
λ →

∀
=Is

ab
el
le

β
α

The AWE Extension Package

Release 0.9.1 for Isabelle2009-1

Maksym Bortin
DFKI Bremen

Einar Broch Johnsen
University of Oslo

Christoph Lüth
DFKI Bremen

March 18, 2010

Contents

1 Isabelle Foundations 2

2 Morphisms 5
2.1 Introduction . 5
2.2 sigmorph: Constructing a Signature Morphism 6

2.2.1 Syntax and functionalty 6
2.3 Homomorphic Extension and Normalisation of Signature Mor-

phisms . 11
2.4 Composition of Signature Morphisms 12
2.5 thymorph: Constructing a Theory Morphism 13

2.5.1 Foundations . 13
2.5.2 Syntax and functionality 13

2.6 translate thm: Theorem Translation 16
2.7 Composition of Theory Morphisms 16
2.8 Parametrised Theories and Instantiation 17

2.8.1 Foundations . 17
2.8.2 instantiate theory . 19
2.8.3 thymorph goals . 27

2.9 Control . 28

3 Installation and Usage 29
3.1 Installation . 29
3.2 Usage . 29
3.3 ProofGeneral . 30
3.4 Restrictions . 30

A Syntax Primitives 31

1

Chapter 1

Isabelle Foundations

In this short chapter we want briefly to introduce the basic concepts of Isabelle,
which will play an important role in the entire manual. For a detailed description
of the Isabelle/Isar framework we refer to, e.g., [1] and [2].
Isabelle is a logical framework in form of a generic LCF-style theorem prover.
Isabelle has a fixed meta-logic which is a weak intuitionistic higher-order logic
extended with polymorphism and type classes. Object logics like HOL, FOL, ZF
etc. extend the meta-logic and are specified using theories. Further, Isar is an
extension of the framework for interactive theory development with a powerful
high-level human-readable proof language, theory presentation, etc.

Theories. Theories in Isabelle are structured hierarchically, i.e., there is the
basic theory Pure for the meta-logic and any further theory has to extend a
(finite) set of existing theories (also called parent theories). This is expressed
in Isabelle/Isar by the keyword imports. In other words, theories in Isabelle
form a directed acyclic graph. For a given theory T the finite set of its ancestor
theories contains T together with all theories from which a path to T exists.
Proper ancestors of T are then just the ancestors of T excluding T .

Class signature. The class signature Σclass(T) of a theory T consists of the
finite set of classes declared in the ancestors of the theory, and a class relation
≺class . Class relations are constrained to be acyclic, i.e., there is no class c such
that c ≺+

class c, where ≺+
class denotes the transitive closure. In following we

want also consider the reflexive-transitive closure of ≺class denoted by ≺∗class .
So, if c ≺∗class c′ we say that c is a subclass of c′ or equivalently c′ is a super
class of c. In case when c ≺+

class c′ we will also say that c′ is a proper super
class of c.

Sorts. A sort of a theory T is a subset of the set of classes in the class
signature of T . For example, Isabelle/HOL introduces the class HOL.type and
further declares the sort {HOL.type} as the default sort. Let Sorts(T) denote
the set of sorts of T . Any class relation induces the subsort relation �sort⊆
Sorts(T) × Sorts(T) as follows: S �sort S ′ holds iff for any class c′ ∈ S ′ there
exists a class c ∈ S with c ≺∗class c′. In case S �sort S ′ we also say that S is a
subsort of S ′ or equivalently S ′ is a super sort of S . By definition we have that
the empty sort ∅ is a super sort of any sort.

Type signature. The type signature Σtype(T) of a theory T consists of the
finite set of type constructors (also called logical types) declared in the ancestors

2

of the theory. Any type constructor has a fixed rank, i.e., the number of its
arguments. Further, any type constructor has a finite set of arities. An arity
for a type constructor C with the rank n is of the form (S1, . . . ,Sn ,Sn+1) where
Si ∈ Sorts(T).
For example, the declaration "typedecl ’a T" in a HOL theory introduces the
type constructor T with the rank 1, and adds the standard HOL-arity for T :
({HOL.type},{HOL.type}).
Further arities can be added to a type constructor, e.g., using the Isar command
arities.

Types. Let X be a fixed infinite countable set of type variables, and ϑ : X →
Sorts(T) a sort assignment. The set of types over ϑ, denoted by Typesϑ(T),
is the smallest set containing X and closed under the application of type con-
structors of T w.r.t. rank.
The set Types(T) of types is then the union of Typesϑ(T) for all possible sort
assignments ϑ.
For example, in Isabelle/HOL the declaration ’a ⇒ ’b is actually a shortcut for
(’a ::{type}) ⇒ (’b ::{type}), since {HOL.type} is the default sort in HOL.
That is, this type is built over ϑ which assigns to all type variables the default
sort. In contrast, specifying, e.g., (’a ::{plus}) ⇒ ’b we obtain a type built
over a ϑ, which maps ’a to the sort {HOL.plus} and all other type variables
again to {HOL.type}.
Sort assignments together with type constructor arities provide the relation
of-sortT ⊆ Types(T)×Sorts(T). Firstly, α of-sortT S holds for any type vari-
able α ∈ Typesϑ(T) and any super sort S of ϑ(α). Secondly, for an application
(ω1, . . . , ωn) C , we can conclude (ω1, . . . , ωn) C of-sortT S if C has an arity
(S1, . . . ,Sn ,Sn+1) where Sn+1 �sort S and ω1 of-sortT S1, . . . , ωn of-sortT Sn
hold.

Operation signature. The operation signature Σop(T) of a theory T consists
of the finite set of constants declared in the ancestors of this theory. Any
constant f ∈ Σop(T) has a fixed type type-of T (f) ∈ Types(T) taken from the
set of types of the theory.

Terms. Let T be a theory and S ⊆ Σop(T). The set Terms(T |S) of S -
restricted terms of T is built of the constants in Σop(T) \S over a fixed infinite
set of meta-variables. For Terms(T |∅) we write Terms(T) and call it the set of
terms of T .
All (restricted) terms in Isabelle are well-typed, i.e., for any t ∈ Terms(T |S)
there is a type ω ∈ Types(T). This relation is denoted by t :: ω. Further,
f :: type-of T (f) holds for any constant f ∈ Σop(T).

Signature. The signature of an Isabelle theory consists of its class, type, and
operation signatures.

Propositions. Propositions are terms of the meta-logical type prop. These
can be either axioms, i.e., propositions without a proof, or theorems, i.e., propo-

3

sitions having a proof built with other propositions. Any theory has a finite set
of axioms.

Definitions. Let T be a theory, f a constant from its operation signature and
t a term over the signature of T . A definition of f is an axiom which identifies
f with t using the meta-equality of the form f x1 . . . xn == t [x1, . . . , xn], such
that the types of terms on lhs and rhs are equal, x1 . . . xn are distinct, all type
variables which occur on rhs also occur on lhs, and the constant f does not
occur on rhs. Since Isabelle’s framework ensures that a constant cannot be
defined more than once (polymorphic constants can be defined more than once
but for different type instances), definitions are always conservative extensions,
i.e., do not affect the consistency of a theory. This also allows morphisms to
treat definitions in a special way.

Logical and derived constants. We will also distinguish between logical
and derived constants in a signature. A constant f in the signature of a theory
is derived if in some ancestor of the theory there exists a definition of f . A
constant is logical if it is not derived, i.e., without a definition in some ancestor.

4

Chapter 2

Morphisms

2.1 Introduction

This chapter describes the syntax and the functionality of the AWE Extension
Package commands dealing with morphisms. In order to describe the function-
ality we will also cover the basic foundations of theory and signature morphisms.
We will try to explain most situations by example, so that this document can
be seen as both a reference manual and a tutorial. A brief and more formal
introduction to theory and signature morphisms including advanced examples
can be found in [8].
Furthermore, we use a modelling of computational monads in Isabelle/HOL as
a running example.

MonadOpEta MonadOpBind

MonadType

Main

MonadOps

MonadAxms

Monad

Figure 2.1: Structure of the theories modelling monads.

The monad example is organised hierarchically as shown in Figure 2.1 (where
T1 ↪→ T2 means that the theory T2 imports T1), and comprises six theories
(Main refers to the Isabelle/HOL main theory), starting with MonadType which
contains only the type declaration
typedecl ’a M

The theories MonadOpEta and MonadOpBind contain the declaration of the two
monad operations separately, and MonadOps is their union:

5

consts eta :: " ’a ⇒ ’a M "
consts bind :: " ’a M ⇒ (’a ⇒ ’b M) ⇒ ’b M " (infixl "»=" 5)

Finally, MonadAxms introduces the properties of the monad operations by the
following four axioms:
axioms
mon lunit: "(eta x »= t) = t x"
mon runit: "(t »= eta) = t"
mon assoc: "(s »= t »= u) = (s »= (λx. t x »= u))"
mon eta inj: "eta x = eta y =⇒ x = y"

The theory Monad contains derived constants and propositions. Furthermore, it
provides the powerful concrete syntax for monads: for example for m »= t we
can also write { x<- m; t x } .
Now we start an example theory, and continue to build it up in the following:
theory Example
imports "$AWE HOME/Extensions/AWE HOL"
begin
Notice, that importing the theory AWE HOL, we also import the main HOL-theory
Main.

2.2 Constructing a Signature Morphism

A signature morphism relates the signatures of two Isabelle theories, the source
and the target. Any signature morphism will give us a mapping from terms over
its source into terms over its target signature. This will be described later in
Section 2.3.
Given a signature morphism, the common ancestors of source and target will
be called global, while the ancestors of the source (target) which are not the an-
cestors of the target (source) will be called domain (codomain) of the signature
morphism. Classes, type constructors, and constants from global theories we
will also call global.

2.2.1 Syntax and functionalty

The command sigmorph constructs a new signature morphism, and has the
syntax given by the following diagrams:

sigmorph

sigmorph
�� �
id �

�
� 1

sigmorph-declaration�
�2

composition

�

6

sigmorph-declaration

:
���
 id�

�string

�

-->
�� �
�

�\<longrightarrow>
�� �

�

id�
�string

�

�

�

�sigmorph-mappings

sigmorph-mappings

class map:
�� �
mapping�

�
�

�

�

� type map:
�� �
mapping�

�
�

�

�

� op map:
�� �
mapping�

�
�

composition

by composition
�� �
id o

���
�
�\<circ>

�� �

�

id �

�

� renames:
�� �
renaming�

�
�

The first identifier in the rule sigmorph denotes the name σ of the signature
morphism to be constructed. Further, there are two possibilities for the con-
struction:

1. By specification of the source theory T1, target theory T2, and the par-
ticular maps. The syntax is given by the rule sigmorph-declaration. The
both identifiers (or strings) in the rule are interpreted as the source and
target theories, respectively. If the source or target theory has not been
loaded by Isabelle yet, the AWE Extensions call use thy with the given

7

identifier or quoted string to load it. Thus, strings can be used to refer to
theories by paths in the same way as with use thy or import commands.

The first mapping in the sigmorph-mappings rule declares a class map,
the second a type map, and the third an operation map. The order is
important: we will see that any type map has to respect the class map
declared before as well as any operation map has to respect the class
and type maps declared before. The rule mapping is given in Appendix
A: a mapping consists of a list of assignments (s 7→ t). The particular
interpretations of s and t in class, type and operation maps are described
in the following sections.

2. By composition of two existing signature morphisms with the syntax given
by the rule composition. Here, the first identifier refers to a signature
morphism σ2 : C −→ D, while the second identifier to σ1 : A −→ B.
The semantics of the composition of signature morphisms is described in
Section 2.4. The optional renaming allows to give explicit new names to
derived constants from the domain, which will be translated to the target
by the normalisation of σ2 (see Section 2.3). Example of renaming can be
found in Section 2.8.2.

Class map

For a class map declaration, both s and t are strings denoting Isabelle classes,
and the class assignment (s 7→ t) is correct if

1. s is a type class from the domain and t from some ancestor of the target
theory of the intended morphism.

2. s is not parametrised over some constants or axioms.

A class map is a list of class assignments and is correct if it contains only correct
assignments and assigns to any class in the domain exactly one class in the target
signature w.r.t. the subclass relation, i.e.,

• if t is assigned to s, s is a subclass of s ′, and t ′ is assigned to s ′ then t is
a subclass of t ′.

Any correct class map determines the mapping σclass : Σclass(T1) → Σclass(T2)
where any class from the domain is mapped according to the declaration, while
global classes are mapped by identity. By construction, σclass preserves the
source and target subclass relations.
Further, σclass induces the mapping σsort : Sorts(T1) → Sorts(T2) (called sort
map), which maps sorts of the source theory to sorts of the target theory re-
placing source classes according to σclass . In turn, σsort preserves the source
and target subsort relations.

Type map

For a type map, both s and t are strings denoting Isabelle types, and the type
assignment (s 7→ t) is correct if

8

1. s and t are Isabelle types over the source and over the target type signa-
tures of the intended morphism, respectively.

2. s is a type pattern, i.e., it consists only of a single type constructor applied
to a list of distinct type variables with the length equal to the rank of the
type constructor. That is, an assignment is of the form (α1, . . . , αn)C 7→
X , where C is a type constructor with the rank n.

3. Any type variable which occurs in t has to occur in s. For an assignment
(α1, . . . , αn) C 7→ X this means, that only the type variables α1, . . . , αn
may occur in X .

Further, any assignment (α1, . . . , αn) C 7→ X [α1, . . . , αn] has to respect the
arities of C :

4. Let σsort be the sort map induced by the class map defined before. Let
(S1, . . . ,Sn ,Sn+1) be an arity of C . ThenX [ω1, . . . , ωn] of-sortT2 σsort(Sn+1)
has to hold for all types ω1, . . . , ωn with ωi of-sortT2 σsort(Si),.

A type map is a list of type assignments and is correct if it contains only correct
assignments and for any type constructor from the domain there exists exactly
one type pattern to which the type map assigns a type from the target.
Any correct type map determines the mapping σtype : Σtype(T1) → Types(T2)
where any type constructor from the domain is mapped according to the dec-
laration, while global type constructors are mapped by identity. Further, σtype
induces the mapping σtype : Types(T1) → Types(T2) (called the extension of
type map), which maps types of the source theory to types of the target theory
replacing types according to σtype .
Let σsort : Sorts(T1)→ Sorts(T2) be the sort map from the previous step. Then
σtype preserves the source and target of-sort relations, i.e.,

ω of-sortT1 s
σtype(ω) of-sortT2 σsort(s)

holds.

Operation map

For an operation map, s and t are strings and will be interpreted as constants
in source and target signatures of the intended morphism, respectively. An
operation map is a list of operation assignments (s 7→ t), and is correct if
it assigns to any logical constant from the domain of the intended morphism
exactly one constant in the signature of its target w.r.t. the given type and
class maps: σtype(type-of T1(s)) has to be equal to type-of T2(t) up to a consistent
renaming of type variables. This property is called the operation map condition.
Let us explain this by a construction of an example signature morphism. As-
suming we have the theory
theory Thy
imports "$AWE HOME/Extensions/AWE" Nat
begin
typedecl ’a T

9

classes cls
arities T :: (cls) cls
consts f :: " (’b ::{cls}) ⇒ ’b T ⇒ ’b T "

then we can start to construct a signature morphism to list from Thy to the
HOL-theory List. Notice first, that we import the AWE Extensions here by the
theory AWE, not AWE HOL. The reason is that if we would take AWE HOL, we would
import all main HOL-theories including List itself, such that the target of to
list would be a proper ancestor of its source. In other words, we would then
try to construct a morphism with a non-empty domain and empty codomain,
which is possible only for some artificial constructions. In contrast, importing
the theory AWE instead, we only import the most basic Isabelle theory Pure
together with the AWE Extensions. Additionaly, we also explicitly import Nat,
but we could also take any other HOL-theory which is a proper ancestor of List.
So, since Thy has only two parent theories, namely Nat and AWE, the domain of
to list consists of the theories Thy and AWE. Notice, that both AWE and AWE HOL
are empty theories and are only used to load the AWE Extensions, such that
they do not play any role for class, type and operation maps.
First, we define class and type maps for to list as follows:
sigmorph to list : Thy −→ List
class map: [("Thy.cls" 7→ "HOL.type")]
type map: [("’a T" 7→ "’a list")]

Let us check that the maps above are correct. The only class in the domain of
to list is cls, which does not have any subclass or superclass. Thus, the class
map above is correct, since HOL.type is a class in the signature of List. If cls
would have, e.g., a super class cls’, then cls’ could be mapped by the class
map only to a super class of HOL.type, which can be only HOL.type itself, since
it has no proper super classes by construction.
So, the derived sort map σsort replaces Thy.cls by HOL.type in any sort over
the class signature of Thy. Next, there are two arities for the type construc-
tor T : the HOL-default ({HOL.type}, {HOL.type}), and the explicitly declared
({Thy.cls}, {Thy.cls}). Let ω be an arbitrary type of sort σsort({Thy.cls}),
i.e., {HOL.type}. Then, by the default arity for the type constructor list we
can derive (ω list) of-sortσ sort({Thy.cls}). Thus, the type map respects the
arities of the type constructor T, and, since there are no other type constructors
in Thy, is correct.
Now we can consider the actual question: the operation map. This is nessesary,
since we still have to map the logical constant Thy.f to some constant in the
target signature correctly w.r.t. to the previous maps. To be precise, we are
looking for a constant in the signature of the theory List having the type (’b
::{HOL.type}) ⇒ ’b list ⇒ ’b list, since this type we would obtain replacing
cls by HOL.type and T by list in the type of Thy.f. The list constructor
List.list.Cons is such constant, since its declared type is (’a ::{HOL.type})
⇒ ’a list ⇒ ’a list – the same type up to the bijective renaming ’a 7→ ’b
of the occuring type variables.
So, we can complete the declaration of a signature morphism by
sigmorph to list : Thy −→ List
class map: [("Thy.cls" 7→ "HOL.type")]
type map: [("’a T" 7→ "’a list")]

10

op map: [("Thy.f" 7→ "List.list.Cons")]

Altogether, what we have done here manually, the AWE Extensions will be able
to derive for us. On the input
sigmorph to list : Thy −→ List
class map: [("Thy.cls" 7→ "HOL.type")]
type map: [("’a T" 7→ "’a list")]

it will try to find an assignment for Thy.f automatically, searching among all
constants in the target signature for those, satisfying the operation map condi-
tion. Generally, there are following cases:

1. For some logical constants in the domain, more than one correct assign-
ment exist. In this case the signature morphism construction would fail
with a message displaying all possibilities for all such constants. Then the
user has to choose one assignment for any of them and put it into the
operation map. In other words, the operation map has to contain enough
information to disambiguate the assignments derived automatically.

2. For all logical constants in the domain, exactly one correct assignment
exists. In this case the signature morphism will be constructed.

3. For some logical constants in the domain no appropriate assignments exist
The signature morphism construction will fail with the message showing
this constants. To repair this one can modify their types, extend the
codomain, or remove them from the domain (if possible).

In particular, on our input we will obtain the first case as the search re-
sult – there is at least the remove operation on lists having the same type
as List.list.Cons. This means that we have to choose one assignment, e.g.,
("Thy.f" 7→ "List.list.Cons"), and put it back into the operation map. This
constructs the signature morphism to list as above.

Example

In the monad example we can construct a signature morphism with the source
theory MonadOpEta and the target theory Example as follows:
sigmorph s : MonadOpEta −→ Example
type map: [("’a MonadType.M" 7→ "’a Datatype.option")]

Since MonadOpEta.eta is of type "’a ⇒ ’a M", we are looking in the signature
of Example for an operation having the type "’a ⇒ ’a option". In our case
Datatype.option.Some (which is actually a constructor of the datatype option) is
even the unique operation with this type. Thus, we do not need to disambiguate
— the assignment will be derived automatically:
Found: ("MonadOpEta.eta" 7→ "Datatype.option.Some")
Signature morphism s : MonadOpEta −→ Example constructed.

2.3 Homomorphic Extension and Normalisation
of Signature Morphisms

Let σ : T1 −→ T2 be a signature morphism, and Σder ⊆ Σop(T1) the set
of derived constants from the domain of σ. Since the operation map of σ

11

does not contain assignments for f ∈ Σder , it determines the mapping σop :
Σop(T1)\Σder → Σop(T2) where any logical constant from the domain is mapped
according to the declaration, while global constants are mapped by identity.
Then, the operation map condition holds for σop :

1. on the logical constants in the domain by construction, and

2. on the global constants, since σtype is an identity mapping for global types.

Thus, σ gives a mapping σ : Terms(T1|Σder
) → Terms(T2) where sorts, types

and constants are replaced according to the σsort , σtype and σop mappings.
The correctness conditions on these maps assure that all type classes, type
constructors and constants of the source signature are indeed substituted, and
that the resulting translated term is well-typed in the target theory, i.e.

t :: ω
σ(t) :: σtype(ω)

holds for any t ∈ Terms(T1|Σder
) and ω ∈ Types(T1). σ is called the homomor-

phic extension of the signature morphism σ.
By construction, we have that any global element w.r.t. a signature morphism σ
is mapped by the particular map to itself. Thus, σ(t) = t for any t ∈ Terms(T),
where T is a global theory.
Furthermore, homomorphic extensions provide the following relation on terms:
let σ be a signature morphism, s and t terms over its source and target signa-
tures, respectively; we say that t is a σ-instance of s if t is equal to σ(s) up to
a consistent renaming of variables (in other words: t and σ(s) are α-convertible
terms).
It holds, that σ(t) is a σ-instance of t , for any term t over the source signature.
In particular, for any t ∈ Terms(T), where T is a global theory, we can conclude
that t is a σ-instance of itself.
Provided by σ, the signature morphism σ can be canonicaly extended to the
signature morphism σ↓ : T1 −→ T ′2 with the operation map σ↓op : Σop(T1) →
Σop(T ′2) where T ′2 is a theory which extends T2 by the translated derived con-
stants from Σder , preserving consistency of T2. The signature morphism σ↓ is
called the normal form of σ and the extension procedure is called normalisation.

2.4 Composition of Signature Morphisms

Let σ1 : A −→ B and σ2 : C −→ D be signature morphisms. If B is an
ancestor of C, then the signature morphism (σ2 ◦ σ1) : A −→ D′ is well-defined
by the componentwise composition of the particular maps of σ1 and σ2↓. The
normalisation of σ2 is required, since the operation map of σ1 can assign to
logical constants from Σop(A) derived constants from Σop(B). Therefore the
theory D will be (possibly) extended to D′.

12

2.5 Constructing a Theory Morphism

2.5.1 Foundations

Theory morphisms extend the notion of a signature morphism to axioms and
theorems. As mentioned in the previous section, the homomorphic extension of
a signature morphism maps terms from its source to terms in its target. Since
axioms and theorems are terms of the type prop, we can also consider their
images under a homomorphic extension, which are propositions as well.
Next, we sketch how signature morphisms with an additional map provide the-
orem translation. This will motivate introduction of theory morphisms. As
mentioned in Chapter 1, theorems are derived propositions. Such derivations
(or just proofs) are formalised in Isabelle by proof terms (see, e.g., [5]). Roughly,
proof terms are trees having axioms as leafs.
Let σ be a signature morphism and ησ a map assigning to any axiom in the
domain some σ-instance of it. We will call such ησ an axiom map, and define it
for global axioms as identity map, which is well-defined according to Section 2.3.
Further, let P be a derived proposition in the domain, and π the proof term
of P . We obtain the proof term π′ in the target replacing all axioms occuring
in π according to ησ. The correctness of the homomorphic extension σ assures
that Isabelle’s meta-logical kernel can derive from the proof π′ a proposition P ′,
which is in turn a σ-instance of P . Notice the constructivity of the approach:
translated theorems are derived in the target, i.e., any theorem translated this
way is indeed provable in the target theory (as P ′ by π′ above)
So, this approach justifies our definition of theory morphisms: a theory mor-
phism τ is a pair 〈σ, ησ〉, i.e., a signature morphism σ equipped with an axiom
map.
In the sequel, domain, codomain, and global theories of a theory morphism
τ = 〈σ, ησ〉 are the same as for its underlying signature morphism σ, and τ -
instance means σ-instance.
The normalisation of a theory morphism τ = 〈σ, ησ〉 is defined by: τ↓def= 〈σ↓, ησ〉.

2.5.2 Syntax and functionality

The syntax of the thymorph command is given by the following diagram, which
refers to the rule sigmorph-declaration defined in Section 2.2.1.

13

thymorph

thymorph
�� �
id �

�
� 1

by sigmorph
�� �
id axiom map:

�� �
mapping�
�

�

�
�2

sigmorph-declaration axiom map:
�� �
mapping�

�
�

�3
composition

�

The first identifier is the name t of the theory morphism to be constructed. As
shown in the diagram, there are three ways to construct a theory morphism:

1. By giving an identifier referring to an existing signature morphism and an
optional axiom map.

2. By giving source, target, class, type, operation, and an additional optional
axiom map. This possibility is actually a composed one. Internally it
consists of two steps: constructing an ’intermediate’ signature morphism
from the given arguments and then doing the same as in 1. Notice that
this intermediate signature morphism will be anonymous, i.e., we cannot
refer to it by an identifier.

3. By composition of two existing theory morphisms with the syntax given
by the rule composition in Section 2.2.1. Here, the first identifier refers
to a theory morphism τ2 : C −→ D, while the second identifier to τ1 :
A −→ B. The semantics of the theory morphism composition is described
in Section 2.7. The optional renaming allows to give explicit new names to
derived constants from the domain, which will be translated to the target
by the normalisation of τ2 (see Section 2.3) as well as to theorems from the
domain which will be translated by composition of axiom maps. Example
of renaming can be found in Section 2.8.2.

Axiom map

An axiom map has the same syntax as an operation map: it consists of a list
of assignments (s 7→ t), where s and t are strings. According to 2.5.1, for an
axiom map such an assignment is correct if the by t denoted proposition is a
σ-instance of the proposition denoted by s, where σ is the underlying signature
morphism.
An axiom map is correct if it contains only correct assignments and maps all
axioms from the domain of the intended theory morphism.
Just as in the case of the operation map, the AWE Extension Package will
automatically try to derive a suitable assignment for any axiom from the domain

14

searching among all propositions in the codomain. Since ambiguity does not
matter in this case, the search may result in:

1. For all axioms from the domain an assignment was found. In this case, a
theory morphism will be constructed.

2. For some axioms in the domain no suitable proposition in the codomain
could be found. In this case an explicit axiom map may help. Since only
propositions from the codomain are searched, suitable global propositions
may exist but will not be found automatically. These have to be either

• assigned explicitly by the axiom map, or

• made explicit in the codomain using, for instance, the Isabelle com-
mand lemmas,

otherwise the theory morphism construction will fail.

Example

We can extend the signature morphism s from Section 2.2 to a theory morphism
t by a declaration as follows:
thymorph t by sigmorph s

In this case there are no axioms at all in the domain of t.
Without referring to the signature morphism s, we can also write
thymorph t : MonadOpEta −→ Example
type map: [("’c MonadType.M" 7→ "’c Datatype.option")]

with the response:
Found: ("MonadOpEta.eta" 7→ "Datatype.option.Some")
Theory morphism t : MonadOpEta −→ Example constructed.

The situation is shown in Figure 2.2.

Figure 2.2: Theory morphism from MonadOpEta to Example constructed

15

2.6 translate thm: Theorem Translation

Section 2.5.1 motivated theory morphisms by a basic procedure for translation
of derived propositions by proof transformation. The AWE command translate
thm implements this procedure, but takes also dependencies between theorems
additionaly into account. A theorem P depends on a theorem Q if Q is used in
the proof of P .
Let us consider the situation when some theorems P1 and P2 depend on some
theorem Q . Ignoring this dependencies, when moving P1 and then P2 along
a theory morphism, we would transform the proof of Q twice. The procedure
implemented by translate thm avoids this: it moves first all theorems on which
P1 depends (and Q in particular) along the given theory morphism τ , adding
their resulting propositions to the target theory of τ . Then, moving P2 along τ ,
it can just retrieve the required τ -instance of Q from the target.

Syntax and functionality

The translate thm command has the following syntax:

translate thm

translate thm
�� �
string as

�� �
id�
�

�

along
�� �
id

string is interpreted as the name of the theorem to be translated and has to be
fully qualified. Using the first id one can give an explicit name to the translated
proposition. In the case this option is not used, the translated proposition
will get the name of the original one as long as it is not already used in the
target theory. Otherwise the AWE Extension Package will generate a name
automatically. The second id has to refer to an existing theory morphism.
There is a possibility to skip the internal translation of proofs by
ML "set AWE.skip proofs"

which will have the same effect as constructing theories in Isar in quick and
dirty -mode. This, however, on the one hand will make translate thm work
much more faster, but on the other hand violates the constructivity of theorem
translation. Furthermore, it may cause problems later, since all such translated
theorems have no proofs, and hence lose their dependencies.

2.7 Composition of Theory Morphisms

Let τ1 : A −→ B and τ2 : C −→ D be theory morphisms. If B is an ancestor of
C, then the theory morphism (τ2 ◦ τ1) : A −→ D′′ is well-defined as follows:

1. The signature morphism of (τ2 ◦ τ1) is the composition of the underly-
ing signature morphisms, which normalises τ2 and (possibly) extends the
theory D to the theory D′.

2. The axiom map of (τ2 ◦τ1) is the composition of the axiom maps of τ1 and
τ2, which can require theorem translation by τ2↓, since the axiom map of

16

τ1 can assign derived propositions in B to axioms in its domain. This step
(possibly) extends the theory D′ to the theory D′′.

2.8 Parametrised Theories and Instantiation

2.8.1 Foundations

If a theory T is an ancestor of a theory T ′, i.e., T ′ extends T , then there is a
unique theory morphism i : T ↪→ T ′, the inclusion. Its class, type, operation
and axiom maps are identities. Since inclusions are determined by the hierarchy
of theories there is no need to declare them explicitly, unless one wants to give
an explicit name to one of them in order to use it as an argument later.
A parametrised theory consists of a tuple of theories 〈P,B〉 such that P is an
ancestor of B, which gives the inclusion morphism i : P ↪→ B. Theory P is
called the parameter part and B the body part of 〈P,B〉.
The instantiation of a parametrised theory is sketched by the following diagram,
where dotted arrows are results of instantiation:

P
τ - T

B

i

?

∩

.............................
τ ′

- T ′

i ′

?

∩............... (2.1)

The theory morphism τ maps all type classes, type constructors, constants and
axioms from its domain to type classes, types, constants and propositions in the
ancestors of the instantiating theory T , respectively. Further, since B extends
P, we can stepwise construct a similar extension T ′ of T , and at the same time
extend class, type, operation and axiom maps of τ to obtain τ ′. In order to do
this we need to find a correct assignment for any type class, type constructor,
logical constant, and axiom occuring in the domain of τ ′ : B −→ T ′. To keep
things simple, we will describe the construction for the case when B imports only
one theory, namely P, such that the domain of τ ′ is the same as the domain of
τ plus theory B.
First, it is possible to give an assignment for classes, logical types, logical con-
stants, and axioms of B explicitly during instantiation, which would actually
correspond to considering the particular element as a part of the parameter
theory P, such that the particular map of t can be seen as extended by the
given assignment. We will call such elements explicitly instantiated. The func-
tionality of explicit instantiations is thus the same as for the particular maps
for the construction of morphisms described in 2.2.1 and 2.5.2.
Then, the theory morphism τ ′ and the theory T ′ will be constructed as follows:

1. For any type class c introduced in B, which is not already explicitly in-
stantiated, we add the corresponding type class T .c to the class signature

17

of T . Of course, if there exists a super class c′ of c in B then it will be
translated (if required) to T first, such that we can declare T .c to be a
subclass of T .c′ in T in order to keep our class map consistent.
Notice also, that if c is a type class, which is parametrised by operations
or/and axioms (axiomatic type class), then it cannot be explicitly instan-
tiated because of the class map restrictions described in Section 2.2.1.
Nevertheless, for such a type class c the corresponding parametrised type
class T .c will be introduced.
This step gives us the class map for τ ′ and the theory T0 extending T .
The class map extends to the sort map σsort : Sorts(B)→ Sorts(T0).

2. For any type constructor B.C introduced in B we add the type constructor
T .C with the same rank and arities, mapped by the sort map from the
previous step, to the type signature of T , and extend the type map of
τ by (α1, . . . , αiB.C)B.C 7→ (α1, . . . , αiB.C)T .C , unless B.C is explicitly
instantiated.
This step gives us the type map for τ ′ and the theory T1 extending T0.
The type map extends to σtype : Types(B)→ Types(T1).

3. For any logical constant B.f introduced in B we add a logical constant T .f
with the type σtype(type-of B(f)), satisfying the operation map condition,
to the operation signature of T , and extend the operation map of τ by
B.f 7→ T .f , unless B.f is explicitly instantiated. This step gives us the
operation map for τ ′ and the theory T2 extending T1. Altogether, we
already obtain a signature morphism σ : B −→ T2.

4. For any axiom B.A introduced in B we can

• either match B.A, i.e., can find a σ-instance A′ of B.A searching only
in the codomain, such that we can extend the axiom map of τ by
B.A 7→ A′, or
• insert (unless B.A is explicitly instantiated) an axiom T .A into T2,

which is the image of B.A under σ, such that we can correctly extend
the axiom map of τ by B.A 7→ T .A.

This step gives us an extension of the axiom map of τ and the theory T ′
extending T2. This axiom map together with σ yield the resulting theory
morphism τ ′.

There are the following important caveats:

• T has to be the currently developed theory. So, T ↪→ T0 ↪→ T1 ↪→ T2 ↪→ T ′
denote the development steps of the same theory.

• Since classes, type constructors, constants and axioms can be moved from
B to T by instantiation, the problem can occur that an element with the
same name already exists within the theory T . For example, if a type
constructor C is added to a theory where a type constructor C has been
already declared then Isabelle throws an exception. The problem can be
avoided using explicit renaming: add a renaming B.C 7→ X , where X is
a name which does not occur in the theory T . The same can be done for
classes, constants and axioms.

18

Proper and axiomatic instantiations

Since the fourth step of instantiation may introduce new axioms, it is unsafe in
the sense that the theory T can become inconsistent during such instantiation.
This leads to the notion of proper instantiation. A proper (or non-axiomatic)
instantiation would skip the insertion in the third step above and result in a
theory morphism if all axioms in B have been matched by theorems or axioms
in T . Otherwise, it results only in the signature morphism σ, constructed in
the third step, together with the set of σ-instances of unmatched axioms from
B, also called proof obligations. For a given signature morphism these can also
be displayed with the command thymorph goals, described in Section 2.8.3.
Proper instantiation is a conservative extension. In contrast, an axiomatic in-
stantiation uses the insertion step for axioms, i.e., it may extend the instantiat-
ing theory non-conservatively by axioms.
The command instantiate theory implements both proper and axiomatic in-
stantiations.

2.8.2 instantiate theory

Syntax and functionality

The syntax of the command instantiate theory is shown in Figure 2.3. It uses
the rule sigmorph-mappings introduced in Section 2.2.1. Referring again to
Diagram 2.1, the first identifier (or string) corresponds to the theory B and the
second to the theory morphism τ . Quoted strings are used here in the same way
as for construction of morphisms (see 2.2.1), i.e., in order to refer to a theory
by a path.
The options of instantiate theory comprise:

1. Optional class, type and operation maps (see 2.2.1), which will be inter-
preted as explicit instantiations of classes, type constructors and logical
constants declared in the domain of τ ′, respectively.

2. An optional axiom map (see 2.5.2), which will be interpreted as explicit
instantiations for unmatched axioms in the domain of τ ′ in any axiomatic
instantiation.

3. A renaming map (see the rule for renaming in Appendix A), which allows
users to change the names of classes, type constructors, constants and
axioms as well as the mixfix syntax ot type constructors and constants to
be inserted into the theory T .

4. If the keyword axiomatic is used then the instantiation will extend the
theory T by all unmatched axioms from the domain of t , which are not
explicitly instantiated, as described in the previous section.

5. Furthermore, instantiate theory will extend T by concrete syntax1 de-
clared in the domain theories of τ ′, unless the keyword without syntax is

1These comprise concrete theory syntax built with the following Isar commands: nonter-
minals, syntax, translations, parse translation, print translation, parse ast
translation, print ast translation, token translation.

19

instantiate theory

instantiate theory
�� �
 id�

�string

�

by thymorph
�� �
id �

�
�options

options

1
sigmorph-mappings �

�
� 2

axiom map:
�� �
mapping�

�
�

�

�

� 3
renames:

�� �
renaming�
�

�

�

�

� 4
axiomatic

�� �
�
�

�

�

�

� 5
without syntax

�� �
�
�

�

Figure 2.3: Syntax of instantiate theory

20

used. Apart from that, abbreviations (command abbreviation) are also
supported if they have the form as presented in [3].

Example

In our monad example we have the theory morphism t : MonadOpEta −→ Example
and further the implicit inclusion i : MonadOpEta ↪→ MonadOps. This gives us a
parametrised theory with parameter MonadOpEta and body MonadOps, which we
will now instantiate by t. The input
instantiate theory MonadOps by thymorph t

would yield the following response:
... adding logical constant
Example.bind :: "’a option ⇒ (’a ~⇒ ’b) ~⇒ ’b" (infixl "»=" 5)

Theory morphism t’ : MonadOps −→ Example constructed.

where ’a ~⇒ ’b is the Isabelle/HOL’s notation for a partial map, equivalent
to ’a ⇒ ’b option. Notice, that in this case our proper instantiation already
results in a theory morphism, since there are no axioms at all in MonadOps.
We obtain the extended theory Example which contains the logical constant
bind with the same infix annotation as MonadOpBind.bind (which is crucial for
the concrete monad syntax) and the theory morphism t’ the operation map of
which contains the assignment MonadOpBind.bind 7→ Example.bind.
Alternatively, we could also make a similar instantiation involving the renaming
together with a re-definition of the mixfix notation:
instantiate theory MonadOps by thymorph t
renames: [("MonadOpBind.bind" 7→ "option bind"

mixfix: (" »=*\ " [5, 6] 5))]

which yields the response:
... adding logical constant
Example.option bind :: "’a option ⇒ (’a ~⇒ ’b) ~⇒ ’b"

(" »=*\ " [5, 6] 5)
Theory morphism t’ : MonadOps −→ Example constructed.

Such an instantiation can be helpful when several monad instances occur in a
theory, because we can use the concrete monad syntax only with one of them.
Only this one will keep the "»=" -annotation.
As another alternative of the instantiation of MonadOps, let us also demonstrate
an explicit instantiation of the logical constant MonadOpBind.bind. First, we
introduce in the theory Example the constant:
consts
option bind :: "’a option ⇒ (’a ~⇒ ’b) ~⇒ ’b" (" »=\ " [5, 6] 5)

Now, we can instantiate:
instantiate theory MonadOps by thymorph t
op map: [("MonadOpBind.bind" 7→ "Example.option bind")]

with the response:
... logical constant MonadOpBind.bind explicitly instantiated
Theory morphism t’ : MonadOps −→ Example constructed.

Of course, for this small example this instantiation is not very useful: we do
here something manually what the AWE Extention Package can do for us, as

21

the first instantiation above shows.
Altogether, we obtain the situation shown in Figure 2.4.

Figure 2.4: Instantiation of MonadOps by t results in theory morphism t’

Now let us consider the theory MonadAxms. The instantiation
instantiate theory MonadAxms by thymorph t’ axiomatic
would insert corresponding t’ -instance for each monad axiom as an axiom into
the theory Example and construct the theory morphism t” : MonadAxms −→
Example. This would axiomatically state that the datatype option is a monad.
Here, we can actually prove the monadic properties for option together with
a suitable definition of the Example.bind operation, obtained in the previous
instantiation. So, we choose this possibility and define:
primrec
"(None »= f) = None"
"((Some x) »= f) = f x"

Now we can try a proper instantiation:
instantiate theory MonadAxms by thymorph t’

This yields the following response:
Instantiating theory MonadAxms by theory morphism
t’ : MonadOps −→ Example ...

Axiom mapping found: ("MonadAxms.mon lunit" 7→ "Example.bind.simps 2")
Lemma MonadAxms mon eta inj : "Some x = Some y =⇒ x = y" proven.

Signature morphism t” : MonadAxms −→ Example constructed.

To prove:
lemma mon assoc: "(s »= t »= u) = (s »= (λx. t x »= u))"
lemma mon runit: "(t »= Some) = t"

The lemma Example.bind.simps 2 was automatically derived for the recursive
definition of bind, and is actually its second defining equation: "((Some x) »= f)

22

= f x". But this proposition is a t’ -instance of the monadic left unit property
MonadAxms.mon lunit. This explains the first detected axiom mapping.
Further, the axiom MonadAxms.mon eta inj would produce the proof obliga-
tion "Some x = Some y =⇒ x = y", since no such proposition has been explicitly
proven in Example yet. But since it claims the injectivity for the constructor
Some, which is a basic property of any constructor, the automatical reasoner
of Isabelle was able to prove it, while the AWE Extension Package has as-
signed the generated name MonadAxms mon eta inj to the resulting lemma. Al-
together, this yields the second axiom mapping ("MonadAxms.mon eta inj" 7→
"Example.MonadAxms mon eta inj").
Generally, any proof obligation will be delegated to Isabelle’s automatical rea-
soner by the AWE Extensions in the following way. First, the tactic depth
tac, which provides an exhaustive proof search up to the given depth (see [2]),
is applied. The default AWE-value for the depth is 2. In order to change this,
users can write:
ML "AWE.proof search depth := N"

where N denotes the new depth.
However, the depth tac does not involve the Isabelle’s simplifier sets. So, if the
depth tac fails, the proof obligation will be delegated to the Isabelle’s simp
tac, by default. This tactic is more powerful, but can lead to non-termination
in some cases. To get rid of simp tac, users can reset an AWE flag by:
ML "reset AWE.proof search with simp"

In particular, the proof obligations generated by the axioms MonadAxms.mon
assoc and MonadAxms.mon runit have been also delegated to the Isabelle’s rea-
soner, but the both tactics have failed to prove them.
The current situation in our example is shown in Figure 2.5.

Figure 2.5: Proper instantiation of MonadAxms by t’

So, our remaining proof obligations are: mon assoc and mon runit, which are
already displayed in the translated form, i.e., we can just copy and paste them
into Example and start to prove them. Done so, we write

23

thymorph t by sigmorph t”

which constructs the theory morphism t from MonadAxms into Example. Note
that we give to the last theory morphism the same name as for the first theory
morphism constructed in Section 2.5, so we cannot refer to that morphism any
more.
Finally, we instantiate the theory Monad by:
instantiate theory Monad by thymorph t

which yields a theory morphism t’ : Monad −→ Example.
Now we are able to get a t’ -instance of any theorem proved for monads as a
theorem for option by:
translate thm "Monad.<some monad theorem>" as <new name> along t’

Let us consider for example the well-known monadic map operation mapF, which
can be defined in the theory Monad as follows:
constdefs
mapF :: "(’a ⇒ ’b) ⇒ ’a M ⇒ ’b M"
"mapF f m == ({a<-m; eta (f a)})"

In the same theory the property
lemma mapF1 : "(mapF f) ◦ eta = eta ◦ f"

is proven. The theory morphism t’ allows us to reuse this property by writing
in Example, e.g.,
translate thm "Monad.mapF1" along t’

This results in the derivation of the proposition
mapF1 : "(Example.mapF f) ◦ Some = Some ◦ f"

in the theory Example. The qualified name Example.mapF should just empha-
size, that the translated proposition refers to the automatically from Monad into
Example translated derived constant Monad.mapF. So, the operation Example.mapF
is, as expected, of type "(’a ⇒ ’b) ⇒ ’a option ⇒ ’b option" with the defin-
ing equation "mapF f m == ({a<-m; Some (f a)})".

Instantiation of Isabelle/HOL structures

Isabelle provides very useful tools for its different object logics. Since Isa-
belle/HOL is the most frequently used object logic. there is a number of tools
developed for it. Datatypes (datatype) and extensible records (record) are such
tools. Both are based on the general type definition concept for simply typed
higher order logics (typedef).
These three HOL-tools are supported by the AWE Extension Package in the
following sense. If a datatype (record, typedef) is declared in the body of a
parametrisation then the corresponding instantiated datatype (record, typedef)
will be generated by Isabelle in any instantiating theory. This, for example,
has the advantage that the instantiation does not need to be axiomatic, since
the underlying typedef -axiom will be generated as well. Furthermore, such
instantiated datatype (record) has all its ‘infrastructure’ (i.e., induction, cases,
simplifiers, etc.) available in the instantiating theory.
The following paragraphs describe more details (including restrictions) of the
instantiation of type definitions, datatypes and records.

24

! Notice, that since type definitions, datatypes and records are Isabelle/HOL
tools, the theory AWE HOL has to be loaded in order to use the instantiation
mechanism (see also Chapter 3 for technical details).

Type definitions. A type definition has the following form (see [3])
typedef (’a1, ’a2, ...,’aN) T = S

where S is a predicate depending only on the type variables ’a1, ’a2, ...,’aN.
Such a declaration requires a non-emptyness proof for S , and then introduces
the type constructor T with the rank N together with two functions Abs T and
Rep T.
Further, let t : P −→ I be a theory morphism, and let B be a theory con-
taining the type definition above and having P as the parent theory. Then the
instantiation
instantiate theory B by thymorph t
renames: [(B.T 7→ T’)]

introduces the corresponding type definition T’ in the instantiating theory I, if
the following restrictions are satisfied:

1. the term S does not use derived constants which have been introduced in
some ancestor theory of B which is not an ancestor of P ; in this special
case, when P is the single parent theory of B, this means that the term S
can use any definition from any ancestor of P, but no definitions from B ;

2. the non-emptyness proof can only use global axioms/theorems, i.e. which
have been introduced/proven in the common ancestors of B and I.

Altenatively, loading AWE instead of AWE HOL, these restrictions can be avoided,
because in this case no type definitions will be generated in I, but the involved
type constructors, constants, etc. will be merely translated separately to I. On
the other hand, this means that the instantiation now has to be axiomatic, e.g.
instantiate theory B by thymorph t
renames: [(B.T 7→ T’)]
axiomatic
because of the type definition axiom for T in the theory B. It is a well-known fact
that this axiom is a conservative extension to the theory, such that inserting it
into the instantiating theory I can be seen as a proper instantiation. Hence,
a good strategy in this case is to have type definitions in separated theories in
order to ensure that no axioms beside typedef -axioms will be inserted.

Datatypes. Let us demonstrate the instantiation of datatypes by a small
example. Consider the theory B, parametrised over two type constructors T1
and T2 :
theory P imports Main begin
typedecl T1
typedecl T2
end
theory B imports P begin
datatype T = C1 T1 T

| C2 T1

25

end
We could instantiate it as follows:
theory I imports Main begin
thymorph t : P −→ I
type map: [("T1" 7→ "nat"),

("T2" 7→ "nat")]
instantiate theory B by thymorph t

In this situation instantiate theory will recognise that there is a datatype struc-
ture in the theory B and try to instantiate it also as a datatype in the theory I,
i.e., the instantiation will have the same effect as the declaration:
datatype T = C1 nat T

| C2 nat

But such datatype instantiation can also fail in some cases. Consider an alter-
native body theory:
theory B imports P begin
datatype T = C1 T1 T2 T

| C2 T1
end
where we also use the second type parameter in the datatype. Now the same
instantiation will fail, although one could think it should just yield the datatype
I.T :
datatype T = C1 nat nat T

| C2 nat

in the theory I. The problem is that the datatype package has to distinguish
between T1 and T2 in B, while in I this two types coincide. So the datatype
package generates in I an internal representation for the datatype I.T, which
structurally differs a little from the representation of B.T.
Altogether, the essence is: one has to be very careful with the instantiation
of theories parametrised over more than one type constructor, since these can
coincide later by a non-injective instantiation.
But in lot of cases there is a way to treat such problematic parametrisations.
Consider another alternative body theory:
theory B imports P begin
datatype T = C1 "T1 * T2" T

| C2 T1
end
where we now uncurry the constructor C1 for our two type parameters and
obtain essentially the same (isomorphic) datatype. But now the instantiation
will succeed, because in this case the datatype package will generate structurally
the same representation for I.T for any instantiation of T1 and T2.
Finally, consider this quite artifical case where this method will not work:
datatype T = C1 T1

| C2 T2

The instantiation above for this datatype will also fail and we cannot represent
our type parameters as arguments of some binary type constructor.

Records. The instantiation of a parameterised theory containing records works
analogous to the instantiation of datatypes.

26

Skipping structure instantiations. Users are able to skip the instantiation
of datatypes by
ML "set AWE.skip datatypes"

and of records by
ML "set AWE.skip records"

Then, instantiation of a parametrised theory having datatypes or records in its
body theory is the same as with type definitions using AWE instead of AWE HOL,
described above.

2.8.3 thymorph goals

The command thymorph goals supports the extension of a given signature
morphism σ to a theory morphism. As mentioned already, such an extension
can lead to proof obligations: thymorph goals normalises σ, computes the
required proof obligations, and displays these. In other words, thymorph goals
gives an exact answer to the question: what is to prove in order to extend a
signature morphism to a theory morphism.

Syntax and functionality

The syntax of thymorph goals is the following:

thymorph goals

thymorph goals
�� �
id renames:

�� �
renaming�
�

�

�

�

� without syntax
�� �
�

�
�

where the identifier id has to denote an existing signature morphism σ : T1 −→
T2. By the normalisation we obtain σ↓: T1 −→ T ′2 which (possibly) extends the
target theory. The optional renaming map allows to give explicit names in T ′2
for derived constants translated by normalisation.
For σ↓, the proof obligations (if any) will be displayed that one can copy and
paste into the target theory text. Such as with a proper instantiation (Section
2.8.1) one has then to decide which of them to prove and which to assert as ax-
ioms. Done so, the signature morphism can be extended to a theory morphism
by:
thymorph <thymorph-id> by sigmorph id

Further, without syntax stops the concrete syntax from the source to be trans-
ferred (the same functionality as for instantiate theory) into the target, so that
goals will be displayed without it. This, of course, does not affect the semantics.

27

Notice also, that since thymorph goals may change the signature morphism σ
as well as its target theory, it has to stay in the theory text whereever it was
employed.

2.9 Control

Finally, we want to present the possibilities to control theory and signature
morphisms in Isar.

Overview. To get an overview of all already registered signature or theory
morphisms, users can employ the print sigmorphs or print thymorphs com-
mands, respectively.

Printing of morphisms. For any theory or signature morphism from those,
which are displayed by the print thymorphs or print sigmorphs commands,
users can get its detailed information including domain, codomain, as well as
the particular maps by the print thymorph <id> or print sigmorph <id>, re-
spectively.

Renaming of morphisms. As described in Section 2.8.2, instantiation de-
rives for a given theory morphism t its extension, which gets the identifier t’.
This could be a case, where a more meaningful name for the extended theory
morphism is desirable. In order to rename a theory or signature morphism, users
can employ the commands rename thymorph <id> to <new-id> or rename
sigmorph <id> to <new-id>, respectively.

28

Chapter 3

Installation and Usage

The AWE Extension Package is easy to install and use.
To make use of the AWE Extensions, Isabelle object logics need to be built with
full proof objects. If a logic like HOL has been built without full proofs, one
may need to recompile it with the option -p 2 (for details see [4]); if one sees a
message like "incomplete proof objects" when running our extensions, this
is sign of missing full proof objects.

3.1 Installation

First, unpack the sources; they unpack into a called directory awe-x.y, but this
can be renamed or moved arbitrarily. We will refer to this directory as AWE
home. It is recommended to create the environment variable AWE HOME by

export AWE_HOME = <path-to-AWE-home>

Change directory to the AWE home. Installation consists of a single

./configure

This will create two files:

1. <path-to-AWE-home>/Extensions/AWE.thy – this theory can be used to
load the extensions, independent of which object logic of Isabelle has been
loaded.

2. <path-to-AWE-home>/Extensions/AWE HOL.thy – this can be used only
in the context of Isabelle/HOL or another object logic extending it, e.g.,
HOLCF, because AWE HOL supports specific concepts of HOL like data-
types and records.

You can now load the extensions into Isabelle as described below.

3.2 Usage

To use the extensions, you must install them first (see 3.1 above).
If you are using Isabelle/HOL or some logic extending HOL, it is recommended
to import the theory AWE HOL at the latest in the theory which employs mor-
phisms, by saying, e.g.,
theory . . .

29

imports . . . "<path-to-AWE-home>/Extensions/AWE HOL" . . .
begin
or,
theory . . .
imports . . . "$AWE HOME/Extensions/AWE HOL" . . .
begin
if the environment variable AWE HOME is exported as described above in 3.1.
If you are using a different object logic or don’t want to import the HOL-theory
Main with AWE HOL, you can do the same as above, but importing AWE instead of
AWE HOL.

3.3 ProofGeneral

To integrate the extensions (in particular the new keywords) into ProofGeneral,
you must make it use the isar-keywords.el file in the directory

<path-to-AWE-home>/etc

for example by copying that to the directory etc in ISABELLE HOME (usually,
isabelle/etc in your home directory). Note that isar-keywords.el as given is
for use with Isabelle/HOL, but you can change that (see etc/README).

3.4 Restrictions

Further, there are the following important notes:

1. The package does not support the undo mechanism of the Isar-VM, in
the sense that undoing changes to a theory, made by the AWE Extension
Package commands, will not change existing theory and signature mor-
phisms. In lot of cases this will lead to exceptions. If some changes to
a theory are required then it is better also to construct affected theory
(signature) morphisms once more.

2. The package does not work well with Isabelle’s quick and dirty flag, i.e.,
if it is set then especially instantiation of datatypes (described in Section
2.8.2) can fail. One of the reasons is that the quick and dirty flag omits
the construction of proofs, and hence proof terms, and many of the func-
tionalities of the package depend on translating proof terms. ProofGeneral
users should check whether it starts Isabelle process in quick and dirty -
mode by default. However, the AWE package resets the flag automatically
but, of course, only if it is loaded, so that the situation can occur where
the theories loaded before are still in quick and dirty -mode.

30

Appendix A

Syntax Primitives

In the following we will use these conventions:

• the non-terminal symbol "string" denotes a quoted string

• the non-terminal symbol "id" denotes a string without quotes

• the non-terminal symbol "declaration" denotes a proper declaration of
Isabelle mixfix syntax

The basic syntactic primitive is mapping, which is actually a list of assignments.
The rules are shown in the following diagram:

mapping

[
���
 assignments�

�
�

]
���

assignments

assignment �
�assignment ,

���

�

assignment

(
���
string �

�string ,
���

�

|->
�� �
�

�\<mapsto>
�� �

�

string)
���

The examples involving mapping can be found in Section 2.2 and Section 2.5.
Another primitive is renaming which is also a list of assignments, but differ a
little bit from mapping in the rule for rename:

renaming

[
���
 assignments�

�
�

]
���

31

assignments

rename �
�rename ,

���

�

rename

(
���
string |->

�� �
�
�\<mapsto>

�� �

�

id �

�

� mixfix
�� �
:

���
(
���
declaration)

���
�
�

�

)
���

The example in Section 2.8.2 shows how renaming can be employed.

32

Bibliography

[1] Wenzel, Markus. 2009. The Isabelle/Isar Reference Manual

[2] Paulson, Lawrence C. 2009. The Isabelle Reference Manual

[3] Nipkow, Tobias, Paulson, Lawrence C., Wenzel, Markus.
2009. A Proof Assistant for Higher-Order Logic

[4] Wenzel, Markus and Berghofer, Stefan. 2009. The Isabelle
System Manual

[5] Berghofer, Stefan and Nipkow, Tobias. 2000. Proof terms for
simply typed higher order logic. In 13th Intl. Conf. on Theorem Proving
in Higher Order Logics (TPHOLs’00), Volume 1869 of Lecture Notes
in Computer Science. Springer, 38–52.

[6] Johnsen, Einar Broch, and Lüth, Christoph. Abstracting Re-
finements for Transformation. Nordic Journal of Computing 10:313–
336, 2003.

[7] Johnsen, Einar Broch, and Lüth, Christoph. Theorem Reuse
by Proof Term Transformation. In Proc. 17th Intl. Conf. on Theorem
Proving in Higher Order Logics (TPHOLs’04). Volume 3223 of Lecture
Notes in Computer Science. Springer, 152-167.

[8] Bortin, Maksym, Johnsen, Einar Broch, and Lüth, Christoph.
Structured Formal Development in Isabelle. Nordic Journal of Com-
puting 13:1– 20, 2006.

33

	Isabelle Foundations
	Morphisms
	Introduction
	sigmorph: Constructing a Signature Morphism
	Syntax and functionalty

	Homomorphic Extension and Normalisation of Signature Morphisms
	Composition of Signature Morphisms
	thymorph: Constructing a Theory Morphism
	Foundations
	Syntax and functionality

	translate_thm: Theorem Translation
	Composition of Theory Morphisms
	Parametrised Theories and Instantiation
	Foundations
	instantiate_theory
	thymorph_goals

	Control

	Installation and Usage
	Installation
	Usage
	ProofGeneral
	Restrictions

	Syntax Primitives

