Nordic Journal of Computing 10(2003), 290-312.

REWRITING VIA COINSERTERS

NEIL GHANI
University of Leicester, Department of Mathematics and Computer Science
University Road, Leicester LE1 7RH, United Kingdom
ngl3@mcs.le.ac.uk

CHRISTOPH LUTH
Universitat Bremen, FB 3 — Mathematik und Informatik
P.O. Box 330 440, D-28334 Bremen, Germany
cxl@informatik.uni-bremen.de

Abstract. This paper introduces a semantics for rewriting that is independent of the data
being rewritten and which, nevertheless, models key concepts such as substitution which
are central to rewriting algorithms. We demonstrate the naturalness of this construction by
showing how it mirrors the usual treatment of algebraic theories as coequalizers of monads.
We also demonstrate its naturalness by showing how it captures several canonical forms of
rewriting.

ACM CCSCategoriesand Subject Descriptors. F.4.m [Mathematical Logic and Formal
Languages]: Miscellaneous — rewrite systems, term rewriting systems; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic — lambda calculus and related systems

Key words: rewriting, monads, computation, category theory

1. Introduction

Rewrite systems offer a flexible and general notion of computation that has ap-
peared in various guises over the last hundred years. The first rewrite systems were
used to study the word problem in group theory at the start of the twentieth century
[Epstein 1992], and were subsequently further developed in the 1930s in the study
of the A-calculus and combinatory logic [Church 1940]. In the 1950s, Grobner ba-
sis were developed to solve the ideal membership problem for polynomials [Buch-
berger and Winkler 1998]. In the 1970s, starting with Knuth-Bendix completion
[Knuth and Bendix 1970], term rewriting systems (TRSs) have played a prominent
role in the design and implementation of logical and functional programming lan-
guages, the theory of abstract data types, and automated theorem proving [Baader
and Nipkow 1998].

Each of the above forms of rewriting uses rewriting over a different data structure
i) computational group theory uses rewriting over free monoids or, equivalently,
strings; ii) Grébner basis uses rewriting over free rings or polynomials; iii) TRSs
use rewriting over first order terms; and iv) higher order rewriting uses rewriting
over data structures where variable binding is present. This proliferation of data

Received September 16, 2003; revised October 17, 2003; accepted November 25, 2003.

REWRITING VIA COINSERTERS 291

structures to which rewriting can be applied has lead to the search for a meta-
theory of rewriting which is independent of the data being rewritten. For example,
the construction of a Grobner basis is clearly equivalent to the Knuth-Bendix com-
pletion of a term rewriting systems, yet we lack a mathematical formalism within
which this observation can be expressed.

This paper seeks to provide a model of rewriting independent of the data being
rewritten. Our ideas can be traced back to Gordon Plotkin who remarked to us,
“Rewrite systems are anti-symmetric equational logic”. For example, if one takes
the standard presentation of equational logic and deleted the symmetry rule, one
would get precisely the definition of a term rewriting system. However, the real
insight in this remark is that it holds for all rewrite systems, not only term rewriting
systems. Thus one can provide a model of rewriting independent of the underlying
data structure if we can generalise equational logic to arbitrary data structures, and
avoid the symmetry in this construction.

Consequently, there are two ingredients to our model, namely monads and coin-
serters:

o Why monads? If we are to provide a model of rewriting independent of the
data being rewritten, we have to ask what properties the data structure must
posses for rewriting to take place. The essence of rewriting and equational
logic is the substitution of a part of a term in some formal language with
some other term. Monads provide an abstraction of the notion of a term cal-
culus equipped with a well behaved substitution and as such covers strings,
rings, first and higher order terms etc. Thus, by axiomatizing the data to be
rewritten as a monad, our models cover all of the examples above.

o Why coinserters? Equational logic can be seen as axiomatizing quotients
and hence a general treatment of equational logic is as the coequalizer of two
monads. A coequalizer of a pair s,t : Te —— Ty of monad morphisms is
the monad Ty quotiented by the least equivalence relation identifying terms
in the image of s and t — exactly what an algebraic theory does. An asym-
metric variant of the coequalizer is the coinserter where the coinserter of
s,t : Te —— Ty is the smallest monad including Ts where terms in the
image of s are bigger (i.e. have a morphism to) the corresponding term in
the image of t. This is of course what one does when constructing the rewrite
relation.

Thus, whenever we can define a notion of equational logic we can also define a
notion of rewriting by simply replacing the coequalizer of two monads with their
coinserter. This is precisely the sense in which our model is independent of the
data being rewritten. Explaining the relationship between rewriting and equational
logic as the relationship between the coequalizer and the coinserter is, for us, a
very elegant observation. The simplicity and naturality of this perspective is made
concrete by the examples included in this paper.

Other abstract models of rewriting have been proposed with the simplest be-
ing Abstract Reduction Systems (ARSs) based upon relations [Baader and Nipkow
1998]. These models throw away the structure of the data being rewritten and
solely focus on properties of the reduction relation itself. Consequently, while

292 N. GHANI, C. LUTH

useful for certain results, ARSs lack sufficient structure to adequately model key
concepts such as substitution, context and the layer structure whereby terms from
one system are layered over terms from another in modularity problems. Hence
ARSs are mainly used as an organisational tool with the difficult results proved
directly at the syntactic level.

Category theory has been used to provide a semantics for term rewriting systems
at an intermediate level of abstraction between the actual syntax and the relational
model. Research originally focused on structures such as 2-categories [Rydeheard
and Stell 1987, Seely 1987], Sesqui-categories [Stell 1994] and ordered categories
[Jay 1990]. Significant applications of this work to the theory of rewriting in-
clude generalised forms of Knuth-Bendix Completion [Stokkermans 1992, Reichel
1991], expansionary rewrite rules [Ghani 1995] and the theory of residuals [Melliés
1998]. This paper builds upon previous results by the authors who used monads to
model term rewriting systems and consequently gave a monadic proof of Toyama’s
theorem concerning the modularity of confluence for TRSs [Liith 1998, Liith and
Ghani 1997]. The 2-categorical models then arise essentially as the Kleisli cate-
gories of these monads.

We would like to thank John Power for his help and the referees for their com-
ments which have helped make this paper accessible to a wider audience. We as-
sume a passing knowledge of rewriting as found in [Baader and Nipkow 1998] or
[Klop 1992] and the basic concepts of category theory, such as categories, functors,
natural transformations, limits and colimits, adjunctions and monads [MacLane
1971]. In some places we have to employ more advanced categorical constructions
which are summarised in Appendix A allowing readers not familiar with these
constructions to follow the thrust of our argument. Further, a running example is
included to which the reader may refer while reading the main body of the paper.

The rest of the paper is structured as follows: Section 2 recaps the literature
on categorical, and specifically monadic, approaches to universal algebra while
Section 3 shows how we can form an equational theory via a coequalizer, and a
rewrite system via a coinserter. Section 4 contains examples showing how many
common forms of rewriting arise as coinserters while Section 5 contains some
concluding remarks.

2. Signatures, equations and monads

Since our approach to rewriting generalises the categorical treatment of universal
algebra, where algebraic theories are equivalent to monads on the category of sets,
we give a presentation of this equivalence. However, since this standard material,
we omit proofs and instead refer the reader to [MacLane 1971] or [Barr and Wells
1985].

2.1 Signatures and terms

Derintrion 1. (Sionature) A (single-sorted) signature consists of a function X :
N — Set. The set of n-ary operations of X is defined X, S (n). O

REWRITING VIA COINSERTERS 293

As a running example, we use the following signature for addition:

ExampLE 1. (AppiTioN) The signature Xaqq : N — Set for the theory of addition
is defined as Zaqq(0) = {0}, Zaqd(1) = {S},Zaqd(2) = {+} and Zaqq(n) = 0 for all
other n € N. Thus Xaqq declares one operation 0 of arity O (a constant), one unary
operation S and one binary operation + (written in infix notation). O

Given a signature, we construct terms as follows:

DeriniTioN 2. (TERM ALGEBRA) Given a signature X and a set of variables X, the
term algebra Ty (X) is defined inductively:

X € X feZ(h) ti,...theTg(X)
Xe TE(X) f(tl, cees tn) € TE(X)

O

Of course, the term algebra Tx,,,(X) only constructs terms and does not enforce
any equations; for example, in the addition signature from Example 1, if x € X,
then x and 0 + x are different elements of T, (X). Adding equations to signatures
to form algebraic theories is covered in Section 2.4.

The term algebra construction, which for every set X gives us the set of terms
Tx(X), extends to a functor Ty : Set — Set which maps a function f : X — Y
to the function Tx(X) — Tg(Y) which renames variables appropriately. Further,
every variable x € X gives a term x € Ty(X), so the variables are given by a
function nx : X — Tg(X). Lastly, substitution takes terms built over terms and
flattens them, as described by a function ux : Tx(Tx(X)) — Tx(X). Thus, we have
all the data for a monad:

DerintTioN 3. (Monap) A monad T = (T,n,u) on a category C is given by an
endofunctor T : C —— C, called the action, and two natural transformations,
n:1——T,called the unit,and u : TT —— T, called the multiplication of the
monad, satisfying the monad laws:

pTn=1=pnr wTu=pur.

As suggested above, the term algebra construction forms a monad:
Lemma 1. For every signature X, Ty = (Ty, n,) is @ monad.

Proor. We have already given the data. Naturality of unit and multiplication is
easily verified while the monad laws boil down to associativity of substitution and
that variables form left and right units for substitution. O

Monads also model a number of other important structures in computer science,
such as (many-sorted) algebraic theories, non-well-founded syntax [Moss 2001],
term graphs [Ghani et al. 2002], calculi with variable binders [Fiore et a. 1999],

294 N. GHANI, C. LUTH

term rewriting systems [Liith 1998], and, via computational monads [Moggi 1989],
state-based computations, exceptions, continuations etc.

The fact that the term algebra Tx(X) is inductively defined is expressed categori-
cally by the fact that Ty (X) is the initial algebra of the functor X + Fyx which sends
Y to X + FxY, where Fy is the polynomial endofunctor

Fe) = [[Y=Y == . (2.1)
neN, fex(n) neN

The structure map X + FsTx(X) —— Tx(X) is equivalent to two maps X —
Tx(X) and FxTg(X) —— Tx(X) stating that all variables are contained in Ty(X),
and all operations can be interpreted in Tx(X). Initiality of this algebra says that
Tx(X) is the smallest such set. For our running example, we have

Fr(Y)=Y0+ Y 4 Y2 =14y +Y2

Note that we can explicitly describe Fy as calculating the terms of depth one over
a set of variables; for example,

Foaa (XY ={0,SX, Sy, X+ X, X+ Y,y + X,y + Y} (2.2)

2.2 Models and algebras

Given a signature, we have seen how the term algebra construction can be ex-
pressed abstractly using the categorical concept of a monad. This subsection shows
how models of signatures can also be treated categorically. Recall that if X is a
signature, a Z-algebra is a set together with an interpretation for each of the opera-
tions while a X-algebra homomorphism is a function on the underlying sets which
respects the interpretations of the operations [Manes 1976]. These definitions are
precisely captured by the following definition.

DerniioN 4. (ALGEBRA OF AN ENpOFUNCTOR) Let F : C —— C be a functor. An
F-algebra is a pair (X, h) where X is in C, called the carrier, and h : FX —— X
is called the structure map. The category F—alg has as objects F-algebras and a
map from the F-algebra (X, h) to the F-algebra (X’,h")isamap f : X —— X’
such that

FX 1~ X

Ffl lf

FX’ N2 X’
O

For example, an Fg, -algebra isaset Aandamap 1 + A+ AX A —— A,
which corresponds to a constant in A, a map A —— A (the unary operation) and
amap A x A —— A as expected. A more general notion of model which works
for arbitrary monads rather than just those arising from signatures are given by the
following definition.

REWRITING VIA COINSERTERS 295

DeriNiTioN 5. (EiLENBERG-MOORE ALGEBRA) Let T = (T, n, u) be amonad on C. An
Eilenberg-Moore algebra for T is an algebra (X, h) of the underlying functor T
which commutes with the unit and multiplication, i.e.

h-Th = h-,ux h')]x = lx

A morphism of Eilenberg-Moore algebras is a morphism of the underlying algebras
of the endofunctors. This gives the category of Eilenberg-Moore algebras T —Alg,
which is a full subcategory of T—alg. O

In future, we follow standard practice and call Eilenberg-Moore algebras simply
algebras when there is no danger of confusion. The functor UT : T-Alg — C
mapping an algebra (X, h) to its underlying object X has a left adjoint FT : C —
T—Alg, mapping an object X to the free Eilenberg-Moore algebra (T X, ux). The
adjunction UTFT results in a monad which is in turn isomorphic to T [see Mac-
Lane 1971, Ch. VL.2]. Crucially, this means that a monad is determined by its
algebras and vice versa. We shall use this fact later to reason about a monad T by
reasoning about the associated category T—Alg.

ExampLE 2. (ALGEBRAS FOR Zaqq) The set N of natural numbers forms a Ty, -alge-
bra, with the structure map h : Ty, ,,(N) — N defined inductively as follows:

h(n) = n,h(0) = 0,h(S (1)) = h(t) + L, h(s + t) = h(s) + h(t).

Because of the first equation (N, h) is also a Eilenberg-Moore algebra (i.e. a Ty-
algebra). d

Indeed the inductive nature of Ty means that the category Tx—Alg is isomorphic
to Fy—alg and hence we could have picked any non-empty set Z with arbitrary
constant, unary and binary operations.

2.3 From Set to Ifp categories

The definition of signature and our running example was formulated in the category
of sets, whereas the definitions of monads and algebras were given more generally
for any category C. This allows us to generalise away from the category of sets
S0 as to account for other data structures and to replace equations by reductions.
In particular, we can extend the definition of signature, polynomial endofunctor
and free monad to any locally finitely presentable (Ifp) category — see Appendix
A for their definition. In such a setting, we define a signature to be a functor
¥ : N —— A where N is the discrete subcategory of the representing set of
finitely presentable objects (the appropriate categorical counterpart of the natural
numbers).

DerintTion 6. Let A be an Ifp category. The category of signatures in A is written
Sig(A) and is the functor category Sig(A) = [N, A] where N is the discrete sub-
category formed by the representing set of finitely presentable objects of A. O

296 N. GHANI, C. LUTH

Equation (2.1) generalises to such generalised signatures by setting Fy to be the
left Kan extension (again see Appendix A) along the inclusion J : N —— A, i.e.
Fs = LanjZ. As a generalised polynomial, Fy is always finitary, i.e. preserves
filtered colimits. The associated term algebra Ty : A — A is then the free monad
over the endofunctor Fyz, which can be constructed in a number of ways [Kelly
1980]:

Lemma 2. Let F be a finitary endofunctor over an Ifp category A. Then the free
monad Hg on F satisfies the following:

(1) Forevery X in A, HeX is the carrier of the initial X + F-algebra.

(2) The forgetful functor U : F—alg —— A from the category of F-algebras to
A has a left adjoint L, and HF = UL.

(3) Hg is the colimit of the sequence

So=1 Spi1=1+FS, H,::colimSi. (23)
i<w

The sequence S; in (2.3) in Lemma 2 is called the free algebra sequence [Kelly
1980] and can be seen as a uniform calculation of the initial X + F— algebra.
Lemma 2 and the adjunction inherent in the definition of the left Kan extension
along J give the following adjunctions:

Lanj_ H
Sig(A) 1 [A, Al 1 M on(A) (2.4)
_oJ V

where [A, A]; is the category of finitary endofunctors over A and Mon(A) is
the category of finitary monads over A (see Appendix A for the definition this
category). Composing the two adjunctions in (2.4), we obtain the adjunction

T

Sig(A) 1 Mon(A) . (2.5)
U

This adjunction maps a signature X to the free monad Ty on X. In summary, we
have given a general treatment of signatures, and term algebras as initial algebras,
for any Ifp category A. The full benefit of this generalisation will become apparent
in Section 3, when we move from the category of sets to the category of preorders,
replacing equations with reductions. But first, we need to treat equations.

2.4 Equations

Derintrion 7. (EQuaTioNs AND ALGEBRAIC THEORIES) Given a signature X, a X-equa-
tion is of the form (Y + | = r) where Y is a set of variables and I,r € Tg(Y). An
algebraic theory (Z, E) consists of a signature X and a set E of Z-equations. O

REWRITING VIA COINSERTERS 297

The term algebra construction generalises from signatures to algebraic theories
by mapping a set X to the term algebra quotiented by the equivalence relation ~
generated from the equations. That is, T s gy(X) = Tx(X)/~.

Tz is actually a monad with unit and multiplication given as for Ty — cru-
cially, once this result is established, one can then reason algebraically using monad
theoretic arguments without having to resort to picking representatives of equiva-
lence classes etc. Although T s gy is not the free monad over any signature, it does
have a universal property. To see this, note that an algebraic theory (X, E) specifies
a set of equations, each of which has a left hand side and a right hand side. Thus we
can reformulate a X-algebraic theory as a signature E : N —— Set, and a family
of pairs of maps

e
E(e) ———= Tx(0) (26)

in Set for ¢ € N. One should regard E as giving the context or arity of the equations,
and | and r the actual left-hand sides and right-hand sides. Resuming our running
example:

ExampLe 3. (Apprrion ConTINUED) Let Xaqq be the signature defined in Example 1.
The algebraic theory Add = (Zaqd, Pagg) implements addition on the natural
numbers and has equations ®aqq = {€1, €2} Where

e1 = ((}Wr0+x=x)
e %y FSX+y=S(x+Yy)) .

The first equation has a context of one variable, and hence arity 1; the second
equation has a context of two variables, and hence arity 2. Hence, the signature
Eadd IS Eaga(1) = {e1} and Eagq(2) = {ez}. Since E(c) is empty for ¢ # 1,2, the
family of morphisms I, rc : Eagd(C) —— Ty, (C) is defined by

l1(e1)
ry(e1)

0+x |2(ez)
X ra(ez)

S(x+Yy)
SXx+y.

O

Since N is discrete, the families of I. and r; of maps form two natural transforma-
tions
I

r

UTs.

Under adjunction (2.5), these natural transformations correspond to a pair of monad
morphisms, which we call a presentation:
Il

—_—

TE _— TZ- (2-7)
r

298 N. GHANI, C. LUTH

The action Tg contains proof terms for equalities, with | and r giving the ac-
tual equalities. In Example 3 for instance, one may have the proof term ¢ =
es(e1(2),2) € Tx(2) if z € Z. This corresponds to equation e, applied at top level,
with the first variable instantiated with the equation e, and the second variable in-
stantiated with just z. The maps I’ and r’ map this proof term to two different terms
in Tx(2), by replacing e; and e, with the corresponding left and right-hand sides:
() =S(O0+2z)+zand r(¢) =S(z+0).

In the monad representing the equational theory of Add, I(¢) and r(¢) should
be mapped to the same term. This suggests that the representing monad T s gy of
Add should be the coequalizer of the presentation (2.7) in the category M on(Set).
By taking this coequalizer in the category of monads, the coequalizing map q is
a monad morphism. In particular, it commutes with substitution, and thus is a
congruence. The universal property of the coequalizer makes it the smallest such.

The above discussion generalises to Ifp categories. Moreover, the adjunction
(2.5) is of descent type [Kelly and Power 1993], which means that each component
of the counit of the adjunction is a coequalizer. In other words, every finitary monad
T on A is a coequalizer of two free monads over two signatures B,E : N —— A,
or equivalently, every such monad is represented by equations in this general sense.
As a technical note, when we move from the category of sets to an Ifp category A,
we need to enrich the construction and consider A as enriched over a monoidal
category; for us we use the case of Pre enriched over itself as we need the hom-
sets to also be preorders. However, we de-emphasize this here for better readability,
but note that the constructions in the following are actually enriched, even if we do
not say so explicitly.

To sum up this section, we have seen how the key concepts of universal algebra
(terms, substitution, equations) can be modelled in any Ifp category A. Signatures
are functors N to A, from which we get an endofunctor over A by a left Kan
extension, and the term algebra is the free monad over this endofunctor. Algebraic
theories are given by coequalizers of free monads and all finitary monads arise in
this way. We will now move from sets to preorders in order to model reductions,
making use of the more general framework developed in this section.

3. From universal algebrato rewriting

The aim of this section is to give an abstract characterisation of rewriting. This is
achieved by replacing sets with preorders according the general scheme presented
in the last section. Crucially, just as coequalizers are a general notion for algebraic
theories (operations and equations, closed under congruence), the categorical con-
struction of a coinserter is a general notion of rewriting systems (operations and
rewrite rules, closed under anti-symmetric congruence).

3.1 Term rewriting systems and how to model them

DeriniTion 8. (REwrITE RULES AND TRSs) Given a signature X, a X-rewrite rule
is of the form (Y + | —r) where Y is a set of variables and I,r € Tg(Y).

REWRITING VIA COINSERTERS 299

A term rewriting system R = (Z,R) consists of a sighature X and a set R of -
rewrite rules. O

Usually one requires that | is not a variable and that the free variables of r are
contained in the free variables of I, but semantically these restrictions are not ne-
cessary and hence omitted here.

ExampLE 4. (ApDITION viA REWRITING) The TRS Ragq = (Zadd> Radd) implements
addition on the natural numbers and has Xaqq as above (Ex. 1) and Ragg = {r1, 2}
where

r
r

{(x}FO0+x—>X)
({X,y} FSXx+y > S(x+Yy)) .

O

Notice how according to Definitions 7 and 8, algebraic theories and TRSs are
exactly the same thing. The difference between an algebraic theory and a TRS
is the semantics we attach to them. While one constructs an equivalence relation
from an algebraic theory, one constructs a reduction relation —g from a TRS by
closing the rewrite rules under contexts and substitutions (for the exact definitions,
see [Klop 1992] or [Baader and Nipkow 1998]). The many-step reduction relation
—»g is the reflexive-transitive closure of the one-step reduction relation.

Our categorical approach instantiates the category A in the framework of Sec-
tion 2 with the category Pre of preorders (transitive-reflexive orders) and monotone
functions between them. Set and Preare connected by a series of three adjunctions:

Lemma 3. Consider the functors D : Set —— Pre, which maps a set to the discrete
preorder over it, and V : Pre —— Set, which maps a preorder to its underlying
set. Then D is left adjoint to V.

Proor. The relevant natural isomorphisms are easily established. O

In fact, D has left adjoint C : Pre —— Set, which maps a preorder to its connected
components, and V has a further right adjoint T : Set —— Pre, which maps a set
to the total order over it, giving a chain of three adjunctions

CHDHV T

but we do not need C and T here.

One can then model Z-rewrite systems by imposing a reduction order on X-
algebras — again see [Baader and Nipkow 1998]. A X-algebra with a reduction
order is called a preordered algebra:

DeriniTion 9. (PREORDERED ALGEBRA) Let X be a signature over Set. A preordered
>-algebra consists of a preorder X and a XZ-algebra structure over VX for which
the interpretation of each operation is monotone.

A morphism between preordered X-algebras is an algebra morphism on the un-
derlying sets which is also monotone, i.e. a morphism in Pre. d

300 N. GHANI, C. LUTH

Given a signature X, the free preordered X-algebra on a preorder (X, =) is the set
of terms Tx(X), ordered by the smallest preorder which contains the order on X and
makes the operations in X monotone. It is easily verified that this is indeed free,
i.e. for any other preordered X-algebra A and monotone function f : X —— A
there is exactly one preordered Z-algebra morphism !¢ : Tx(X) —— A, given
by the homomorphic extension of f. In our running example, let X = {x,y} with
X =Y. Then in the free preordered Xaqq-algebra, we have Sx = Sy, x+y = y+y,
S(x+y) = S(y+Y), etc. but not e.g. S (x+0) = S x. Another, non-free, preordered
Yadg-algebra are the natural numbers, ordered by <.

There are now two questions we need to address. Firstly, we have given a cate-
gorical account of X-algebras but what are preordered X-algebras? We would like
them to be algebras of a monad on Prebut Ty is a monad on Set — thus we define
a functor L : Mon(Set) —— Mon(Pre). The second question is how to account
for the reduction rules. We shall use L to convert a TRS such as Raqq from Ex-
ample 4 into a pair of monad morphisms in Mon(Pre). However, if we take their
coequalizer, it will force the left-hand side of the rule to be equal to the right-hand
side, which is not what we want. What we want is to force the left-hand side to
reduce to the right-hand side. This is exactly what a coinserter [Kelly 1989]) does.
For rewriting, one only needs an preorder-enriched version of the coinserter, which
considerably simplifies the presentation. A category is preorder enriched iff the
hom-sets are equipped with a preorder and composition is monotone. Note that Pre
is preorder-enriched with the order on homs givenby f = g: (X,=) — (Y,=)
iff Yx € X. fx = gx.

Derinrion 10. (Comnserter) Let C be a preorder-enriched category with a pair of
arrows f,g : A —— B. Their coinserter is given by an object coin(f,g) and a
morphism k : B — coin(f, g), such that kf = kg

~

k
coin(f, Q)
P

Furthermore, for any other object P and morphism p : B —— P such that pf =
pg, there exists a unique morphism !, : coin(f,g) —— P such that !,k = p; and
this assignment is monotone, i.e. if there is another p’ : B —— Psuchthat p’ = p
and p’f = p’g, then !y =1, O

B
/
A U
g\\B

As we shall see, the coinserter is the smallest reduction relation generated by the
rules, just as the coequalizer is the smallest equivalence relation generated by the
equations. In fact, if we consider the category Set to be trivially preorder enriched
with the discrete order on the hom-sets, the coinserter of two monads on Set is
the coequalizer since if kf = kg then kf = kg. The use of preorder enrichment
is crucial in allowing non-discrete orders on the hom-sets and hence permitting
the coinserter to differ from the coequalizer. The rest of this section implements

REWRITING VIA COINSERTERS 301

the general plan outlined above. We begin by relating the categories Sig(Set) and
Sig(Pre), and Mon(Set) and Mon(Pre), respectively.

3.2 From sets to preorders and back

Lemma 3 allow us to move between sets and preorders. This lifts to an ability to
translate between signatures on Set and Pre. First a trivial observation:

Lemma 4. Let A be a representing set of finitely presentable objects in Set (i.e.
finite sets), and AVp a representing set of finitely presentable objects in Pre (i.e. of
those preorders with a finite carrier set). K : N —— Np is given by restricting D
to NV, and J, Jp are inclusions. Then the following is a commuting square in Cat:

N—J>Set

K D

Np — Pre
Jp
We can use these functors to form an adjunction between signatures in Set and
signatures in Pre as follows.

Lemma 5. The following are true:

o The mapping sending a signature X over Pre to the signature VXK over Set
extends to a functor V_K : Sig(Pre) — Sig(Set).

o If Q is a signature over Set, then LankDQ is a signature over Pre. Indeed,
this defines a functor LangD_ : Sig(Set) —— Sig(Pre).

o There is an adjunction LangD_- 4 V_K : Sig(Set) — Sig(Pre).

Proor. That V_K and Lank D_ are functors with the given domain and codomain
is obvious. For the adjunction, to give a natural transformation LankDQ —— X
is by definition of the left Kan extension precisely the same thing as a natural
transformation DQQ —— XK. Since D 4 V, this is exactly a natural transformation
Q —— VXK as required. O

Now that we can move from signatures on Set to signatures on Pre, we extend
this to monads. The crucial lemma is the following:

Lemma 6. Let F 4 G be an adjunction with F : C —— D. If T is a monad
on O, then GTF is a monad on C. Similarly if o : T —— S is a monad
morphism, then so is GoF : GTF —— GSF. Thus we have a functor G_F :
Mon(D) — Mon(QC).

Proor. Given a monad T, we compose the adjunction F 4+ G with the adjunction
FT 4 UT, yielding an adjunction FTF + GUT which gives the desired monad on
C.

302 N. GHANI, C. LUTH

A monad morphism o : T —— S gives a natural transformation ¢’ : GTF =
GSF. That this is a monad morphism, and the functoriality of the whole construc-
tion, is a simple diagram chase. O

We can now apply this lemma to the adjunction at hand:

Lemma 7. Consider the adjunction D 4 V between Set and Pre. The assignment
sending a monad T on Preto a monad VTD on Set extends to a functor V D :
Mon(Pre) — Mon(Set).

Proor. Apply Lemma 6 to the adjunction D 4V from Lemma 3. O

Recall our desire to define a functor L : Mon(Set) —— Mon(Pre) so as to
characterise preordered X-algebras as Eilenberg-Moore algebras and to turn paral-
lel pairs in Mon(Set) into to parallel pairs in Mon(Pre) whose coinserter we can
take. This can be achieved by Butler’s Theorem which lifts adjunctions between
categories to adjunctions between categories monadic over the original categories.
It is formally stated as follows:

Tueorem 1. (Buteer) Consider the following (not necessarily commuting) dia-
gram of categories, functors and adjunctions:

B w B
T|4|U T [4|U’
\Y
C T (o
G

Assume further the following:
o VU =z U'W,

o U’ is of descent type,

o B has coequalizers.
Then W has a left adjoint L.

Proor. L will map objects of the form T’X to TGX while the action of L on
maps h : T’X —— T’Y follows from Yoneda. L has now been defined on the
full subcategory of free objects of B’. Since U’ is of descent type and B has
coequalizers and, as a left adjoint, L must preserve coequalizers, this suffices to
define L on the all of B’. See [Barr and Wells 1985] for the full proof. O

REWRITING VIA COINSERTERS 303

We can now instantiate Butler’s theorem, with the adjunction (2.5) on the left
and the right, and the adjunction from Lemma 7 on the bottom, as follows:

V_D
Mon(Pre) 1 Mon(Set)
L

T|14|U T| 4(U

V_K
Sig(Pre) T Sig(Set)
LangD_

The conditions of Butler’s theorem are satisfied, because
o foramonad T on Pre, we have U(VTD) =VTDJand V(UT)K = VTJpK =
VTDJ since, by Lemma 4, DJ = JpK;
o U is of descent type (as remarked at the end of Section 2);

o Mon(Pre) has coequalizers (in fact, all colimits; see below).

We call the adjoint L 4+ V_D : Mon(Set) —— Mon(Pre). From the proof
of Butler’s theorem, the action of L on free monads is described by the equation
L(Tx) = Tranc D= While monads which are coequalizers are mapped to coequalizers.
We can characterise the action of LTy in more elementary terms. Intuitively, LTy
should be the smallest extension of X to preorders, or in other words the free pre-
ordered X-algebra:

Lemma 8. Let X be a signature over Set. LTy maps a preorder X to the free pre-
ordered X-algebra over X.

Proor. Recall that LTy is the free monad over the Pre-signature Lang DX. By the
definition of the left Kan extension, we get the signature

_ | D(Z(n)) ifc=K(n),i.e. ifcisdiscrete and finite
Lank DX(c) = { 0 otherwise .

Call this signature ¥’ : Np —— Pre. Since X’ contains exactly the same opera-
tions as X, we can further calculate

Fs/(X) = LanjLangDZXZ(X)
Lanjk DZ(X)

U X IK()

neN, feDx(n)

Hence VFy = FsV, i.e. the carriers are the same but, of course, Fy/(X) has an
order on it which includes X (thus ensuring the unit will be monotone) and ensures
the operations are also monotone. The free monad construction closes this under
composition, preserving the order structure under substitution. O

304 N. GHANI, C. LUTH

Thus we have that the category of preordered Z-algebras is the category Fy-—alg,
which as we have remarked earlier, is also LTg—Alg. In our example, if X =
{X,y} with x = vy, then we have FZ}W(X) = Fy,o({X,y}) as in (2.2) with the order
structure SX = SY, X+ X =2V + X, X+ X =2 X+Y, X+Yy=2Y+Y, Y+ X=>Y+Y,
X+ X = y+Yy, etc. Having defined L and used it to characterise preordered X-
algebras, we can now use it to define the representing monad for a rewriting system.

3.3 Presentations and representing monads

DeriniTION 11. (PRESENTATIONS, REPRESENTING MONADS)
o An equational presentation is given by two finitary monads T, E on Set and
apair of arrows I,r : E —— T in Mon(Set).
The coequalizer coeq(s, t) is the representing monad for the corresponding
algebraic theory.

o Arewrite presentation is given by two finitary monads T, E on Preand a pair
ofarrows I,r : E —— T in Mon(Pre).
The coinserter coin(l, r) is the representing monad for the corresponding
rewrite system.
O

Definition 11 doesn’t ask that the monads be free. They are in the case of alge-
braic theories and TRSs but other applications, e.g. equational rewriting and higher
order rewriting, involve non-free monads.

The coequalizer and coinserter of two monads always exists because the cate-
gory of finitary monads on A is finitarily monadic over the category of finitary
endofunctors [A, A+ (as shown by Kelly and Power [1993]). In other words, ev-
ery finitary monad is the algebra of a finitary monad W on [A, A]¢. With [A, A];
cocomplete, the category of W-algebras has all coequalizers [Barr and Wells 1985,
Theorem 9.3.8], and hence all colimits [Linton 1969, Corollary 2]. Unfortunately,
this rather high-level proof does not give us a good way to construct the coe-
qualizers and coinserters. However, the key idea that we can understand monads
through their algebras gives a more concrete characterisation of these monads and
this underlies the following result [Kelly 1980].

For a presentation I,r : E —— T, a (E, T)-coequalizer algebra is a T -algebra
(A, h) such that h-s = h-t, and similarly a (E, T)-coinserter algebra is a T-algebra
(A, h) such that h-s = h-t. Morphisms between these are morphisms in T—-Alg,
defining the categories (E, T)coeq—Algand (E, T)coin—Alg of coequalizer-algebras
and coinserter-algebras.

Lemma 9. The following are true:
o The forgetful functor Vy : (E, T)coeq—Alg — Set (mapping each algebra
to its underlying carrier object) has a left adjoint G; — V1, and the monad
given by this adjunction is the coequalizer of ,r : E —— T.

o The forgetful functor V5 : (E, T)coin—Alg —— Pre (mapping each algebra
to its underlying carrier object) has a left adjoint G, — V>, and the monad
given by this adjunction is the coinserter of I, r : E —— T.

REWRITING VIA COINSERTERS 305

Proor. Proposition 26.4 of Kelly [1980] states, in a more general form for any
diagram in the category M on(A), that the left adjoints above exist and the resulting
monads are the respective colimits if and only if the colimits exist, but we have
shown that it does for these particular colimits. O

In other words, the monad Q is the coinserter of S and T if, for all X, QX is
the free coinserter algebra over X: there is a structure map hy : TQX —— QX
and map X —— QX such that for any other coinserter algebra (A, k) with a map
f : X —— A, there is a unique algebra morphism !+ : QX — A,

We finish off this section by showing how these coinserteralgebras can be used
to show that the rewrite relation of our running example is indeed calculated by the
coinserter of its rewrite representation.

ExampLE 5. (ApprtioN) We are mainly interested in the rewrite presentation and the
representing monad. The rewrite presentation of Add can be given as
LI

TRy ——= LTssas

We claim that the coinserter of this monad maps every preorder X to many-step
reduction relation -, , generated by the term rewriting system from Example 4.

This is shown below in general, but here assume for simplicity that X is di-
screte. Using Lemma 9, we need to show that —»g,, is the free coinserter algebra.
LTy, (X) and —»g,,, have the same elements, namely Ty, (X). —»g,, also is
closed under congruence, making it a LTy, ,-algebra. For every rule e € Raqq, we
have I(t) —»g,,, r(t), making —-»g,,, into a coinserter algebra. That it is also the free
one follows because it is the least such. O

4. Examplesof rewriting ascoinserters

Although we hope we have convinced the reader of the naturalness of regarding
rewriting systems as coinserters, until now this has only been intuition. Therefore
in this section we consider a number of forms of rewriting and show that their
representing monad arises as coinserters deriving from a rewrite presentation I, r :
E —— T. This then validates the terminology of Definition 11. In each case the
general pattern is the same:

o We define the representing monad R for the rewrite system as an axiomati-

sation of the rewrite relation.

o We choose T to represent the data being rewritten. The monad structure of
T dictates how subterms may be replaced with other subterms.

o We choose E to construct the proof terms for the rewrites. This is similar to
what happens in rewrite logic and 2-categorical models of rewriting.

o We choose | and r to assign to each proof term/label for a rewrite constructed
by E the correct left- and right-hand side.

o Finally we show that the representing monad satisfies the universal property
of the coinserter of the presentation, that is R = coin(l, r).

306 N. GHANI, C. LUTH

We give the proof of R = coin(l, r) for our first example, but since the proofs for
the other examples are analogous, we concentrate only on the data for the latter
examples.

4.1 Term rewriting

We have seen how a TRS (Z, R) as in Definition 8 is just an algebraic theory and
hence an equational presentation I,r : TR —— Ty. Applying L gives a rewrite
presentation LI, Lr : LTR —— LTy (see Example 4).

LetS = (S, n, u) be the monad which calculates the rewrite relation. Formally, S
maps a preorder X to the smallest preordered Z-algebra over X which also includes
all instances of all rules in R, i.e. forall (Y + s —» t) € R and all maps o :
Y —— SX, o(s) = o(t) in SX. Here o is the substitution induced by o, i.e.
o = u-'So. The monad S has the same unit and multiplication as the monad Ty
from Lemma 1, so to show S is a monad, we only need to verify that they are
monotone [see Lith and Ghani 1997, Liith 1998].

Since S X is built over a non-discrete preorder X, it contains not only the many-
step reductions —», but also the reductions from X, closed under congruence. This
is the free preordered X-algebra on X, which by Lemma 8 is given by LTy (X). But
is S the coinserter coin(LI, Lr) derived from the presentation? Using Lemma 9,
we need to show that S X is the free coinserter algebra. Since the elements of S X
are the terms Tx(X), there is an inclusion k : LTx(X) —— S X, making it a Tg-
algebra. Since S also includes all rewrites generated from R, k-1 = k-r. Thus SX
is a coinserter algebra.

It remains to show freeness: suppose there is another coinserter algebra (A, h)
such that h : LTsA —— A with h-l = hrand f : X —— A. We now have
to show there is a unique algebra morphism !+ : SX —— A. In fact, since the
elements of S X are the terms Ty(X), we have !+ as the homomorphic extension of
f : X —— A, and it only remains to show that !¢ is monotone. This follows from
the fact that S X computes the least X-algebra validating the rewrite rules, i.e. all
rewrites in S X are sequences of steps in —»g (which must be in A, since h-1 = h-r)
or rewrites from X which are preserved by f : X — A.

In summary, the crux of the proof is getting the monad of rewrites LT g correct.
That there are not too many elements of LT ensures that rewrite relation as embod-
ied by S X is a coinserter algebra. That there are enough elements of LT g ensures
S X is the free coinserter algebra.

4.2 Equational rewriting

Inherent in rewriting is the idea of solving equations by orienting them so as to form
a rewrite relation. However, some equations are difficult to orient, such as commu-
tativity axioms. For systems of equations involving those equations it is sometimes
more convenient to quotient out these equations by considering the rewrite relation
over the term algebra quotiented by the unorientable equations. Other uses include
rewriting of data given by operations and equations, e.g. lists (a.k.a free monoids;
see below).

REWRITING VIA COINSERTERS 307

An equational rewrite system is a triple (X, E,R) where (X, E) is an algebraic
theory and (X, R) is a TRS. The equational rewrite system lifts the TRS (X,R) to a
rewrite relation on the free algebra given by (X, E).

Formally, given an algebraic theory (%, E) a preordered (X, E)-algebra is a pre-
ordered X-algebra A validating the equations in E, i.e. forall (Y + s =1) € E and
all assignments o~ : Y —— A, o(s) = o (t). The rewrite relation defines a monad S
which maps X to the least preordered (Z, E)-algebra validating the rules in R, i.e.
forall(Y +rs—>t)eRandallmaps o :Y — SX, o(s) = o(t) in SX. To see
that S is a monad, note that the elements of S X are the elements of T s), so the
unit and multiplication are as in Section 2.4, and we only need to verify that they
are monotone.

Is there a rewriting presentation such that SX = coin(l,r)? Clearly, the terms
that are being rewritten are elements of the algebraic theory T s gy which recall is a
coequalizer whose quotient map we write q : Ty —— Tz gy. Thus, the codomain
of the rewrite presentation should be LT (s gy. Since the proof terms for the rewrites
are the same as for the term rewriting system (X, R), we can take the domain of
the presentation to be LTr. From the term rewriting system (X, R) we also obtain
maps I’,r" : TR —— Tg, which we compose with the map q : Ty —— Tz
to define | = g-I"” and r = g-r’. Thus the desired rewriting presentation is LI, Lr :
LTR — LTz

The proof that S = coin(LlI, Lr) is essentially as above, we only need to addition-
ally handle the equivalence induced by E.

4.3 Groébner bases and string rewriting

String rewriting was developed in the early part of the 20th century to solve com-
binatorial problems in group theory. Within string rewriting one is not interested
in rewriting terms, but rather in rewriting strings, i.e. elements of the free monoid
monad over a set of generators. Since this is an algebraic theory, string rewriting is
an instance of rewriting modulo an equational theory and hence is covered by the
previous example where the algebraic theory is the free monoid monad.

Similarly, Grobner bases were introduced in the 1950’s to study the polynomial
ideal membership problem. These days, Grobner bases are often formulated in
terms of rewrite systems over polynomial rings. Thus, Grobner bases are another
example of rewriting modulo an equational theory and are covered by the previous
example where the algebraic theory is taken to be the free ring monad.

4.4 Infinite rewriting

So far, all of the examples we have discussed, although canonical, are nevertheless
instances of rewriting modulo an equational theory. This reflects the result that
the forgetful functor U : Mon(Set) —— Sig(Set) is of descent type. That is,
all finitary monads, i.e. data structures where rewriting can take place, can be
presented by equational theories.

We next consider infinitary rewriting which seeks to rewrite over potentially in-
finite terms and which is not an example of rewriting modulo equational theories.

308 N. GHANI, C. LUTH

There have been several different attempts to define a useful notion of infinite term
rewriting over the last decade. The key problem seems to be to identify which
infinite sequences of rewrites should be accepted. On the one hand one wants to
allow as many infinite rewrites as possible, while on the other one needs to exclude
certain rewrite sequences to ensure a good meta-theory. The common forms are:

o Rational rewriting: Rational equations are equations of the form A =
B(A, x) (for a binary operation B, a constant A and a variable x), which can
be given as maps E — Ty(X+E) for some signature X and sets X of variables
and E of unknowns. Rational terms are infinite terms which arise as solution
of rational equations. Rational rewriting allows us to define infinite rewrites
as the solution to rational equations over rewrites. For example, ifr : A= C
is a finite rewrite, the equation r’ = B(r, r’) would have as solution the in-
finite rewrite r’ which performs an r rewrite on the left hand branch under
each node labelled C.

Can we give a presentation I,r : E —— S whose associated coinserter
models the rational rewrites generated by a TRS (X, R)? Recent work by
Ghani et &. [2002] and Adamek et a. [2003] has shown that the rational
terms over a signature X define a monad Ky and hence we may set S = Ks.
Next we must choose the proof term monad E which generates the rewrites.
As the above example suggests, the correct set of proof terms for the rewrites
are again the rational terms over R, i.e. one should set E = Kg. The maps I, r
are then easy to define.

o Circular rewriting: Circular rewriting represents infinite terms as term
graphs and then defines infinite rewrites as term graphs built over the sig-
nature and the rewrite rules. By taking the above coinserter and replacing
the rational monads with term graph monads [Ghani et a. 2002] over a sig-
nature, one gets the semantics of circular rewriting.

o Strongly convergent rewriting: SC rewriting offers the widest choice of
infinite rewrites by defining the infinite rewrite relation to contain all infi-
nite sequences of rewrites where the depth of the redex contracted tends to
infinity. Thus, given a TRS (X, R), we will be rewriting over the set of all
finite and infinite Z-terms. This set is known to be the final coalgebra of the
polynomial endofunctor Fyx and also a monad T¢” [Aczel et al. 2003].

However, unlike the previous examples, the proof terms are not simply T2’ as
this would allow arbitrary infinite rewrites. As proof terms for rewrites, we
want to allow infinite terms built over the signature and the rewrite system
such that all paths through the term do a finite amount of rewriting, then
pass through a term constructor and then repeat. Having both finitary and
infinitary properties, this structure is a final coalgebra built over an initial
algebra, which maps a set X to vY.uZ.X + FsY + FrZ. That this actually
defines a monad follows from [Matthes and Uustalu 2003].

Again the maps I, r and the proof that this coinserter actually computes the
rewrite relation is as above.

REWRITING VIA COINSERTERS 309

4.5 Higher Order Rewriting

Higher Order Rewriting is a framework for rewriting over data structures with vari-
able binding such as the A-calculus. With the recent initial algebra semantics for
such structures proposed by Fiore et a. [1999], and the proof that they form mon-
ads by Matthes and Uustalu [2003], we have all the ingredients to model higher
order rewriting as a coinserter.

As an example we consider rewriting over the untyped A-calculus. The papers
cited above prove that there is a monad M : Set —— Set whose action maps
a set X to the set of untyped A-terms (upto a-equivalence) whose free variables
belong to X. This is not a free monad but rather an initial algebra of a higher-order
functor. Now let us assume we have a rewrite relation R given by pairs of untyped
A-terms analogous to the definition of a TRS. As before, this data gives a parallel
pair I,r : TR —— M and so the rewrite relation is computed by the coinserter of
LI, Lr : LTR —— LM. Note that the domain of the presentation is simply a free
monad - there is nothing sophisticated such as bound rewrite variables. The fact
that the rewrite relation will be closed under A-abstractions follows from the fact
that the coinserter will be an LM-algebra and hence closed under the operations of
M, such as A-abstraction.

5. Conclusions

In conclusion, we have proposed a semantics for rewriting which is independent
of the data being rewritten but, via the use of monads, still models key concepts
such as substitution or the layer structure in modularity problems. This builds
on previous research using monads but adds the extra ingredient of a coinserter.
Mirroring the relationship between algebraic theories and rewrite systems by the
relationship between coequalizers and coinserters is particularly elegant and natu-
ral. As the examples show, defining rewrite relations by coinserters is fairly easy
when one knows the terms being rewritten and the proof terms for the rewrites. The
proof that the actual rewrite relation (given as the least preordered algebra over the
data being rewritten which instantiates the rewrites) is the coinserter can then be
checked using arguments similar to that for TRSs.

As it stands, this paper sets out a unifying framework for rewriting theory, and as
such, will be of most interest to the general theoretical computer science commu-
nity who are interested in learning more about the connections between universal
algebra, rewriting and category theory. This is a broad community. Nevertheless,
it is clear that there are many possible applications which will interest those more
interested in the actual development in rewriting. Indeed, with the current unsettled
nature of infinite rewriting, our work suggests that infinite rewriting may be done
by choosing any set of infinite terms closed under substitution for rewriting and
using some, potentially different, set of infinite terms as proof terms for the actual
rewrites.

In a different direction, we want to extend the monadic proof of the modularity of
confluence for TRSs to a general modularity proof using the framework developed
here. Of course, confluence is not modular for all forms of rewriting so we expect

310 N. GHANI, C. LUTH

certain conditions to be required in terms of the monads we use. This is still the
subject of on-going research. Another result which can be tackled at this level
of generality is that of generalised Knuth-Bendix completion and, here, no side
conditions should be required.

References

Aczer, P., ApMEK, J., MiLius, S., anp VELesiL, J. 2003. Infinite Trees and Completely Iterative Theo-
ries: A Coalgebraic View. Theoretical Computer Science 300, 1-45.

AbpAMEK, J., MiLius, S., anp VELEBIL, J. 2003. Free Iterative Theories: A Coalgebraic View. Mathe-
matical Structuresin Computer Science 13, 259—-320.

AbaMEK, J. AND Rosicky, J. 1994. Locally Presentable and Accessible Categories. Volume 189 of
London Mathematical Society L ecture Note Series. Cambridge University Press.

Baaper, F. anp Niekow, T. 1998. Term Rewriting and All That. Cambridge University Press.

Barr, M. ano WELLs, C. 1985. Toposes, Triples and Theories. Volume 278 of Grundlehren der
mathematischen Wissenschaften. Springer Verlag.

BucHBerGER, B. anp WinkLER, F. 1998. Gr'obner Bases and Applications: 33 Years of Gr'obner
Bases. Volume 251 of London Mathematical Society L ecture Notes Series. Cambridge Univer-
sity Press, 338—350.

CHurch, A. 1940. A Formulation of The Simple Thoery of Types. J Symbolic Logic 5, 56—68.

EpsteN, D. 1992. Word Processing in Groups. Jones and Bartlett.

Fiore, M., PLotkin, G., anp Tury, D. 1999. Abstract Syntax and Variable Binding. In Proc. 14th
Annual Symposium on Logic in Computer Science (LICS’99). IEEE Computer Society Press,
193-202.

GHani, N. 1995. gn-Equality for Coproducts. In Second Conference on Typed Lambda Calculus and
its Applications, Volume 902 of L ecture Notesin Computer Science. Springer Verlag, 171-185.

Guang, N., LOtH, C., anp DE MarcHi, F. 2002. Coalgebraic Monads. In Coalgebraic Methods in
Computer Science CMCS' 02, Volume 65(1) of ENTCS. Elsevier.

Jay, C. B. 1990. Modelling Reductions in Confluent Categories. In Proceedings of the Durham
Symposium on Applications of Categories in Computer Science.

KeLy, G. M. 1980. A Unified Treatment of Transfinite Constructions for Free Algebras, Free
Monoids, Colimits, Associated Sheaves and so on. Bulletins of the Australian Mathematical
Society 22, 1- 83.

KeLry, G. M. 1989. Elementary Observations on 2-Categorical Limits. Bulletins of the Australian
Mathematical Society 39, 301-317.

KeLLy, G. M. anp Power, A. J. 1993. Adjunctions Whose Counits Are Coequalizers, and Presenta-
tions of Finitary Monads. Journal for Pure and Applied Algebra 89, 163—179.

Krop, J. W. 1992. Term Rewriting Systems. In Handbook of Logic in Computer Science —
Volume 2. Background: Computational Structures, Abramsky, S., Gabbay, Dov M., and
Maibaum, T. S. E., Editors. Oxford University Press, 1-116.

Knuth, D. anp Benpix, P. 1970. Simple Word Problems in Universal Algebra. In Computational
Problems in Universal Algebras, Leech, J., Editor. Pergamon Press, 263—297.

Linton, F. E. J. 1969. Coequalizers in Categories of Algebras. In Seminar on Triples and Categorical
Homology Theory, Volume 80 of Lecture Notes in Mathematics. Springer Verlag, 75-90.
L0rH, C. 1998. Categorical Term Rewriting: Monads and Modularity. PhD thesis, University of

Edinburgh.

L0rH, C. anp GHani, N. 1997. Monads and Modular Term Rewriting. In Category Theory in Com-
puter Science CTCS' 97, Volume 1290 of L ecture Notes in Computer Science. Springer Verlag,
Santa Margherita, Italy, 69—86.

MacLang, S. 1971. Categories for the Working Mathematician. Volume 5 of Graduate Texts in
Mathematics. Springer Verlag.

Manes, E. G. 1976. Algebraic Theories. Volume 26 of Graduate Texts in Mathematics. Springer
Verlag.

REWRITING VIA COINSERTERS 311

MarrrEs, R. anp UustaLu, T. 2003. Substitution in Non-Wellfounded Syntax with Variable Binding.
In Coalgebraic Methods in Computer Science CMCS'03, Gumm, H. P., Editor. Volume 82(4)
of ENTCS. Elsevier.

MeLLigs, P.-A. 1998. A Stability Theorem in Rewriting Theory. In 14th Annual Symposium on
Logic in Computer Science. |IEEE, Indianapolis, USA, 287-299.

Mogar, E. 1989. Computational Lambda-calculus and Monads. In Fourth Annual Symposium on
Logic in Computer Science. IEEE, Washington, USA, 14-23.

Moss, L. S. 2001. Parametric Corecursion. Theoretical Computer Science 260, 1-2, 139—-163.

ReicueL, H. 1991. A 2-Category Approach to Critical Pair Completion. In Recent Trends in Data
Type Specifi cation, Volume 534 of L ecture Notes in Computer Science. Springer Verlag, 266—
273.

Rypeuearp, D. E. anp Stert, J. G. 1987. Foundations of Equational Deduction: A Categorical
Treatment of Equational Proofs and Unification Algorithms. In Category Theory and Computer
Science, Volume 283 of L ecture Notes in Computer Science. Springer Verlag, 114— 139.

SeeLy, R. A. G. 1987. Modelling Computations: A 2-Categorical Framework. In Proceedings of the
Second Annual Symposium on Logic in Computer Science, 65—71.

SteLL, J. G. 1994. Modelling Term Rewriting Systems by Sesqui-Categories. Tech. Report TR94-02,
Keele Unversity.

StokkermaNs, K. 1992, A Categorical Formulation for Critical-Pair/Completion Procedures. In
Third International Workshop on Conditional Term Rewriting Systems, Volume 656 of L ecture
Notes in Computer Science. Springer Verlag, Pout-a-Mousson, 171-175.

Appendix A. Presentability and Kan extensions

This appendix gives a short definition and introduction into some constructions
which go beyond basic category theory, namely finitariness, local presentability,
Kan extensions. We give brief definitions here; more details can be found in [Mac-
Lane 1971] or [Adamek and Rosick 'y 1994].

Finitary monads. A diagram D is filtered iff every subcategory with finite number
of objects and morphisms has a compatible cocone in D; the colimit of such a
diagram is called filtered. A functor is finitary iff it preserves filtered colimits. A
monad is finitary iff its action is finitary.

Giventwo monads T = (T,n,uy and S = (S, Z,£) on C a monad morphism is a
natural transformation @ : T = S between the actions commuting with unit and
multiplication:

w0
RN

where on the right, the diamond (*) commutes in any case because of naturality of
a. The finitary monads on a category C and monad morphisms between them form
a category Mon(C).

Locally presentable and accessible categories: An object X of a category A is
said to be finitely presentable iff the hom-functor A(X,) preserves filtered colim-
its. A category is locally finitely presentable (abbreviated as Ifp) if it is cocomplete

312 N. GHANI, C. LUTH

and has, up to isomorphism, a set N of finitely presentable objects such that every
object is a filtered colimit of objects from N. The discrete category on N is de-
noted N. The full subcategory of finitely presentable objects is denoted Ap. The
inclusion functors are denoted J : N — Aspand | : Arp — A, and the category
of finitary functors from A to B by [A, B] ;.

Finite presentability is the categorical notion for finiteness. For example, for

A = Set, the finitely presentable sets are precisely finite sets and the set N can be
taken to be the natural numbers which we denote N. Local finitely presentability
is the categorical notion of when all the objects of a category can be generated
from the finitely presentable objects of the category; for example, every set is the
filtered colimit of the diagram of all its finite subsets ordered by inclusion. A
finitary functor then is one who preserves this property in the sense that its action
on all objects is given by the action on the generating objects. For example, a
functor F : Set —— Set is finitary if its action on infinite set X is isomorphic
to the the colimit of its images on finite subsets Xy of X, ordered under inclusion:
F(X) = UxoexF (Xo).
Kan extensions: Given a functor | : A — B and a category C, precomposition
with | defines a functor _o | : [B,C] — [A, C]. The problem of left and right Kan
extensions is the problem of finding left and right adjoints to _o . More concretely,
given a functor F : ‘A — C, the left and right Kan extensions satisfy the natural
isomorphisms

[B,C](Lan|F,H) = [A,C](F,H o I) [8,C](H,Ran|F) = [A,C](H o I, F).

Thus, one can view the left and right Kan extension of a functor F : ‘A — C along
I : A — B as the canonical extensions of the domain of F to 8. Kan extensions
can be given pointwise using colimits and limits, or more elegantly using ends and
coends (see [MacLane 1971] for details). Since we work over the complete and
cocomplete categories Set and Pre, all our Kan extensions exist.

In fact, given a Ifp category (A, a functor F : A —— B is finitary precisely if it
is (isomorphic to) the left Kan extension of its restriction to Ay along the inclusion
Afp — A.

