AWE as an ancestor.

Bear in mind the remark on page 3: when using theory morphisms, a theory
T may depend on other theories S1, . . . , Sn which are not their ancestors. This
situation does not normally occur with Isabelle, so users should be careful to
handle this extra dependency; in particular, users need to load S1, . . . , Sn man-
ually.

24

3.3 Record Patch

The instantiation of records extending another record requires a small patch to
the standard Isabelle2007 distribution (to make some needed selectors visible).
The patch is performed by the following simple steps:

1. Set the environment variable ISABELLE HOME to the Isabelle's home direc-
tory, if not already done so.

2. Call the script record patch in the AWE Extension Package home di-
rectory. This will add a selector to the Isabelle/HOL record package and
update the AWE Extension Package.

3. (Re)build Isabelle/HOL with full proof objects using, for example, the
build tool.

3.4 Restrictions

Further, there are the following important notes:

1. The presence of declarations of Isabelle's type classes in the domain of a
morphism can lead to exceptions, especially in connection with theorem
translation.

2. The package does not support the undo mechanism of the Isar-VM, in
the sense that undoing changes to a theory, made by the AWE Extension
Package commands, will not change existing theory and signature mor-
phisms. In lot of cases this will lead to exceptions. If some changes to
a theory are required then it is better also to construct a�ected theory
(signature) morphisms once more.

3. The package does not work well with Isabelle's quick and dirty �ag, i.e.
if it is set then especially instantiation of datatypes (described in Section
1.5.2) can fail. One of the reasons is that the quick and dirty �ag omits
the construction of proofs, and hence proof terms, and many of the func-
tionalities of the package depend on translating proof terms. ProofGeneral
users should check whether it starts Isabelle process in quick and dirty -
mode by default. However, the package resets the �ag automatically but,
of course, only if it is loaded, so that the situation can occur where the
theories loaded before are still in quick and dirty -mode.

25

Appendix A

Syntax Primitives

In the following we will use these conventions:

• terminal symbol id denote the lexical class of identi�ers

• terminal symbol string denote the lexical class of quoted strings

The basic syntactic primitive is mapping, which is actually a list of assignments.
The rules are shown in the following diagram:

mapping

[
���
 assignments�

�
�

]
���

assignments

assignment �
�assignment ,

���

�

assignment

(
���
string |->

�� �
�
�\<mapsto>

�� �

�

string)
���

The examples involving mapping can be found in Section 1.2 and Section 1.3.

Another primitive is renaming which is also a list of assignments, but di�er a
little bit from mapping in the rule for rename:

renaming

[
���
 assignments�

�
�

]
���

assignments

rename �
�rename ,

���

�

26

rename

(
���
string |->

�� �
�
�\<mapsto>

�� �

�

id �

�

� mix�x
�� �
:

���
string�
�

�

)
���

The example in Section 1.5.2 shows how renaming can be employed.

27

Bibliography

[1] Wenzel, Markus. 2007. The Isabelle/Isar Reference Manual

[2] Paulson, Lawrence C. 2007. The Isabelle Reference Manual

[3] Nipkow, Tobias, Paulson, Lawrence C., Wenzel, Markus.
2007. A Proof Assistant for Higher-Order Logic

[4] Wenzel, Markus and Berghofer, Stefan. 2007. The Isabelle
System Manual

[5] Bortin, Maksym, Johnsen, Einar Broch, and Lüth, Christoph.
Structured Formal Development in Isabelle. Nordic Journal of Com-
puting 13:1� 20, 2006.

[6] Johnsen, Einar Broch, and Lüth, Christoph. Theorem Reuse
by Proof Term Transformation. In Proc. 17th Intl. Conf. on Theorem
Proving in Higher Order Logics (TPHOLs'04). Volume 3223 of Lecture
Notes in Computer Science. Springer, 152-167.

[7] Johnsen, Einar Broch, and Lüth, Christoph. Abstracting Re-
�nements for Transformation. Nordic Journal of Computing 10:313�
336, 2003.

28

	Morphisms
	Introduction
	sigmorph: Constructing a Signature Morphism
	Foundations
	Syntax
	Functionality

	thymorph: Constructing a Theory Morphism
	Foundations
	Syntax
	Functionality

	translate_thm: Theorem Translation
	Parametrised Theories and Instantiation
	Foundations
	t_instantiate
	show_thymorph_goals

	Composition
	Construction and Transformation Commands
	Control

	Theorem Abstraction
	Syntax
	Example

	Installation and Usage
	Installation
	Usage
	Record Patch
	Restrictions

	Syntax Primitives

