
Under consideration for publication in Math. Struct. in Comp. Science

Monads of Coalgebras: Rational Terms and

Term Graphs

NEIL GHANI1 , CHRISTOPH LÜTH 2 ,

FEDERICO DE MARCHI1†

1 Department of Mathematics and Computer Science, University of Leicester

2 FB 3 — Mathematik und Informatik, Universität Bremen

Received 18 March 2004

This paper introduces guarded and strongly guarded monads as a unified model of a

variety of different term algebras covering fundamental examples such as initial algebras,

final coalgebras, rational terms and term graphs. We develop a general method for

obtaining finitary guarded monads which allows us to define and prove properties of the

rational and term graph monads. Furthermore, our treatment of rational equations

extends the traditional approach to allow right-hand sides of equations to be infinite

terms, term graphs or other such coalgebraic structures. As an application, we use these

generalised rational equations to sketch part of the correctness of the the term graph

implementation of functional programming languages.

1. Introduction

Initial algebra semantics has long been regarded as one of the cornerstones of the se-

mantics of programming languages. Within this paradigm, the syntax of a language is

modelled as an initial algebra consisting of the finite terms of the language, while the se-

mantics of the language is given as the unique map from the initial algebra into any other

algebra. A similar situation arises in the theory of datatypes, where the initial algebra

consists of the finite terms built from the constructors of the datatype while initiality

allows functions to be defined over the datatype via structural recursion.

Categorically, one regards such an initial algebra as the initial algebra of an endofunctor F

which represents the language or datatype. In order to incorporate fundamental features,

† Research supported by EPSRC grant GRM96230/01: Categorical Rewriting: Monads and Modularity

Ghani, Lüth, De Marchi 2

such as variables and substitution, into the framework, one considers not a single initial

algebra, but rather, for each object X , the initial F -algebra over X , i.e. the initial X+F -

algebra. The mapping sending an object X , thought of as an object of variables, to (the

carrier of) the initial X + F -algebra defines the free monad over F . The multiplication

of the monad provides an abstract representation of substitution, the unit models the

variables, while the freeness of the monad models the inductive nature of the initial

algebra. Applications to base categories other than Set have proved fruitful in many

situations, e.g. the study of S-sorted algebraic theories as monads over SetS , the study

of categories with structure using monads over Graph or Cat (Dubuc and Kelly, 1983),

the study of rewriting using monads over Pre or Cat (Lüth and Ghani, 1997) and the

study of higher order abstract syntax using monads over SetF (Fiore et al., 1999) (where

F is the skeleton of the category of finite sets).

Of course, there are other term algebras other than the initial algebra of finite terms.

For example, instead of finite terms, what about infinite terms? From the computational

perspective one may argue that one should consider only those infinite terms which

are computable in some sense. Or, from a recursion-theoretic perspective, what about

rational terms which are those terms definable by recursive equations of a certain form?

From the perspective of the implementation of functional languages, what about term

graphs which are the dominant model of syntax within that field? These questions are of

clear practical importance and the papers cited above suggest the generalisation of these

term algebras beyond the category of Set.

There has already been some work within the coalgebra community in this direction.

Indeed, Moss (Moss, 2001) gave what amounts to a rather full answer in the case of the

term algebra of finite and infinite terms by showing that they form the final X + F -

coalgebra, thereby elegantly dualising the initial algebra characterisation of finite syntax

trees. In addition, he showed that the collection of these coalgebras also forms a monad

and thereby meeting our requirement for substitution to be taken into account. These

results were independently discovered in (Aczel et al., 2001) and in (Ghani et al., 2001)

although the latter paper uses a more restrictive setting. Independently of ourselves,

(Adamek et al., 2003) considers the specific term algebra of rational terms. This pa-

per encodes the traditional definition of rational equations categorically, shows that the

resulting terms form a rational monad and then characterises this monad as the free

iterative monad.

Nevertheless, these results deal only with the specific term algebras and we don’t want

to tackle each term algebra on a case-by-case basis. To explicitly answer a question we

have been asked on a number of occasions, our intent is to go beyond the work cited

above which deals with infinite terms and rational terms and to lay the foundations of a

meta-theory encompassing a wide variety of term algebras. Thus this paper introduces

guarded monads as a uniform framework for such term algebras. In detail, we

— introduce the notion of a guarded monad and demonstrate that this definition cap-

tures a number of important examples;

Monads of Coalgebras: Rational Terms and Term Graphs 3

— provide a general theorem for building monads from coalgebras, and use this theorem

to prove that the key examples of rational terms and term graphs are guarded;

— solve rational equations whose right-hand sides are not just finite terms but belong

to any strongly guarded monad. This underpins part of the correctness of the imple-

mentation of functional programming languages via term graphs;

The term graph monad is possibly the most important contribution of this work. While

the denotational semantics of functional languages provides an elegant framework for

reasoning, the semantics of the implementation of functional languages has remained rel-

atively low level. While some attempts to model term graphs using abstract techniques

have been made (Corradini and Gadducci, 1997), they have yet to make a significant

impact within the functional programming community. Our impression is that the math-

ematical structures underlying these models, eg 2-categories, double categories etc are

significantly more complex than our approach of modelling term graphs as particular

coalgebras. We hope the simplicity of the coalgebraic model of term graphs will help

bridge this gap between the semantics and implementation of functional languages.

This paper has undergone some changes since its first draft and we would like to ac-

knowledge the referees for their constructive comments. In particular previous versions

used a concept called a coalgebraic monad which has now been renamed as a strongly

guarded monad. A number of colleagues pointed out that the isomorphism inherent in

that definition was too strong for certain examples and, after some thought, we have

come to agree with them and so introduced the weaker notion of a guarded monad. In

addition, De Marchi (Marchi, 2003) has now completed his thesis which contains detailed

proofs of all the theorems stated here.

The paper is structured as follows: Section 2 introduces the notion of a coalgebraic monad.

Section 3 contains a general theorem for proving that a given class of term algebras forms

a monad and, then, applies this to the cases of the rational monad and the term graph

monad. Section 4 extends Section 3 to cover coalgebraic monads while Section 5 contains

our partial correctness result.

2. Coalgebraic Monads

Let F : C - C be a functor, which we may think of as arising from a signature of some

form. If TX is some set of terms built from F using a set of variables X , then we take

the following properties as desirable:

— TX should contain all the variables X and be closed under applications of term

constructors from F . Thus TX should be an X + F -algebra.

— In order to have a well behaved notion of substitution, the map sending X to TX

should be a monad

Ghani, Lüth, De Marchi 4

Thus we shall define a monad T to be F -guarded iff T a (Id + F ◦−) : [C, C] - [C, C]-

algebra. In certain situations, every term t ∈ TX should either be a variable or start with

a term constructor from F which is captured by asking T to be a (Id +F ◦−)-coalgebra.

If these algebra and coalgebra structure maps are inverse, we call T a strongly F -guarded

monad. † Although this is our central intuition, we formally introduce these concepts by

first noting:

Lemma 2.1. Let (T, η, µ) be a monad and F an endofunctor on a category C. There is

a bijection between natural transformations τ : F - T and natural transformations

α : FT - T making the following diagram commute

FTT
Fµ- FT

TT

αT

?

µ
- T.

α

?
(1)

Proof. Given τ , define α = µ.τT . Commutation of (1) follows immediately by naturality

of τ and the associativity of µ:

FTT
τT T- TTT

µT- TT

FT

Fµ

?

τT

- TT

Tµ

?

µ
- T.

µ

?

Conversely, given α, define τ = α.Fη. The two mappings are easily shown to be mutually

inverse.

Condition (1) says just that, if we think of α as transforming F terms over T into T

terms, it doesn’t make any difference if we multiply two terms under the F context and

then transform, or rather transform the upper term and then multiply it with the second.

In other words, (1) implies that µ : αT - α is an F -algebra homomorphism.

Definition 2.2. An F -guarded monad on C is a 4-tuple (T, η, µ, τ) such that (T, η, µ) is

a monad on C and τ : F - T is a natural transformation. A morphism of F -guarded

monads between (T, η, µ, τ) and (T ′, η′, µ′, τ ′) is a monad morphism φ from (T, η, µ) and

(T ′, η′, µ′) such that φτ = τ ′.

We argued earlier that F -guarded monads should have a (Id + F ◦ −)-algebra structure

on them. This is verified by the following lemma which is a simple case of diagram

chasing (Marchi, 2003).

† We ignore size issues here since we intend to work with lfp categories and finitary functors.

Monads of Coalgebras: Rational Terms and Term Graphs 5

Lemma 2.3. Let (T, η, µ, τ) be an F -guarded monad on C. Let α : FT - T be

the natural transformation induced by τ , such that (1) commutes. Define the natural

transformations η = inl : Id - Id + FT ; and

µ : Id + FT + FT (Id + FT)
Id+FT+FT [η,α]- Id + FT + FT 2 [Id+FT,Fµ]- Id + FT.

Then, the triple (Id+FT, η, µ) is a monad, and the map [η, α] : Id+FT - T is a monad

morphism. Moreover, given another F -guarded monad (S, η′, µ′, τ ′) and a morphism of

guarded monads ψ : T - S, there is a a monad morphism Id+Fψ such that [η′, α′](Id+

Fψ) = ψ[η, α].

So, for any F -guarded monad T , TX is naturally an X +F -algebra. We shall call strong

those monads for which this algebra structure is invertible.

Definition 2.4. Let F be an endofunctor on a category C. A strongly F -guarded monad

on C is an F -guarded monad T = (T, η, µ, τ) such that the induced monad morphism

[η, µ.τT] : Id + FT - T is an isomorphism. Strongly guarded monads form a full sub-

category of the category of F -guarded monads.

Now for some examples.

Proposition 2.5 (Initial F -guarded Monad). Let (T, η, µ) be the free monad over

an endofunctor F : C - C. Then, T is the initial (strongly) F -guarded monad.

Proof. Freeness gives a natural transformation τ : F - T . Verifying the conditions

of Lemma 2.3 shows that φ = [η, µ.τT] : 1 + FT - T is a monad morphism. The

transformation inr ◦ Fη : F - Id + FT induces, by freeness of T , a monad mor-

phism ψ : T - 1 + FT . That φ and ψ are mutually inverse are diagram chases and

hence T is a (strongly) F -guarded monad. Given any other (strongly) F -guarded monad

(T ′, τ ′), freeness and the transformation τ ′ : F - T ′ gives a unique monad morphism

! : T - T ′ such that τ ′ =!τ .

A slicker proof is possible when, for each object X , the action of the free monad is given

by the (underlying object of the) initial X +F -algebra. In such a setting, T is the initial

algebra of the endofunctor (Id + F ◦ −) : [C, C] - [C, C] and, since all initial algebras

are isomorphisms, T is isomorphic to 1 +FT . Initiality follows since every (strongly) F -

guarded monad is a (Id +F ◦−)-algebra. This proof covers the canonical case of finitary

functors over the category Set.

Lemma 2.6 (Final Strongly F -guarded Monad). Let F : C - C be and let T ν

be the final (Id + F ◦ −)-coalgebra. Then T ν is the final strongly F -guarded monad.

Proof. That T ν is a monad such that there is an isomorphism [η, α] : Id + FT ν - T ν

is proved in (Aczel et al., 2001). Furthermore, that α satisfies condition (1) also follows

Ghani, Lüth, De Marchi 6

from their substitution theorem. Thus T ν is strongly F -guarded. Any other strongly

F -guarded monad S is an (Id+F ◦−)-coalgebra and hence there is a unique (Id+F ◦−)-

coalgebra homomorphism between S and T ν . This is also a F -guarded monad morphism,

as one can prove with a bit of diagram chasing (Marchi, 2003) and using the finality of

T ν . Uniqueness follows from finality.

Returning to our motivations concerning term algebras, the monad T ν is of practical

importance as it captures the the set of finite and infinite terms just as the free monad

captures the set of finite terms. A number of other subalgebras of T ν are strongly F -

guarded monads over Set as can be seen by showing that the multiplication of T ν restricts

to the subalgebra. This way, one can show that the following are all strongly F -guarded

monads over Set: i) infinite terms which contain only a finite number of variables; ii)

locally finite terms (Courcelle, 1983), i.e. finite and infinite terms which have the prop-

erty that from every node, there is a finite path to a leaf; iii) rational terms are terms

with a finite number of subterms, or, more formally, the free iterative theory over a

signature (Elgot et al., 1978). However, guarded monads also capture other syntactic

structures which are not subalgebras of T ν , eg term graphs which model recursion and

sharing via use of cycles and multiple edges.

We now develop a general theorem for deriving monads as pointwise colimits and use

this result to define the rational and term graph monads.

3. When is a Pointwise Colimit a Monad?

3.1. Lfp Categories and Kleisli Monoids

Inherent in the notions of signature, terms, substitution etc, is the concept of arity which

categorically means the representing monad has a rank. To understand this condition,

the initial algebra TΣX built over a signature satisfies

TΣ(X) =
⋃

X0⊂X is finite

TΣ(X0) (2)

This equation holds because all the operators in Σ have a finite arity and thus a term

built over X can only contain a finite number of variables. Such monads are finitary

and we restrict our attention to them as they capture most of the key examples and

the theory generalises straightforwardly to functors with higher rank. The relationship

between signatures and their representing monads can be generalised to lfp-categories, i.e.

cocomplete categories generated by a set of finitely presentable objects, where an object

is finitely presentable if its covariant hom functor preserves filtered colimits. See (Adamek

and Rosický, 1994) for more details on lfp categories and (Kelly and Power, 1993) for a

more detailed description of the generalisation of algebraic theories to lfp categories.

If C is an lfp-category, let Cfp be the full subcategory of finitely presentable objects with

Monads of Coalgebras: Rational Terms and Term Graphs 7

inclusion J : Cfp
- C. A functor F : C - D is finitary if it preserves filtered colimits,

or equivalently if it is isomorphic to the left Kan extension along J of its restriction to

Cfp. Hence, the category Fin[C,D] of finitary functors from C to D is equivalent to the

functor category [Cfp,D].

In the case of D = C, the category of finitary endofunctors is monoidal with unit the

identity and multiplication given by composition. Similarly [Cfp, C] is also monoidal with

unit the inclusion J and with multiplication given by F�G = LanJF ◦G. Now, to give

a finitary monad on C is to give a monoid in Fin[C, C] which is thus a monoid in the

equivalent category [Cfp, C] (Kelly and Power, 1993). Thus we can prove that rational

terms, term graphs or some other term algebra form a finitary monad by proving their

restriction to [Cfp, C] is a monoid. Such a monoid can be obtained from what we call a

Kleisli monoid which is nothing more than a Kleisli triple reformulated appropriately fro

the monoidal category [Cfp, C].

Definition 3.1. A Kleisli monoid for an lfp category C consists of

— a function T assigning to each object X in Cfp an object TX in C;

— for each X in Cfp a map ηX : X - TX in C;

— for objects X , Y in Cfp, a lifting function sX,Y : C(X,TY) - C(TX, TY);

satisfying the following conditions:

sX,X(ηX) = 1TX sX,Y (f).ηX = f sX,Z(sY,Z(g).f) = sY,Z(g).sX,Y (f).

In the rest of the paper, we shall omit the subscript to the function s, whenever possible.

The definition doesn’t substantially differ from that of a Kleisli triple for a category C

and, not surprisingly, defines a monoid in the category [Cfp, C] and hence a finitary monad

on C. In doing so we make use of the well known formula for Kan extensions in terms of

coends and wedges. See (MacLane, 1971) for a reference to this material.

Lemma 3.2. If C is an lfp category, then every Kleisli monoid for C defines a monoid in

the category [Cfp, C].

Proof. Firstly, T extends to a functor T : Cfp
- C and a natural transformation of the

form η : J - T by setting T (f) = s(η.f). Multiplication requires maps of the form

µS : (T�T)S - TS. Since (T�T)S is defined via the Kan extension

(T�T)S = LanJT (TS) =

∫ n∈Cfp

C(n, TS) • Tn - TS

we therefore require a wedge wn : C(n, TS) • Tn - TS which, via the universal

property of the tensor, is a family of maps C(n, TS) - C(Tn, TS) which is precisely

what is given by the lifting of the Kleisli monoid. That these maps do indeed form a wedge

follows from the laws of the Kleisli monoid. Naturality follows from the parametricity

theorem for coends while the laws of a monoid again boil down to the laws of the Kleisli

monoid. See () for more details.

Ghani, Lüth, De Marchi 8

3.2. Some General Properties of Colimits

In the next section we will take a finitary functor F and define the rational monad at an

object X to be the colimit of the inclusion of the full subcategory of X + F -coalgebras

with finitely presentable carrier. A similar pointwise colimit construction will be used to

define the term graph monad. Rather than prove these results directly, we consider the

more general question of when is a pointwise colimit a monad? Note that this is a fairly

technical section and its inclusion is merely to systemize the proofs that rational terms

and term graphs form monads. Consequently the interested reader may prefer to skim

this section, consider the examples and then reread this section in greater depth.

First, we abstract the data we have. Firstly, for every object X , we are interested in

a subcategory of the category of X + F -coalgebras. This we model by as a functor

I : C - Cat. Of key importance is the forgetful functors UX from the (sub)-category

of X+F -coalgebras to C. If we denote by KC : C - Cat the constant functor mapping

each object to C, then the collection of forgetful functors forms a natural transformation

U : I ⇒ KC : C - Cat. Thus we can formalise our question mathematically as to

when the assignment X 7→ colimUX defines a finitary monad. We answer this question

by finding a Kleisli monoid structure for its restriction to Cfp. However, first we introduce

some notation concerning colimits since colimits are central in what follows.

Definition 3.3. Let C be a 2-category and X an object of C. The lax slice 2-category

LaxX has

— Object of LaxX are maps f : Y - X in C.

— Arrows α : f - g of LaxX are pairs 〈h, α〉 where α : f ⇒ gh in C. If α : f - g

and β : g - h are morphisms in LaxX , we write their composite as β♦α : f - h.

— Given maps 〈h, α〉 : f - g and 〈h′, α′〉 : f - g, a 2-cell 〈h, α〉 - 〈h′, α′〉 con-

sists of a 2-cell θ : h - h′ in C such that α′ = gθ.α.

The usual definition of a slice category C/X is the lax slice category on the 2-category

obtained by adding only the identity 2-cells to C. Henceforth, given a diagram D with

colimit X , we shall indicate with d the colimiting map d : d - X for any object d in

D. Using this notation, lax slice categories allow us to state the properties of colimits we

require as follows:

Lemma 3.4. Let C be a cocomplete category and consider the lax slice category LaxC

built over the 2-category Cat. The colimit operation defines a 2-functor colim : LaxC - C

where we regard C as the 2-category obtained from C by adding identity 2-cells.

Unwinding Lemma 3.4 means that if 〈H,α〉 ∈ LaxC(F,G), then the family of arrows

Hd.αd defines a cocone over F and hence a map colimα : colimF - colimG. In addi-

tion, colim1F = 1 : colimF - colimF and colim(β♦α) = colimβ.colimα. Finally, given

a 2-cell α - α′, then colimα = colimα′.

Monads of Coalgebras: Rational Terms and Term Graphs 9

3.3. Obtaining the Data for a Kleisli Monoid

So, define TX = colimUX forX finitely presentable and consider what is required for TX

to be a Kleisli monoid. To obtain a unit for T , we assume that for each finitely presentable

object X ∈ Cfp there is an object iX ∈ IX such that UX(iX) = X . Thus we can define

ηX to be the inclusion iX : X = UX(iX) - colimUX = TX. In our examples, iX will

be the coalgebra inl : X - X + FX, whose inclusion embeds the variables into the

colimit.

Finally, we turn to the lifting functions for a Kleisli monoid. Since TX = colimUX , we

can extend a map X - TY to a map TX - TY by mapping each X+F -coalgebra

into a Y +F -coalgebra and then constructing the associated cocone into TY . Since X is

finitely presentable, X can be actually mapped to TY0 for some subobject Y0 of Y and

then adding Y0 to the carrier of each X + F -coalgebra, thereby making it into a Y + F

one. Formally, this procedure is captured by what we call a lifting:

Definition 3.5. I is said to have a lifting L when

— For each object X ∈ C and each g ∈ IX , there is an arrow 〈L(g), gL〉 : UUg - UX
in LaxC , i.e. a functor L(g) : IUg - IX and a natural transformation gL : U ⇒

U.L(g)

— For each arrow k : g - h in IX , there exists a natural transformation of the form

kL : L(g) - L(h).IUk such that hLIUk = UkL.gL

IX

C

⇒gL

UU

IUg
L(g) IUk

IUhIUg

Lg Lh

IX

⇒kL

A more abstract definition of a lifting is given as follows: First note that for each object

X , UX is an object of the 2-category LaxC . Thus we may form the lax slice category LaxUX

which (by ignoring the 2-cells) defines a functor LaxU : C - Cat. A lifting is then a

natural transformation I - LaxU . As usual, see (Marchi, 2003) for more details.

Lemma 3.6. Let X and Y be finitely presentable, IY is a filtered category and I have a

lifting. Then, any map f : X - colimUY , induces a map s(f) : colimUX - colimUY .

Proof. Since X is finitely presentable and IY is filtered, f factors as f = if .f
+ for some

if ∈ IY . This defines a functor Lf = L(if)I(f+) and also a natural transformation

fL = iLf ♦1

Ghani, Lüth, De Marchi 10

f

UY (if)

f+

colimUY

if

I(f+) Lif
IYX IX

C

U U U

IU(if)

⇒1 ⇒iL
f

and hence, by lemma 3.4, a map s(f) = colimfL : colimUX - colimUY .

The construction of s(f) appears to depend upon the factorisation f = if .f
+. This is

actually not the case. In fact, suppose f = ih.h is another factorisation, inducing the

functor and natural transformation

L(ih)I(h) : IX - IY and iLh♦1 : U ⇒ UL(ih)I(h)

By lemma 3.4, we have a map colim(iLh♦1) : TX - TY . Because IY is filtered, there

exist i, k : if - i and k′ : ih - i such that f factorises as f = i.g, for a given map

g : X - UY (i), with Uk.f+ = g = Uk′.h. Let’s focus on k : if - i. The lifting L

determines kL : L(if) ⇒ L(i).IUk. Then

iL♦1 = iLI(Uk)I(f+) = (UkL.iLf)I(f+) = UkLI(f+).iLf I(f+)

where the first equality comes from I(g) = I(Uk)I(f+), the second is from the lifting

of kL and the third is the distribution of horizontal over vertical composition of nat-

ural transformations. Thus iL♦1 = UkLI(f+).iLf ♦1, and by lemma 3.4, we have that

colim(iL♦1) = colim(iLf ♦1). Analogously, colim(iL♦1) = colim(iLh♦1), hence s(f) doesn’t

depend on the factorisation.

3.4. Verifying the Laws For a Kleisli Monoid

Reusing the notation above, we define for the canonical factorisation f = if .f
+ the

functor L(f) = L(if).I(f+) and fL = iLf I(f+). Having obtained our candidates for a

Kleisli triple, we now verify the three laws for which we need further assumptions. For the

lifting of the unit, note first that there is a factorisation ηX = iX .1. Thus, by lemma 3.4,

s(η) = colim(iLX♦1) = colimiLXcolim1 = colimiLX . This verifies the first law for a Kleisli

monoid.

Lemma 3.7. Let X ∈ C. If colimiLX = 1, then s(ηX) = 1UX .

Now we establish the second law for a Kleisli monoid.

Lemma 3.8. Let X and Y be finitely presentable and f : X - colimUY . If there is

a map k : L(f)(iX) - if in IY such that Uk.fLiX = f+, then s(f).ηX = f .

Proof. s(f) is determined by a factorisation f = if .f
+. Since ηX is the inclusion from

UX(iX) to colimUX , s(f).η is the UX(iX)-th component of the cocone determined by f

Monads of Coalgebras: Rational Terms and Term Graphs 11

as in lemma 3.6, i.e. s(f).η = L(f)(iX).fLiX . Thus:

X = UX(iX)
fL

iX- UY L(f)(iX)

UY (if)

Uk

?

if

-

f + -
colimUY

L(f)(iX)-

where the left triangle commutes by assumption and the right since it is part of the

universal cocone over UY .

To establish the third and final law of a Kleisli monoid we require some extra assumptions

as follows:

Lemma 3.9. LetX , Y and Z be finitely presentable. Consider two maps f : X - colimUY
and g : Y - colimUZ . Assume, for all y ∈ IY ,

IUy
L(y) - IY

IU(L(g)y)

I(gL
y)

?

L(L(g)y)
- IZ

L(g)

?

and gL♦yL = (L(g)y)L♦1. Then s(s(g).f) = s(g).s(f)

C

U

IZ

U

Lg

U

IUy IY

U

⇒yL ⇒gL

IUy
Ly

IU(Lg(y))

C

U

I(fL
y)

⇒1 ⇒(Lgy)L

IZ
L(Lg(y))

U

Proof. The map s(g).f can be factorised as follows

X
f- TY

s(g)- TZ

Uif

if

6

gL
if

-

f + -

U(L(g)(if))

L(g)(if)
6

where f = if .f
+ is the factorisation of f used in the construction of s(f) and the square

commutes by the construction of s(g). Thus we have a factorisation of s(g).f and the

functor L(s(g).f) can be calculated as

L(s(g).f)) = L(gLif).I(gLif).I(f+) = L(g).L(if).I(f+) = L(g).L(f)

where the third equality is by definition of L(f). From the assumptions, the follow-

ing equality is also derivable (L(g)if)
L♦1 = gL♦iLf : IUX(if) - IZ. By precomposing

with If+, we get that the two 2-cells associated to L(s(g).f) and L(g).L(f) are equal,

therefore s(s(g).f) = s(g).s(f).

Ghani, Lüth, De Marchi 12

Collecting all the results so far, we have established the following

Theorem 3.10. Let C be an lfp category, I : Cfp
- Cat a functor such that for every

X in Cfp, IX is filtered. Let U : I ⇒ KC : Cfp
- Cat be a natural transformation with

a lifting L. For arbitrary objects X , Y and Z in Cfp and maps f : X - colimUY and

g : Y - colimUZ in C, assume that

— there is an object iX in IX such that UX(iX) = X and colimiLX = 1;

— there is a map k : L(f)(iX) - if such that Uk.fLiX = f+;

— for all y in IY , gL♦yL = (L(g)y)L♦1 and

IUy
L(y) - IY

IU(L(g)y)

I(gL
y)

?

L(L(g)y)
- IZ.

L(g)

?

Then the assignment TX = colimUX carries a Kleisli monoid structure.

Putting all of the work in this section together, we have the following corollary stating

conditions under which pointwise colimits form a monad.

Corollary 3.11. Under the assumptions of the previous theorem, the left Kan extension

of T under the inclusion of Cfp into C is a finitary monad on C.

4. Rational and Term Graph Monads

We now use our general theorem to prove that term graphs and rational terms form

monads. First we state some general properties of categories of coalgebras. We write

UX : (X +F)−coalg - C for the forgetful functor sending each coalgebra to its

carrier. UX creates colimits and since C is lfp, and hence cocomplete, any functor J :

D - (X+F)−coalg from a small category D has a colimit and UXcolimJ = colimUXJ .

Next,

Lemma 4.1. Let F : C - C be a functor. The assignment sending an object X of C

to the category (X+F)−coalg defines a functor Φ : C - Cat. In addition, U : Φ ⇒ KC

is a natural transformation.

Proof. If f : X - Y is a map in C, Φ(f) sends an X+F -coalgebra (S, h) to the X+F -

coalgebra (S, (f + 1).h). The action of Φ(f) on coalgebra morphisms and functoriality

are easily proved. Naturality holds since UX = UY Φ(f).

In general, we shall instantiate theorem 3.10 with functors which are variously related to

Φ and whose properties follow from those of Φ. Similarly, we define a lifting for Φ from

which liftings for other functors can be obtained.

Monads of Coalgebras: Rational Terms and Term Graphs 13

Lemma 4.2. Let (S, g) be an X+F -coalgebra. The map sending any S+F -coalgebra

(A,m) to the following X+F -coalgebra defines a lifting for Φ.

A+ S
[m,inl]- S + FA

g+1- X + FS + FA
1+[F inr,F inl]- X + F (A+ S)

Proof. We have defined the object part of a functor L(g) : ΦUg - ΦX and the action

of L(g) on morphisms is easily defined. The (A,m)-th component of gL : US - UX .L(g)

is the inclusion gLm = inl : A - A+ S. Naturality of gL is the naturality of inl. Given

any X + F -coalgebra map k : (S, g) - (S′, h), define kL to be the natural transfor-

mation whose component on an (S+F)-coalgebra m : A - S + FA is the following

X + F -coalgebra morphism

A+ S
L(g)(m)- X + F (A+ S)

A+ S′

1+k
?

L(h)(Φk(m))
- X + F (A+ S′)

1+F (1+Uk)
?

The components of the natural transformations representing the 2-cell condition are

(1+k).inl : A - A+ S′ and inl : A - A+ S′, hence clearly equal.

4.1. The Rational Monad

Given a signature Σ, rational terms are the set of finite and infinite terms which arise

as solutions of systems of equations of the form e1 = t1, . . . , en = tn where each ti is

a finite term built from the signature Σ and whose variables are from the union of a

fixed set X and E = {e1, . . . , en}. In order to get a solution one insists that each term

ti is not an element of E. Rephrasing this categorically, a rational equation is a function

φ : E - X + FΣTΣ(X +E) where FΣ is the polynomial endofunctor associated to the

signature and TΣ is the initial (X+E)+F -algebra, as in (2). As we shall see in section 6,

all such equations have unique solutions in T ν(X). For example, the equation e = A(e)

has as its solution the rational term A(A(...)).

We can think of an equation of the form e = t(e, ~x) as a finite tree with variables ~x

and e pointing to the root of the system. For example, the equations e=A(x,e) and

e=A(x,A(x,e)) can be represented as follows

x x

A

A

x

A

Such trees are X +FΣ-coalgebras on a finite set whose states are the nodes in the graph

and whose structure map sends each state to either the term constructor labelling it and

Ghani, Lüth, De Marchi 14

the child states, or to the variable labelling the node. Since equations are, intuitively, coal-

gebras with finitely presentable carrier, one may guess that the rational monad should

be defined as the coproduct of all such coalgebras. However the two coalgebras above

have the same solution and hence define the same rational term. Categorically, these

coalgebras are bisimilar and hence the rational monad is the colimit of the inclusion of

the full subcategory of X + F -coalgebras with finitely presentable carrier. Taking the

full subcategory includes all coalgebra morphisms and hence quotients by bisimulation.

Formally, set IR : C - Cat to be the functor mapping an object X to the full subcat-

egory of X + F -coalgebras whose underlying object is finitely presentable. The forgetful

functor UX : IR(X) - C provides the functor whose pointwise colimit we shall take.

Proposition 4.3. The assignment X 7→ RX = colimUX defines a monad.

Proof. Since this functor is finitary, we use theorem 3.10 to prove rational terms form

a monad. Functoriality of IR is inherited from that of Φ as introduced in lemma 4.1.

Similarly, a lifting on IR comes as a restriction of the lifting L for Φ. Crucially for this,

the coproduct of finitely presentable objects is finitely presentable which means that

L(f), when applied to a coalgebra on a finitely presentable object, returns a coalgebra

on a finitely presentable object. Since we use the full subcategory, all the components of

the required natural transformations in the lifting L are still available. Finally, all the

equational properties of the lifting still hold, hence we have a lifting for IR.

In order to apply corollary 3.11, we still need to verify the three conditions expressed in

our main theorem 3.10. The existence of a natural transformation α = inl : IdIX ⇒ iLX
ensures, by lemma 3.4, that colimiLX = colimId = 1.

Now, given a map f : X - RY in C, where X and Y are finitely presentable, the

coalgebra L(f)(iX) is defined by the composite

X + Y0
inl[f+,Y0]- Y0 + FX

if +FX- Y + FY0 + FX
Y+[F inl,F inr]- Y + F (Y0 +X)

where f factors as f = iff
+. If we take the map k : L(f)(iX) - if to be [f+, Y0] :

X + Y0
- Y0, it is now clear that Uk.fLiX = f+.

Finally, let Z be finitely presentable, g : Y - RZ be a map in C, and y : Y0
- Y +

FY0 be a Y +F -coalgebra. Then, for any Y0 +F -coalgebra α : A - Y0 +FA in I(Uy),

the actions of the functors L(g)L(y) and L(L(g)y)I(gLy) on α determine the same Z+F -

coalgebra

A+ Y0 + Z0

Y0 + Z0 + FA

[α,Y0,Z0]

?

Y + Z0 + F (A+ Y0)

(Y+Z0+[F inl,F inr])[y,Z0,FA]
?

Z + F (A+ Y0 + Z0)

(Z+[F inl,F inr])[ig[g+,Z0],F (A+Y0)]
?

Monads of Coalgebras: Rational Terms and Term Graphs 15

where g factors as g = igg
+ with U(ig) = Z0, and we have omitted the obvious inclusions

in the sums and deliberately rearranged the summands. The two corresponding compo-

nents of the natural transformations gL♦yL and (L(g)y)L♦Id turn out to be the inclusion

A - A+ Y0 + Z0, hence being equal.

4.2. The Term Graph Monad

In this section we shall work in the category Set, and the functor F will be of the form

FΣ for some signature Σ, unless otherwise explicitly said. Term graphs are widely used in

computer science as they are finite terms with loops and parallel edges to model recursion

and the sharing of subterms. For example, the term (5 + 3) ∗ (5 + 3) can be encoded as

either

∗

+

��
� //

/

5 3

or

∗

��
�� ??

??

+
//

/
��
�

+
11

1
��
�

5 3 5 3.

Clearly, in the first case the addition will be performed only once, whereas in the second

case it will be evaluated twice.

When introducing them formally, people often ask for variables to be shared to the

maximum possible extent. Here, we choose to relax this condition, allowing such terms

as

F

��
�� ,,

,,

x x

and

F

x

to coexist. This allows the user to choose for oneself how to handle the resources.

Formally, we define term graphs over a Set-signature Σ as follows.

Definition 4.4. A term graph with variables in a set X is a 6-tuple (S, V, Ls, Lv, A, r)

where

— S and V are finite sets;

— L is a function from S to Σ;

— A is a function from S to C∗ such that the length of A(v) is the arity of L(v), where

C = S + V and C∗ is the set of finite words over C;

— Lv is a function from V to X ;

— r is an element of C such that for any other state s in C there is a finite sequence

a1, . . . , an such that a1 = r, an = s and ai is an element in the word A(ai−1).

Here, C represents the set of states of the term graph, which naturally split as the union

of those states labelled by term constructors, via Ls and those labelled by variables, via

Lv. The function A maps each state in S to the (ordered) set of its immediate child states

Ghani, Lüth, De Marchi 16

and clearly, there are as many children as the arity of the constructor labelling the state.

Finally, the element r ∈ C is a chosen root of the term graph, from which all the other

states can be reached.

This data can be presented much more elegantly as an X+FΣ-coalgebra with carrier C.

The structure maps Lv, Ls and A clearly generate the structure map of the coalgebra

γ : C = V + S - X + FΣ(V + S) (3)

The information on the root transposes here to that of a generator.

Definition 4.5. Given an F -coalgebra (G, γ) for an endofunctor F on a category C,

the subcoalgebra of (G, γ) generated by S, written < S >, is the smallest subcoalgebra

of (G, γ) containing S. Formally, if i : S - G is the inclusion of S in G, then <

S >= (H, ξ) is such that there is a monic j : S - H and a coalgebra monomorphism

h : (H, ξ) - (G, γ) for which U(h)j = i, and is universal amongst such.

In the particular situation we are dealing with now, the subcoalgebra generated by a

subobject can be described explicitly in terms of reachable states. If (G, γ) is a coalgebra

for the Set-endofunctor FΣ and S ⊂ G, then the coalgebra < S > has as a carrier the set

of all those states in G which can be reached starting from a state in S in the obvious

sense. Thus the concept of root for a term graph has its categorical counterpart in the

fact that (G, γ) is generated by r. In other words, the set of term graphs with variables

from a set X is the set of X + F -coalgebras with a finite carrier, equipped with a choice

of a specific generating element in the carrier. We shall call such a triple (g,G, γ) a rooted

coalgebra.

Conversely, we can think of any rooted coalgebra as a term graph. Given (g,G, γ) with

G finite, we can form the two pullbacks below:

Gv
inl- G � inr

Gs

X

γv

?

inl

- X + FG

γ

?
�
inr

FG

γs

?

where, since Set is extensive, G = Gv +Gs. Note that, for the presence of roots, we can

not abstract from Set to any lfp extensive category (where the same construction could

otherwise be performed).

To define the term graph monad via theorem 3.10, we need to get G(X) as a colimit.

Intuitively, IX should have as objects rootedX+F -coalgebras with a finite carrier which

the forgetful functor UX maps to its root. Since we don’t want to identify bisimilar term

graphs, maps in IX should just be isomorphisms of coalgebras. Unfortunately, this is

not a filtered category but, fortunately, there is an easy fix. Let I ′X be the category we

just described. Then, choose IX to be the completion of I ′X under finite coproducts in

(X+F)−coalg. In particular, the objects of IX are of the form Γ =
∑n

i=1(gi, Gi, γi) where

Monads of Coalgebras: Rational Terms and Term Graphs 17

each (gi, Gi, γi) is a rooted X+F -coalgebra with a finite carrier, and arrows are copairing

of injections. Sometimes, we shall write a Γ as above in the form Γ = ({g1, . . . , gn}, G, γ),

where (G, γ) =
∑n
i=1(Gi, γi) is a coproduct in (X+F)−coalg The functor UX will map

such a Γ to the set {g1, . . . , gn}. In less categorical terms, we are now considering term

graph forests.

That IX is filtered can easily be verified (Marchi, 2003). To define the lifting, note that

because IX is the free completion under finite coproducts of I ′X in (X+F)−coalg, we

can define the functor L(Γ) as the free extension of a functor from I ′({g1, . . . , gn}) to

IX , where Γ = ({g1, . . . , gn}, G, γ) is an object of IX . The action of this functor is

L(Γ)(a,A, α) = (ã, Ã, α̃)

where the triple (ã, Ã, α̃) depends on whether a belongs to As or to Av .

If a ∈ As, then we put ã = a,

Ã =
∑

a∈Av

Ga +As,

where for each a ∈ Av α(a) = gi for some i and Ga is the coalgebra Gi, and

α̃ =
X

a∈Av

Ga+As

P
γa+αs

//X+F (
X

a∈Av

Ga)+FA
X+[F inl,F (fαv+id)]

//X+F (
X

a∈Av

Ga+As).

where the function α̃v : Av - ∑
a∈Av

Ga maps an element a to the element α(a) =

αv(a) considered as an element of Ga. If a ∈ Av , then L(Γ)(a,A, α) = (ga, Ga, γa) where

the subscript a is the specific i for which α(a) = gi.

The component of the natural transformation ΓL corresponding to ({a1, . . . , an}, A, α)

has to be a map of the form

{a1, . . . , an} //{gai
| ai ∈ Av} ∪ {ai | ai ∈ As}.

This will map the element ai to itself if ai ∈ As, and to gai
= α(ai) if ai ∈ Av (where

i = 1, . . . , n). Naturality is easily checked.

Finally, given a morphism φ : Γ - ∆ in IX , we need a natural transformation φL :

L(Γ) - L(∆)IUXφ such that UX(φL)ΓL = ∆♦jUXφ. Infact, unraveling the definitions

means that we can take φL to be the identity. That these data form a lifting is left either

as an exercise or can be found in (Marchi, 2003). Thus we have

Proposition 4.6. The functor sending X to colimIX defines a monad.

4.3. Coalgebraicity Results

We have constructed a general theorem for defining monads as pointwise colimits. Since

our overall interest lies in guarded monads, the question arises as to whether it is possible

to extend Theorem 3.10 to produce guarded monads. Here we provide preliminary results

Ghani, Lüth, De Marchi 18

showing that the term graph and rational monads are indeed guarded and the rational

monad is strongly guarded.

Lemma 4.7. Let F : C - C be a finitary functor, IX a filtered category and assume

there is a functor H : IX - IX. If there is a natural transformation α : FUX ⇒

UXH , then colimUX is an F -algebra. Similarly if there is a natural transformation α :

UX ⇒ FUXH , then colimUX is an F -coalgebra.

Proof. By lemma 3.4, we have the map in the lax slice category (H,α) ∈ LaxC(FUX , UX)

and hence colimα : colimFUX = F colimUX - colimUX where the first equality is the

finitariness of F . The second half of the theorem is proved analogously.

We now prove that the rational and term graph monads are pointwise fixed points. To

do this, we use the following property of coalgebras

Lemma 4.8. Let F : C - C be a functor and X and object of C. Then, the mapping

sending an X + F -coalgebra h : S - X + FS to the X + F -coalgebra

X + Fh : X + FS - X + F (X + FS)

defines a functor FX : (X+F)−coalg - (X+F)−coalg. Furthermore, (X+F◦−).UX =

UXFX , there is a natural transformation α : UX ⇒ (X +F ◦−).UX and another natural

transformation β : 1 ⇒ FX such that α♦1 = Uβ.

Proof. For the transformation α, for an X + F -coalgebra 〈A, h〉, set αh to be the map

h which is clearly a map of the right form. Naturality of α is precisely the condition

on a map k : S - S′ such that k : (S, h) - (S′, h′) is a coalgebra homomorphism.

Similarly, set βh = h.

Lemma 4.9. If F preserves finitely presentable objects, the rational monad is strongly

F -guarded monad and the term graph monad guarded.

Proof. We consider the rational monad, with the case of the term graph monad being

analogous. The functor FX preserves finite coalgebras and hence restricts to a functor

IRX - IRX which we also denote FX . Similarly, α and β restrict to natural trans-

formations αR and βR. Since the functor X + F ◦ − is finitary, by lemma 4.7, RX is

both an X + F -coalgebra, via colimαR : RX - X + FRX, and an X + F -algebra,

with structure map colim1 : X + FRX - RX.

Monads of Coalgebras: Rational Terms and Term Graphs 19

C

FX

U

1
IRX IRX

U U U

X + F ◦ − X + F ◦ −

C C C

= ⇒αR

IRX IRX

We use lemma 3.4 to show that these maps are mutually inverse. In one direction,

(colimα).(colim1) = colim(α♦1) = colim(Uβ) = colim1 = 1, where the second equal-

ity is from lemma 4.8 and all the others are from lemma 3.4. In the reverse direction,

calculating the pasting gives 1♦αR = αRFX = (X+F)Uβ, where the last equality holds

since both natural transformations have, as component for a coalgebra h, the arrow

X + Fh. Thus

(colim1).(colimα) = colim1♦α = colimαFX = colim(X + F)Uβ

= X + F (colimUβ) = X + F (1) = 1

where the fourth equality holds because X + F is finitary.

The family of maps making RX an X + F -coalgebra can be seen to be natural by

noting that Rf arises via lemma 3.4 as colimfR and X + Ff arises as colimX + F (fR)

where fR = iRY ♦1. Thus, commutation of the naturality square amounts to proving

that α♦fR = X + F (fR)♦α. At an X + F -coalgebra (S, h), (α♦fR)h = LiY .inl while

(X + F (fR)♦α)h = X + F (inl).h. The definition of LiY shows that these are equal. The

naturality of the maps making RX an X + F -algebra follows from the naturality of the

maps making RX an X+F -coalgebra and the fact that these maps are mutually inverse.

The first component of the algebra structure is the unit of R since we have a map

of the form βiX : iX - FX (iX) which induces the second of the following equalities

colim1.inl = FX(ix) = iX = η. Finally, equation (1) is another diagram chase.

5. Recursion Over Coalgebraic Monads

We have seen how rational terms arise as solutions of equations represented categori-

cally as maps φ : E - TΣ(X +E) for fixed sets X and E. A solution for φ is a map

φ† : E - T ν(X) such that the appropriate diagram commutes. In this section, we

show that this ability to solve equations is possessed by all strongly F -guarded monads,

not just the initial one.

Definition 5.1. Let H be a strongly F -guarded monad. An H-rational equation is a

map φ : E
φ- X + FH(X +E).

A solution for a H-rational equation φ is a map φ† : E - T ν(X) for which

E
φ - X + FH(X +E)

T ν(X)
�

ψ
φ †

-

Ghani, Lüth, De Marchi 20

where ψ.inl = η and ψ.inr is obtained as the composite

FH(X +E)
F !- FT ν(X +E)

FT ν [η,φ†]- FT ν2(X)
Fµ- FT ν - T ν

Notice that each H-rational equation φ : E
φ- X + FH(X +E) determines a X + F -

coalgebra structure for H(X +E)

H(X +E)
[η,α]−1

- X +E + FH(H +E)
[inl,φ,inr]- X + FH(H +E)

Moreover, there is a bijective correspondence between solutions E - T ν(X) and

X +F -coalgebra morphisms H(X +E) - T ν(X). In one direction, we simple restrict

a coalgebra morphism with the canonical inclusion E - H(X+E), while given a map

ψ : E - T ν(X) we can construct a map H(X +E)
H[η,ψ]- HT ν(X) - T ν(X). It’s

then simple diagram chasing to show that, under these constructions, being a solution

corresponds to being a coalgebra map. We believe that the formulation of a solution

via coalgebra maps is both cleaner and conceptually simpler that the usual formulation.

Either way, since T ν(X) is the final X + F -coalgebra we have proved:

Lemma 5.2. Every H-rational equation map E
φ- X + FH(X + E) has a unique

solution φ† : H(X +E) - T ν(X)

We can go further and build strongly F -guarded monad morphisms into the picture

Lemma 5.3. Let ψ : H - H ′ be a morphism of strongly F -guarded monads. Then

there is a map ψ∗ sending H-rational equations to H ′-rational equations such that for

all H-rational equations φ, φ† = (ψ∗(φ))†.ψ

Proof. Given an H-rational equation E
φ- X + FH(X +E), set ψ∗(φ) to be the H ′-

rational equation E
φ- X + FH(X +E)

X+Fψ- X + FH ′(X +E). Next, note that ψ

defines a coalgebra morphism between the coalgebras [inl, φ, inr] and [inl, X + Fψ.φ, inr]

which generate the solutions of φ and ψ∗(φ). By the finality of T ν(X), we therefore have

φ† = (ψ∗(φ))†.ψ

The importance of this result is that it gives a simple, yet precise, proof of part of the

implementation of functional languages using term graphs. For example, suppose we write

c = A(x,c,c) in a functional language. This is an equation written in the free monad

which has as solution an infinite term which could be taken to be its semantics. However,

a compiler would turn this equation into the equation over term graphs mapping x to

the term graph for A(x,c,c) which shares the two copies of c. Thus we must ask how the

solution to this term graph equation compares with the solution to the original equation.

The solution theorems above in fact require a 1+F ◦ -coalgebra structure on the monad

T and such a coalgebra structure is possessed by the term graph monad. Thus lemma 5.3

Monads of Coalgebras: Rational Terms and Term Graphs 21

assures us that the compiler will behave correctly in that solving the equation directly

or solving the associated term graph equation produces the same result.

References

Aczel, P., Adámek, J., and Velebil, J. (2001). A coalgebraic view of infinite trees and iteration.

In et al., C., editor, Proceedings of CMCS’01, volume 44(1) of ENTCS. Elsevier, Amsterdam.

Adamek, J., Milius, S., and Velebil, J. (2003). Free iterative theories: a coalgebraic view. Math-

ematical Structures in Computer Science, 13:259–320.

Adamek, J. and Rosický, J. (1994). Locally Presentable and Accessible Categories. Number 189

in London Mathematical Society Lecture Note Series. Cambridge University Press.

Corradini, A. and Gadducci, F. (1997). A 2-categorical presentation of term graph rewriting.

In Proceedings CTCS’97, volume 1290 of LNCS. Springer.

Courcelle, B. (1983). Fundamental properties of infinite trees. Theoretical Computer Science,

25(2):95–169.

Dubuc, E. J. and Kelly, G. M. (1983). A presentation of topoi as algebraic relative to categories

or graphs. Journal of Algebra, 81:420–433.

Elgot, C., Bloom, S., and Tindell, R. (1978). On the algebraic structure of rooted trees. Journal

of Computing System Sicences, 16:361–399.

Fiore, M., Plotkin, G., and Turi, D. (1999). Abstract syntax and variable binding. In Proc.

LICS’99.

Ghani, N., Lüth, C., Marchi, F. D., and Power, J. (2001). Algebras, coalgebras, monads and

comonads. In et al., C., editor, Proceedings of CMCS’01, volume 44(1) of ENTCS. Elsevier,

Amsterdam.

Kelly, G. M. and Power, A. J. (1993). Adjunctions whose counits are coequalizers, and presen-

tations of finitary monads. Journal for Pure and Applied Algebra, 89:163– 179.

Lüth, C. and Ghani, N. (1997). Monads and modular term rewriting. In Category Theory in

Computer Science CTCS’97, number 1290 in LNCS, pages 69– 86. Springer.

MacLane, S. (1971). Categories for the Working Mathematician. Springer-Verlag.

Marchi, F. D. (2003). Monads in Coalgebra. PhD thesis, Univ. of Leicester. Submitted.

Moss, L. S. (2001). Parametric corecursion. Theoretical Computer Science, 260(1–2):139–163.

