
Monads and Modularity

Christoph Lüth1 and Neil Ghani2

1 FB 3 — Mathematik und Informatik, Universität Bremen
cxl@informatik.uni-bremen.de

2 Department of Mathematics and Computer Science, University of Leicester
ng13@mcs.le.ac.uk

Abstract. This paper argues that the core of modularity problems is an
understanding of how individual components of a large system interact
with each other, and that this interaction can be described by a layer
structure. We propose a uniform treatment of layers based upon the con-
cept of a monad. The combination of different systems can be described
by the coproduct of monads.
Concretely, we give a construction of the coproduct of two monads and
show how the layer structure in the coproduct monad can be used to
analyse layer structures in three different application areas, namely term
rewriting, denotational semantics and functional programming.

1 Introduction

When reasoning about complex systems (such as specifications of large systems,
or semantics of rich languages with many different features), modularity and
compositionality are crucial properties: compositionality allows a large problem
to be broken down into parts which can be reasoned about separately, while
modularity finds criteria under which results concerning these parts combine
into results about the overall system.

A prerequisite for modular reasoning is an understanding of how individual
components of a large system interact with each other. In modular term rewrit-
ing, the key concept is the layer structure on the terms of the combined rewrite
system, i.e. we can decompose the combined system into layers from the compo-
nent systems. Our basic observation is that this methodology can be generalized
by moving to a categorical framework, where layers become the basic concept,
described by monads, which describe a far wider class of systems than just term
rewriting systems, as demonstrated by the examples below. The combination of
smaller systems into a larger one is in general described by colimits, but in this
paper, we restrict ourselves a natural first step, the coproduct.

Monads have been used to describe various formal systems from term rewrit-
ing [10,11] to higher-order logic [3] and arbitrary computations [13], just as col-
imits have been used to describe the combination of specifications and theories
[16,17]. A construction of the colimit of monads was given by Kelly [7, Chapter
VIII] but the generality of the construction is reflected in its complexity which
can be detering even for experienced category theorists, and hence limits the
applicability of the construction to modularity problems.

A. Armando (Ed.): FroCoS 2002, LNAI 2309, pp. 18–32, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Monads and Modularity 19

Our contribution is to provide alternative constructions which, by restricting
ourselves to special cases, are significantly simpler and hence easier to apply in
practice. We describe how monads correspond to algebraic structures, coproducts
correspond to disjoint unions and how the layer structure in the coproduct monad
models the layer structure in the combined system, and apply these ideas to three
settings: modular rewriting, modular denotational semantics, and the functional
programming language Haskell.

Generality requires abstraction and, as we shall argue later, the use of mon-
ads is appropriate for our abstract treatment of layers. We are aware that our
categorical meta-language may make our work less accessible to those members
of the FroCoS community who are not proficient in category theory. Neverthe-
less, we have written this paper with the general FroCoS audience in mind, by
focusing on ideas, intuitions and concrete examples; proofs using much category
theory have been relegated to the appendix. Our overall aim is to apply our gen-
eral ideas to specific modularity problems and for that we require an exchange
of ideas; we hope this paper can serve as a basis for this interaction.

The rest of this paper is structured as follows: we first give a general account
of monads and motivate the construction of their coproducts. We examine par-
ticular special cases, for which we can give a simplified account. We finish by
detailing our three application areas.

2 An Introduction to Monads

In this section, we introduce monads, describe their applications and explain
their relevance to a general treatment of layers. Since this is standard material,
we refer the reader to general texts [12] for more details. We start with the
canonical example of term algebras which we will use throughout the rest of the
paper.

Definition 1 (Signature). A (single-sorted) signature consists of a function
Σ : N → Set. The set of n-ary operators of Σ is defined Σn = Σ(n).

Definition 2 (Term Algebra). Given a signature Σ and a set of variables X,
the term algebra TΣ(X) is defined inductively:

x ∈ X
’x ∈ TΣ(X)

f ∈ Σn t1, . . . tn ∈ TΣ(X)
f(t1, . . . , tn) ∈ TΣ(X)

Quotes are used to distinguish a variable x ∈ X from the term ’x ∈ TΣ(X). For
every setX, the term algebra TΣ(X) is also a set — categorically TΣ : Set → Set
is a functor over the category of sets. In addition, for every set of variables X,
there is a function X → TΣ(X) sending each variable to the associated term.
Lastly, substitution takes terms built over terms and flattens them, as described
by a function TΣ(TΣ(X)) → TΣ(X). These three pieces of data, namely the
construction of a theory from a set of variables, the embedding of variables as
terms and the operation of substitution are axiomatised as a monad:



20 Christoph Lüth and Neil Ghani

Definition 3 (Monads). A monad T = 〈T, η, µ〉 on a category C is given by
an endofunctor T : C → C, called the action, and two natural transformations,
η : 1 ⇒ T , called the unit, and µ : TT ⇒ T , called the multiplication of the
monad, satisfying the monad laws: µ.Tη = 1 = µ.ηT , and µ.Tµ = µ.µT .

We have already sketched how the term algebra construction TΣ has an
associated unit and multiplication. The equations of a monad correspond to
substitution being well behaved, in particular being associative with the variables
forming left and right units. In terms of layers, we think of TΣ(X) as a layer
of terms over X, the unit converts each variable into a trivial layer and the
multiplication allows us to collapse two layers of the same type into a single layer.
Monads model a number of other interesting structures in computer science:

Example 1 (More Complex Syntax). Given an algebraic theory A = 〈Σ,E〉, the
free algebra construction defined by TA(X) = TΣ(X)/∼E , where ∼E is the
equivalence relation induced by the equations E, is a monad over Set.

A many-sorted algebraic theory A = 〈S,Σ,E〉, where S is a set of sorts, gives
rise to a monad on the base category SetS which is the category of S-indexed
families of sets and S-indexed families of functions between them.

Calculi with variable binders such as the λ-calculus, can be modeled as a
monad over SetF which is the category of functors from the category F of finite
ordinals and monotone functions between them, into the category Set [4].

Example 2 (Term Rewriting Systems). Term rewriting systems (TRSs) arise as
monads over the category Pre of preorders, while labelled TRSs arise as monads
over the category Cat of categories [10,11].

Example 3 (Computational Monads). Moggi proposed the use of monads to
structure denotational semantics where TX is thought of as the computations
over basic values X [13]; see Sect. 5 below.

Example 4 (Infinitary Structures). Final coalgebras have recently become pop-
ular as a model for infinitary structures. The term algebra from Def. 2 is the
initial algebra of the functor TΣ , and just as initial algebras form a monad, so
do final coalgebras: for the signature Σ, the mapping T∞

Σ sending a set X to the
set of finite and infinite terms built over X is a monad [5].

From the perspective of modularity, we regard T (X) as an abstraction of
a layer. In the examples above, layers are terms, rewrites, or computations;
the monad approach allows us to abstract from their particular properties and
concentrate on their interaction. Monads provide an abstract calculus for such
layers where the actual layer, the empty layers, and the collapsing of two layers
of the same type are are taken as primitive concepts.

3 Coproducts of Monads

Recall our aim is to understand the layer structure in modularity problems by
understanding the layer structure in the coproduct of monads. The construction



Monads and Modularity 21

of the coproduct of monads is rather complex and so we motivate our general
construction by considering a simple case, namely the coproduct of two term
algebra monads. Given two signatures Σ,Ω with corresponding term algebra
monads TΣ ,TΩ , the coproduct TΣ + TΩ should calculate the terms built over
the disjoint union Σ +Ω, i.e. TΣ + TΩ = TΣ+Ω .1

Terms in TΣ+Ω(X) have an inherent notion of layer: a term in TΣ+Ω decom-
poses into a term from TΣ (or TΩ), and strictly smaller subterms whose head
symbols are from Ω (or Σ). This suggests that we can build the action of the
coproduct TΣ+Ω(X) by successively applying the two actions (TΣ and TΩ):

TΣ + TΩ(X) = X + TΣ(X) + TΩ(X) + TΣTΣ(X) + TΣTΩ(X)+
TΩTΣ(X) + TΩTΩ(X) + TΣTΩTΣ(X) + . . .

(1)

Crucially, theories are built over variables, and the instantiation of variables
builds layered terms. The quotes of Def. 2 can now be seen as encoding layer
information within the syntax. For example, if Σ = {F, G} then the term G’G’x
is an element of TΣ(TΣ(X)) and hence has two Σ-layers. This is different from
the term GG’x which is an element of TΣ(X) and hence has only one Σ-layer.

Equation (1) is actually too simple. In particular there are different elements
of the sum which represent the same element of the coproduct monad, and we
therefore need to quotient the sum.

Firstly, consider a variable x ∈ X. Then x ∈ X, ’x ∈ TΣ(X), ’’x ∈ TΩTΣ(X).
By identifying a layered term with its image under the two units, one can identify
these layered terms; we call this the η-quotient.

Secondly, if Ω = {H} is another signature, the layered terms t1 = GG’x ∈
TΣ(X) and t2 = G’G’x ∈ TΣ(TΣ(X)) are both layered versions of GG’x ∈
TΣ+Ω(X). By identifying a layered term containing a repeated layer with the
result of collapsing the layer, one identifies these terms (µ-quotient).

Finally, in all elements of the sum (1), descending from the root to a leaf in
any path we pass through the same number of quotes. Thus, layered terms such
as F(G’x,’H’x) do not exist in the sum. However, this term is an element of
TΣ(X + TΩ(X)) which indicates that the layer structure of (1) is not the only
possible layer structure. In fact, there are a number of different layer structures
which we propose, each with uses in different modularity problems.

Summing up, the coproduct monad T + R should be constructed pointwise
for any set X of variables as a quotient of layered terms. Layered terms are
formed solely by constructions over the component monads. This is crucial, as
the construction of the coproduct is compositional, and hence properties of T
and R can be lifted to T+R. The equations are essentially given by the unit and
multiplication of the components.

For the rest of this paper, we have to make certain technical assumptions
about the two monads and the base category (see Appendix A).

1 This relies on the fact that the mapping of signatures to monads preserves the
coproduct, which it does because it is a left adjoint.



22 Christoph Lüth and Neil Ghani

3.1 Pointed Functors

A functor S : C → C with a natural transformation σ : 1 ⇒ S is called pointed.
Every monad is pointed, so taking the coproduct of pointed functors is a first
step towards the construction of the coproduct of monads. In the term algebra
example, the natural transformation ηT : 1 ⇒ TΣ models the variables, and
the coproduct of two pointed functors S, T should be the functor which for any
given set X returns the union of TX and SX with the variables identified. This
construction therefore implements the η-quotient from above.

In Set, we identify elements of a set by taking the quotient. Thus, for example
to share the variables from X in TΣ(X) + TΩ(X), we quotient the set by the
equivalence relation generated by ’x ∼ ’y (note how the term on the left is
an element of TΣ(X), whereas the term on the right is an element of TΩ(X)).
Categorically, this process is modelled by a pushout :

Definition 4 (Pointed Coproduct). Given two pointed functors 〈T, ηT 〉 and
〈S, ηS〉, their coproduct is given by the functor Q : C → C which maps every object
X in C to the colimit in (2) with the obvious extension of Q to morphisms. Q

X
ηT✲ TX

RX

ηR
❄

σR

✲ QX

σT
❄

(2)

is pointed with σ : 1 ⇒ Q given by σX = σR
.ηR = σT

.ηT .

3.2 Non-collapsing Monads

An algebraic theory A = 〈Σ,E〉 is non-collapsing if none of the equations has a
variable as its left or right-hand side. Generalising this to monads, this means
that TX can be decomposed into the variables X and non-variable terms T0X,
i.e. TX = X + T0X for some T0. More succinctly, this decomposition can be
written as an equation on functors, i.e. T = 1 + T0.

Definition 5 (Non-Collapsing Monads). A monad T = 〈T, η, µ〉 is non-
collapsing iff T = 1 + T0, with the unit the inclusion in1 : 1 ⇒ T and the other
inclusion written αT : T0 ⇒ T . In addition, there is a natural transformation
µ0 : T0T ⇒ T0 such that α.µ0 = µ.αT .

Given a signature Σ, the term monad TΣ is non-collapsing, since every term
is either a variable or an operation (applied to subterms). More generally, given
an algebraic theory 〈Σ,E〉, the representing monad T〈Σ,E〉 is non-collapsing iff
neither the left or right hand sides of any equation is a variable.

Lemma 1. In any category, the pushout of the inclusions in1 : 1 ⇒ 1 + X and
in1 : 1 ⇒ 1 + Y is 1 + X + Y . Given two non-collapsing monads 1 + T0 and
1 +R0, their pointed coproduct is (Q, q) with Q = 1 + T0 +R0 and q : 1 ⇒ Q.



Monads and Modularity 23

Proof. The first part can be proved by a simple diagram chase. The second part
follows since in a non-collapsing monad the units are the inclusions. �

3.3 Layer Structure 1: Alternating Layers

Our first axiomatisation of layer structure is based upon the idea that, in the
coproduct monad, layers alternate between T -layers and R-layers. Since we can
decompose the layers of the non-collapsing monads into the variables and the
terms, we share the variables between the two monads and only build new non-
variable layers on top of other non-variable layers.

Definition 6 (Alternating Layers). Define the series of functors AT,n and
AR,n as follows:

AT,0 = 1 AT,n+1 = 1 + T0AR,n AR,0 = 1 AR,n+1 = 1 +R0AT,n

Define natural transformations aT,n : AT,n → AT,n+1 and aR,n : AR,n → AR,n+1

aT,0 = in1 aT,n+1 = 1 + T0aR,n aR,0 = in1 aR,n+1 = 1 +R0aT,n

Finally, define AR and AT as the colimits of the chains:

AR = colim
n<ω AR,n

AT = colim
n<ω AT,n

We then have eT : 1 ⇒ AT and eR : 1 ⇒ AR defined by the inclusion of AT,0
into AT and A as the pushout:

1
eT✲ AT

AR

eR
❄

✲ A
❄

(3)

The functor AT,n can be thought of as alternating, non-variable layers of
depth at most n, starting with a T -layer. Thus AT,n+1 = 1 + T0AR,n says that
an alternating, top T -layer term of depth at most n + 1 is either a variable or
contains a non-variable layer T0 on top of an alternating, top R-layer term of
depth at most n. AR and AT are alternating layers of arbitrary depth, starting
with a R and T -layer, respectively. A contains all alternating layers, starting
with either R or T , with the variables shared as we saw in the pointed coproduct
construction. That A is (isomorphic to) the coproduct is shown in Sect. A.1.

3.4 Layer Construction 2: Quotiented Layers

In certain situations, the alternating layers will not be appropriate as, for exam-
ple, one may not want to have to explicitly enforce the alternating criteria on
layers. An alternative construction starts with the pointed coproduct of monads
1 + T0 and 1 +R0 given by Q = 1 + T0 +R0 with q : 1 ⇒ Q given by Lemma 1.



24 Christoph Lüth and Neil Ghani

Definition 7 (Q-layers). With (Q, q) given by Lemma 1, let Q∗ = colim
n<ω Qn be

the colimit of the ω-chain Qn with maps qn : Qn ⇒ Qn+1 given by q0 = q and
qn+1 = Qnq.

Of course, Q∗ is not the coproduct; it has η-quotienting built in, but no µ-
quotienting. For this, we define a map v∗ : Q∗X → (T+R)X which tells us when
two elements of Q∗ represent the same element of the coproduct monad, and then
we construct normal forms for this equivalence relation. Technically, the map v∗

is defined by a family of maps vn : QnX → (T + R)X which commute with the
qn (i.e. vn

.qn = vn−1); such a family is called a cone. The precise definition of vn

and the quotienting, along with a proof of correctness, can be found in Sect. A.2.

3.5 Layer Structure 3: Non-alternating Layers

A third axiomatisation of layers follows from the observation that every term in
the coproduct is either a variable, a T0-layer over sublayers or an R0-layer over
sublayers. Thus one defines

L0 = 1 Ln+1 = 1 + T0Ln +R0Ln

As the arguments are similar to those for the quotiented layers, and with
space considerations in mind, we only sketch the details. We define L∗ =colim

n<ω Ln
,

and uses the inclusions of T0 and R0 into T+R to define a natural transformation
w∗ : L∗ ⇒ T+R which indicates when two layered term represent the same term
in the coproduct monad.

We then define a right inverse for w∗ by embedding the alternating layers
monad into L∗, which allows us to conclude that the quotient of L∗ by the kernel
of w∗ defines the coproduct monad. The right inverse can be used to construct
representatives for each equivalence class of the kernel.

3.6 Collapsing Monads

We have given a number three constructions of the coproduct on non-collapsing
monads, each with a different layer structure. Kelly [7, Sect. 27] has shown
the construction of colimits of monads, from which we can deduce coproducts
of arbitrary monads as a special case. The coproduct is constructed pointwise;
given two monads T = 〈T, ηT , µT 〉 and R = 〈R, ηR, µR〉, the coproduct monad
T + R maps every object X to the colimit of sequence Xβ defined as follows:

T +R(X) = colim
β<ω Xβ

X0 = X X1 = QX Xβ+1 = colim(Dβ)

where Q, σT , σR are given by Def. 4, and Dβ by the diagram in Fig. 1 with the
colimiting morphism xβ : Dβ → Xβ+1 which given the shape of the diagram is a
single morphism xβ : QXβ → Xβ+1 making all arrows in the diagram commute.
In principle, Dβ defines another layer structure for terms in the coproduct monad
but in practice the shape, size and contents of this diagram makes it difficult to
reason with directly.



Monads and Modularity 25

TX��1

TTX��1

1
-

�T -

TTX��1

T�T
-

T�
T
-

TQX��1

Tx�
- TX�

QX�

�T
-

RRX��1
1

- RRX��1
R�R
- RQX��1

Rx�
- RX� �R

-

RX��1
R�R

-

�
R
-

Fig. 1. The diagram defining the coproduct of two monads.

An alternative is to return to the quotiented layers. We can still define a chain
Qn as in Def. 7, together with a map k∗ : QnX → (T + R)X; unfortunately, in
the absence of the non-collapsing assumption we cannot go further and provide
canonical representatives of each equivalence class.

A final, very simple special case is when there is a natural transformation
m : QQ ⇒ Q which commutes with µT and µR

σT
.µT = m.(σR ∗ σR) σR

.µE = m.(σR ∗ σR) σ.m = 1QX (4)

then Q is the coproduct, and m its multiplication.

4 Applications I: Modular Rewriting

In this section, we sketch the application of our analysis to modular term rewrit-
ing. The results in this section have been presented elsewhere before [10], but the
alternating layer presentation from Sect. 3.3 further simplifies our arguments.

The prerequisite of monadic rewriting is the representation of a TRS as a
monad. The action of this monad is given by the term reduction algebra:

Definition 8 (Term Reduction Algebra). For a term rewriting system R =
〈Σ,R〉, the term reduction algebra TR(X) built over a preorder X has as un-
derlying set the term algebra TΣ(X) and as order the least preorder including all
instantiations of rules r ∈ R and the order on X such that all operations f ∈ Σ
are monotone.

The mapping of X to TR(X) gives rise to a functor TR : Pre → Pre on the
category of preorders. To make this into a monad, we add unit and multiplication
as in the case of signatures (see Sect. 2), except that we further have to show that
they are monotone. Since the monadic semantics is compositional, i.e. TR+S ∼=
TR + TS , we can prove properties about the disjoint union of TRSs by proving
them for the coproduct monad. Of course we also have to translate properties
P of a TRS into an equivalent property P ′ of monads. The obvious way is to
require that the action of the monad preserves P .
Definition 9 (Monadic SN). A monad T = 〈T, η, µ〉 on Pre is strongly nor-
malising iff whenever the irreflexive part of X is strongly normalising, then so
is the irreflexive part of TX.



26 Christoph Lüth and Neil Ghani

To show that this definition makes sense, we show that a TRS R is SN iff
its representing monad TR is SN in the sense of Def. 9; see [10, Prop. 5.1.5]. We
can now prove modularity of strong normalisation for non-collapsing TRS [15].
The main lemma will be that the coproduct of two non-collapsing monads T+R
is SN if T and R are. For this, recall the alternating layers A from Def. 6.

Lemma 2 (Modularity of SN for non-collapsing monads). Let T,R be
non-collapsing, strongly normalising monads, then the monad T + R is SN.

Proof. We use the fact that T + R(X) = AX, and show that AX is SN. We
first show that AR and AT are SN, i.e. that if X is SN so is ARX. Since AR =
colim
n<ω AR,n

this is done by induction over n: the base case is the assumption; for

the inductive step, AR,nX is SN by the induction hypothesis, T0AR,n is SN since
T0 preserves SN preorders and hence AT,n+1X = X + T0AR,n is SN since the
disjoint union of SN preorders is SN. Now, AX ∼= TARX, and since AR is SN,
and by assumption T is SN, so is AX. �

Proposition 1 (Modularity of Strong Normalisation). Strong normalisa-
tion is modular for non-collapsing term rewriting systems.

Proof. Given two strongly normalising TRSs R and S, then TR and TS are
SN. By Lemma 2 it follows that AX is SN whenever X is, and since AX ∼=
(TR + TS)X, T + R is SN. By compositionality, this means that TR+S is SN,
and hence R + S is SN, as required. �

The advantage of using monads here is that the main lemma does not talk
about term rewriting systems anymore, but about monads. Thus, the theorem
applies to any structure which can be modelled by a monad as well, for example
if we allow equations as well as rewrite rules.

5 Applications II: Computational Monads

Computational monads [13] provide a categorical framework for expressing com-
putational features independent of the specific computational model we have
in mind. The base category provides a basic model of computation, and the
computational monad builds additional features, such as exceptions, state and
non-determinism:

Example 5 (Exceptions). Let E be an object of C, which are the exceptions. The
exception monad is given as

ExE(X) = E +X ηE = in2 µE = [in1, 1]

As a second example, consider a monad adding state dependency. In an
abstract view, state is just an object S ∈ C of our base category:



Monads and Modularity 27

Example 6 (The State Transformer Monad). Let S be an object of C. The monad
StS = 〈StS , ηS , µS〉 is defined as

StS(X) = S → S×X ηS,X(x) = λs.x µS,X(c) = λs.let 〈f, x〉 = cs in f x

A stateful computation maps a state to a successor state and a value. The
multiplication composes two stateful computations by inserting the successor
state of the first computation as input into the second. The overall result is the
result of the second computation.

Finally, if we have a finite powerset functor Pfin : C → C in our base category
(e.g. if C = Set), then we can incorporate non-determinism to our set of models:

Example 7 (The non-determinism monad). The monad P = 〈Pfin, ηP , µP 〉 has
the finite powerset functor as its action, with the unit and multiplication defined
as follows:

ηP (X) = {X} µP (X) = ∪X0∈XX0

The exception monad does not build any new layers, it only adds constants.
Thus, exceptions only ever occur in the lowest layer:

Lemma 3. The coproduct of ExE with any monad R = 〈R, ηR, µR〉 is given by

SX = R(E +X)

The proof of Lemma+3 can be found in the appendix (Sect. A.3). Lemma 3
allows us to combine exceptions with statefulness, leading to ExE + StS =
(S → S × (X + E)), and with non-determinism, resulting in Pfin + ExE =
Pfin(X + E). Further, we can combine non-determinism with stateful computa-
tions. One might think that the action of the combination would be Q(X) = S →
(S × PfinX), but this is slightly wrong, since it does not allow non-deterministic
computations not depending on the state S; the correct action is given by
first calculating Q(X) = (S → S × X) + PfinX/∼ where λs.〈s,X〉 ∼ {X}. In
other words, every computation is either stateful or non-deterministic. In the
coproduct, this is closed under composition, i.e. the computations are inter-
leaved sequences of stateful and non-deterministic computations (appropriately
quotiented).

The combination of computational monads has been investigated before, but
mainly for special cases [6,8]. Monad transformers have been suggested as a
means to combine monads [14,9], but they serve as an organisational tool rather
than a general semantic construction like the coproduct described here.

6 Applications III: Haskell

Monads are used extensively in Haskell, which provides the built-in monad IO a
as well as user-defined ones. The Haskell types are our objects, and the terms our
morphisms. Thus, a type constructor t forms a functor if for any function f::a->



28 Christoph Lüth and Neil Ghani

b there is a function fmap :: t a-> t b, and it is a monad if additionally
there are functions eta :: a -> t a and mu :: t (t a) -> t a for all types
a. These overloaded functions are handled by type classes. Building upon the
class Functor from Haskell’s standard prelude [1, Appx. A], we define

class Functor t=> Triple t where
eta :: a-> t a
mu :: t (t a) -> t a

The monad laws cannot be expressed within Haskell, so the tacit assumption
is that they are verified externally. In the implementation of the coproduct,
we face the difficulty that Haskell does not allow us to write down equations
on types. Hence, we representing the equivalence classes, making eta and mu
operate directly on the representatives, which are modelled as follows:

data Plus t1 t2 a = T1 (t1 (Plus t1 t2 a)) -- top-T1 layer
| T2 (t2 (Plus t1 t2 a)) -- top-T2 layer
| Var a -- a mere variable

Note how this datatype corresponds to the functor L∗ from Sect. 3.5. We have
to make the type constructor Plus t1 t2 into a monad by first making it into a
functor, and then giving the unit and multiplication. For this, we implement the
decision procedure mentioned in Sect. 3.5. Essentially, we recursively collapse
adjacent layers wherever possible:

instance (Triple t1, Triple t2)=> Triple (Plus t1 t2) where
eta x = Var x
mu (Var t) = t
mu (T1 t) = T1 (mu (fmap lift1 (fmap mu t))) where
lift1 :: Plus t1 t2 x-> t1 (Plus t1 t2 x)
lift1 (T1 t) = t
lift1 t = eta t

mu (T2 t) = ... -- analogous to mu (T1 t)

Finally, we need the two injections into the coproduct; we only show one:

inl :: Triple t1=> t1 a-> Plus t1 t2 a
inl t = T1 (fmap Var t)

We can now implement exceptions, state and so on as monads, and compose
their computations in the coproduct. This is different from using the built-in IO
monad, since the type of an expression will be contain precisely those monads
the computational features of which are used in this expression.

Technically, monads as implemented by Haskell (in particular the monad
IO) define a monad by its Kleisli-category [12, Sect. VI.5], hence our own type
class Triple above, rather than the standard Monad. One can easily adapt our
construction to cover this case. Note that the code above requires extensions to
the Haskell 98 standard, such as multi-parameter type classes.



Monads and Modularity 29

7 Conclusion

The basic hypothesis of this paper has been that when we combine different
formal systems, be they algebraic theories, models of computations, or programs,
their interaction can be described in terms of their layers. We have given an
abstract characterisation of layers by monads, and shown how the combination
of different monads can be modelled by the coproduct.

We have complimented the general construction of the colimit of monads
with alternative, specialised constructions. In particular, we have constructed
the coproduct monad based on alternating layers, quotiented layers and non-
alternating layers, and employed these constructions for modular term rewriting,
modular denotational semantics, and modular functional programming.

Obviously, this work is just the beginning. What needs to be done is to
extend our construction to cover e.g. non-collapsing monads, to augment the
applications (in particular with regards to Haskell) and to investigate in how far
other applications can be covered by our methodology.

References

1. Haskell 98: A non-strict, purely functional language. Available at
http://www.haskell.org, January 1999.

2. J. Adamek and J. Rosický. Locally Presentable and Accessible Categories. LMS
Lecture Notes 189, Cambridge University Press, 1994.

3. E. J. Dubuc and G. M. Kelly. A presentation of topoi as algebraic relative to
categories or graphs. Journal for Algebra, 81:420–433, 1983.

4. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc.
LICS’99, pages 193– 202. IEEE Computer Society Press, 1999.

5. N. Ghani, C. Lüth, F. de Marchi, and J. Power. Algebras, coalgebras, monads and
comonads. Proc. CMCS’01, ENTCS 44:1, 2001.

6. M. Jones and L. Duponcheel. Composing monads. Technical Report
YALEU/DCS/RR-1004, Yale University, Dept. Comp. Sci, Dec 1993.

7. G. M. Kelly. A unified treatment of transfinite constructions for free algebras,
free monoids, colimits, associated sheaves and so on. Bulletins of the Australian
Mathematical Society, 22:1– 83, 1980.

8. D. King and P. Wadler. Combining monads. In J. Launchbury and P.M. Samson,
editors, Functional Programming, Workshops in Computing, 1993.

9. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Proc. of the 22nd ACM Symposium on Principles of Programming Languages.
ACM Press, Jan 1995.

10. C. Lüth. Categorical Term Rewriting: Monads and Modularity. PhD thesis, Uni-
versity of Edinburgh, 1998.

11. C. Lüth and N. Ghani. Monads and modular term rewriting. In CTCS’97, LNAI
1290, pages 69– 86. Springer, Sep 1997.

12. S. Mac Lane. Categories for the Working Mathematician, Graduate Texts in Math-
ematics 5. Springer, 1971.

13. E. Moggi. Computational lambda-calculus and monads. In Proc. LICS’89. IEEE,
Computer Society Press, June 1989.



30 Christoph Lüth and Neil Ghani

14. E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, LFCS, 1990.

15. M. Rusinowitch. On the termination of the direct sum of term-rewriting systems.
Information Processing Letters, 26(2):65–70, 1987.

16. D. T. Sannella and R. M. Burstall. Structured theories in LCF. In 8th Colloquium
on Trees in Algebra and Programming, LNAI 159, pages 377– 391. Springer, 1983.

17. D. T. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Infor-
mation and Computation, 76(2/3):165–210, Feb/Mar 1988.

A Correctness Proofs

As blanket assumptions, we assume that the base category is locally finitely
presentable (lfp) [2], which in particular means it has all colimits, and that the
monads in question are finitary.

If we claim that a construction defines the coproduct monad, how can we to
prove this? The answer is that just as one can understand an algebraic theory
through its models, one can understand a monad through its algebras:

Definition 10 (Algebras for a monad). An algebra (X,h) for a monad T =
〈T, η, µ〉 on a category C is given by an object X in C, and a morphism h :
TX → X which commutes with the unit and multiplication of the monad, i.e.
ηX = h.ηTX and h.µX = h.Th.

The category of algebras for T and morphisms between them is called T−Alg.

We think of a T-algebra (X,h) as being a model with carrier X. The map
h ensures that if one builds terms over a such a model, then these terms can
be reinterpreted within the model. This is exactly what one is doing in the
term algebra case where one assigns to every function symbol f of arity n an
interpretation [[f ]] : Xn → X. Since monads construct free algebras, we can prove
a functor to be equal to a monad if we can prove that the functor constructs free
algebras. In particular, we can prove a functor to be the coproduct monad if we
can prove it constructs free T + R-algebras which are defined as follows:

Definition 11 (T+R-algebras). The category T+R-Alg has as objects triples
(A, ht, hr) where (A, ht) is a T-algebra and (A, hr) is an R-algebra. A morphism
from (A, ht, hr) to (A′, h′

t, h
′
r) consists of a map f : A → A′ which commutes

with the T and R-algebra structures on A and A′.

There is an obvious forgetful functor U : T+R-Alg → C, which takes a
T + R-algebra to its underlying object, and we have the following:

Proposition 2 ([7, Propn. 26.4]). If the forgetful functor U : T+R-Alg → C
functor has a left adjoint F : C → T+R-Alg, i.e. if for every object in C there
is a free T + R-algebra, then the monad resulting from this adjunction is the
coproduct of T and R.

Thus to show that a functor S is the coproduct T + R, we can show that for
every object X, SX is a T+R-algebra and, moreover, it is the free T+R-algebra.



Monads and Modularity 31

A.1 Correctness of the Alternating Layer Construction

Lemma 4. We have the following isomorphisms:

AT
∼= 1 + T0AR, AR

∼= 1 +R0AT (5)
A ∼= TAR, A ∼= RAT (6)

Proof. Isomorphism (5) is shown as follows:

AT = colim
n<ω AT,n

= colim
n<ω 1 + T0AR,n−1

∼= 1 + colim
n<ω T0AR,n−1

∼= 1 + T0 colim
n<ω AR,n−1

= 1 + T0ARQQ

Here, we use interchange of colimits (in the second line) and the fact that T0
is finitary (which means it preserves colimits of chains).

Since TAR = AR + T0AR, isomorphism (6) is proven by showing that AR +
T0AR is the pushout of diagram (3). The morphism AR → AR + T0AR is given
by the left inclusion; the morphism m : AT → AR + T0AR is given by eR + 1,
since by (5) AT = 1 + T0AR. The diagram commutes since eT is the inclusion
1 → AT = 1+T0AR. Given any other X and morphisms g : AT → X, f : AR →
X, we have a unique morphism !f,g : AR + T0AR given by !f,g = [f, g2], where
g2 is g on T0AR. �

We will now prove that A is the coproduct T + R, using Proposition 2, by
showing that A is the free T +R-algebra.
Lemma 5 (A is a T + R-algebra). For any X ∈ C, AX is a T + R-algebra.

Proof. We have to show that there are morphism hA
t : TAX → AX and hA

r :
RAX → AX which satisfy the equations from Def. 10. By (6), we may define
hA

t as

TAX = TTARX
µT,ARX✲ TARX = AX

and similarly, set hA
r = µR. That hA

t and hA
r commute with the unit and multi-

plication of T and R respectively is easy. �

Lemma 6 (A is the free T + R-algebra). The functor A : C → T+R-Alg,
mapping X to (AX, hA

t , h
A
r ), is a left adjoint to U : T+R-Alg → C.

Proof. We prove that eA,X : X → AX is universal to U . That is, given any other
T + R-algebra (Y, ht, hr) and map f : X → Y in C, there is a unique T + R
algebra morphism f∗ : (AX, hA

t , h
A
r ) → (Y, ht, hr) such that U(f∗).eA,X = f .

To define a map f∗ : AX → Y , it suffices to define maps fT : ATX → Y
and fR : ARX → Y such that fR

.eR = fT
.eT . With ATX the colimit of AT,n,

this means fT is given by a cone fT,n : AT,n → Y for n < ω. Setting fT,0 = f
and, with AT,n+1X = X + T0AR,n, we set fT,n+1 = [f, ht,0.T0fR,n] where ht,0
is the restriction of h to T0Y . That fT and fR are cones is proven by induction
while they both clearly equal to f when restricted along eT and eR. Thus f∗ is
well defined. That f∗ is an algebra morphism is a routine inductive argument
using the fact that ht and hr commute with µT and µR. Finally the equation
f∗.eA,X = f has already been commented upon while uniqueness of f∗ follows
by the uniqueness property of mediating morphisms out of the pushout. �



32 Christoph Lüth and Neil Ghani

A.2 Correctness Proofs for the Quotiented Layers

First note we can define a map v : QX → (T + R)X by sending TX to its
inclusion in (T+R)X and similarly for RX. Now to define vn : QnX → (T+R)X
by vn = µn

T+R
.vn where µn

T+R is the n-fold iteration of multiplication in the
coproduct and vn is the n-fold iteration of v. This clearly forms a cone and
hence gives a map v∗ : Q∗X → (T + R)X.

We claim that the quotient of Q∗ by the kernel of v∗ is the coproduct T+R.
We have already mapped Q∗ into T+R via v∗. Now we embedd T+R in Q∗ via
A which we have already seen to be T + R. This embedding effectively decides
the kernel of v∗.

First we define maps sT,n : AT,n ⇒ Qn and sR,n : AR,n ⇒ Qn by setting
sT,0 = sR,0 = 1 and sT,n+1 by

AT,n+1 =1 + T0AR,n

[in1.qn, in2.T0(sR,n)]✲ Qn + T0Q
n +R0Q

n= Qn+1

That these maps form cones is easily verified and hence we get a map s :
A ⇒ Q∗. By unwinding these definitions, we obtain v∗.s = 1.

Lemma 7. The quotient of Q∗ by the kernel of v∗ defines the coproduct monad.
Each equivalence class of this quotient has a canonical representative.

Proof. The existence of s means that v∗ is a split epimorphism and hence the
quotient of Q∗ by the kernel of v∗ is the codomain of v∗ and hence is T + R. If
t ∈ Q∗, then we define its representative to be s(v∗(t)). Thus t is related to u in
the kernel of v∗ iff v∗(t) = v∗(u) which implies that s(v∗(t)) = s(v∗(u)), ie they
have the same representative. �

A.3 Proof of Lemma 3

By Prop. 2, it is sufficient to show that SX is the free ExE + R-algebra.
Showing that SX is an R-algebra is simple, with the structure map given by

µR. The structure map [1, α] : ESX → SX making SX into an ExE-algebra is
given by α = Rin1.ηR.

The unit of the adjunction is given by ηS = Rin2.ηR. To show it is universality
from U , assume there is a R + E-algebra Y with δ : E → Y and β : RY → Y ,
and a morphism f : X → Y . Then we define !f : R(E + X) → Y , defined as
!f = β.R[δ, f ]. A simple diagram chase shows that !f .ηX = f .

�


	1 Introduction
	2 An Introduction to Monads 
	3 Coproducts of Monads
	3.1 Pointed Functors
	3.2 Non-collapsing Monads
	3.3 Layer Structure 1: Alternating Layers 
	3.4 Layer Construction 2: Quotiented Layers 
	3.5 Layer Structure 3: Non-alternating Layers 
	3.6 Collapsing Monads 

	4 Applications I: Modular Rewriting
	5 Applications II: Computational Monads 
	6 Applications III: Haskell
	7 Conclusion
	References
	1 Correctness Proofs 
	1.1 Correctness of the Alternating Layer Construction 
	1.2 Correctness Proofs for the Quotiented Layers 
	1.3 Proof of Lemma 3


