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Abstract. Proof reuse addresses the issue of how proofs of theorems in a
specific setting can be used to prove other theorems in different settings.
This paper proposes an approach where theorems are generalised by ab-
stracting their proofs from the original setting. The approach is based
on a representation of proofs as logical framework proof terms, using the
theorem prover Isabelle. The logical framework allows type-specific in-
ference rules to be handled uniformly in the abstraction process and the
prover’s automated proof tactics may be used freely. This way, estab-
lished results become more generally applicable; for example, theorems
about a data type can be reapplied to other types. The paper also consid-
ers how to reapply such abstracted theorems, and suggests an approach
based on mappings between operations and types, and on systematically
exploiting the dependencies between theorems.

1 Introduction

Formal proof and development requires considerable effort, which can be re-
duced through reuse of established results. Often, a new datatype or theory
resembles a previously developed one and there is considerable gain if theorems
can carry over from one type to another. Previous work in this area addresses
reuse by proof or tactic modification in response to changes in the proof goal
such as modifying the constructors of a datatype, or unfortunate variable in-
stantiations during a proof search [6, 7, 14, 22, 26]. In contrast, type-theoretic
approaches [12, 13, 20] investigate the generalisation and modification of proofs
by transforming the associated proof terms in the context of constructive type
theory. This paper proposes a method for abstracting previously established the-
orems by proof transformations in a logical framework with proof terms. Logical
frameworks are particularly well-suited for this approach, because inference rules
are represented as formulae in the formalism; the choice of object logic becomes
independent of the meta-logic in which the proof terms live.

The method we propose has been implemented in Isabelle [16], using the proof
terms recently added by Berghofer and Nipkow [4]. Isabelle offers a wide range
of powerful tactics and libraries, and we can work in any of the logics encoded
into Isabelle, such as classical higher-order logic (HOL), Zermelo-Fraenkel set
theory (ZF), and various modal logics [17]. However, the approach should be
applicable to any logical framework style theorem prover.
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The paper is organised as follows. Sect. 2 presents the different proof transfor-
mations of the abstraction method and Sect. 3 discusses how the transformations
are implemented as functions on Isabelle’s proof terms. Sect. 4 considers how to
reuse abstracted theorems in a different setting, and demonstrates our approach
in practice. Sect. 5 considers related work and we conclude in Sect. 6.

2 Generalising Theorems by Proof Transformation

This section proposes a method for abstracting theorems in logical frameworks by
means of proof transformations, in order to derive generally applicable inference
rules from specific theorems. A logical framework [8,19] is a meta-level inference
system which can be used to specify other, object-level, deductive systems. Well-
known examples of implementations of logical frameworks are Elf [18], λProlog
[15], and Isabelle [17]. The work presented uses Isabelle, the meta-logic of which
is intuitionistic higher-order logic extended with Hindley-Milner polymorphism
and type classes.

In the logical framework, the formulae of an object logic is represented by
higher-order abstract syntax and object logic derivability by a predicate on the
terms of the meta-logic: Meta-level implication =⇒ reflects object level derivabil-
ity. Object logics are represented by axioms encoding the axioms and inference
rules of the object logic. The meta-logic is typed, with a special type prop of
logical formulae (propositions); object logics extend the type system. The meta-
level quantifier

∧
can range over terms of any type, including prop. The logical

framework allows us to prove theorems directly in the meta-logic. The correct-
ness of all instantiations of a meta-logic theorem, or schema, follows from the
correctness of the representation of the rules of the object logic. Theorems es-
tablished in the meta-logic are derived inference rules of the object logic. Hence,
new object logic inference rules can be derived within the logical language.

For the presentation of the abstraction method, we consider a proof π of
a theorem φ, consisting of a series of inference steps in the meta-logic. The
proposed generalisation process will transform π in a stepwise manner into a
proof of a schematic theorem which may be instantiated in any other setting,
i.e. a derived inference rule of the logic. The process consists of three phases:

1. making assumptions explicit;
2. abstracting function symbols;
3. abstracting type constants.

Each step in this process results in a proof of a theorem, obtained by transform-
ing the proof of the theorem from the previous step. In order to replace function
symbols by variables, all relevant information about these symbols, such as defin-
ing axioms, must be made explicit. In order to replace a type constant by a type
variable, function symbols of this type must have been replaced by variables.
Hence, each phase of the transformation assumes that the necessary steps of the
previous phases have already occurred. The final step results in a proof π′ from
which we derive a schematic theorem ψ =⇒ φ′, where φ′ is a modification of
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the initial formula φ. In such theorems, the formulae of ψ are called applicability
conditions as they identify theorems that are needed to successfully apply the
derived rule. A necessary precondition for the second abstraction step is that the
logical framework allows for higher-order variables, and for the third step that
the logical framework allows for type variables.

It is in principle possible to abstract over all theorems, function symbols,
and types occurring in a proof. However, such theorems are hard to use; for
applicability, it is essential to strike a balance between abstracting too much
and too little. Some tactics guiding the application of abstracted theorems are
considered in Sect. 4.

2.1 Making Proof Assumptions Explicit

In tactical theorem provers such as Isabelle, the use of auxiliary theorems in a
proof may be hidden to the user, due to the automated proof techniques. These
contextual dependencies of a theorem can be made explicit by inspecting its
proof term. In a natural deduction proof, auxiliary theorems can be introduced
as leaf nodes in open branches of the proof tree.

Given an open branch with a leaf node theorem in the proof, we can close the
branch by the implication introduction rule, thus transforming the conclusion of
the proof. By closing all open branches in this manner, every auxiliary theorem
used in the proof becomes visible in the root formula of the proof. To illustrate
this process, let us reconsider the proof π of theorem φ. At the leaf node of an
open branch πi in the proof we find a theorem, say ψi(xi

1, . . . , x
i
ki

). We close the
branch πi by applying =⇒-introduction at the root of the proof, which leads
to a proof of a formula ∀xi

1, . . . , x
i
ki
ψi(xi

1, . . . , x
i
ki

) =⇒ φ, where ψi has been
transformed into a closed formula ψ′

i by quantifying over free variables, to respect
variable scoping. The transformation of a branch is illustrated in Figure 1. This
process is repeated for every branch in π with a relevant theorem in its leaf
node. If we need to make j theorems explicit, we thereby derive a proof π′ of
the formula (ψ′

1 ∧ . . . ∧ ψ′
j) =⇒ φ.

Generally, we may assume that a leaf node theorem is stronger than neces-
sary for the specific proof. Therefore, it is possible to modify the applicability
conditions of the derived theorem in order to make these easier to prove in a
new setting. For example, if ψi is simplified by an elimination rule in the branch,
we may (repeatedly) cut off the branch above the weaker theorem before closing
the branch. Proofs in higher-order natural deduction can be converted into a
normal form where all elimination rules appear above the introduction rules in
each branch of the proof [21]. With this procedure, proofs on normal form result
in the weakest possible applicability conditions, but proofs on normal form are
not required for the abstraction process and proof normalisation is therefore not
considered in this paper. Furthermore, if ψi is the leaf node theorem of an open
branch in the proof π and all leaf node theorems in open branches in the proof
of ψi are included among the leaf node theorems of other open branches of π,
expanding π with the proof of ψi at appropriate leaf nodes before the proof
transformation will remove superfluous applicability conditions from the derived
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ψi(x)

φ

may be transformed to

[ψi(x)]

φ

∀x ψ(x) =⇒ φ

Fig. 1. The transformation and closure of a branch in the proof, binding the free
variable x of the leaf node formula.

theorem. The usefulness of these improvements depends on the form of the proof
and may cause considerable growth in the size of the proof term. An alterna-
tive is to consider the dependency graph between theorems (see Sect. 4.4). Our
present approach is to transform the proof as it is given.

2.2 Abstracting Function Symbols

The next phase of the transformation process consists of replacing function sym-
bols by variables. When all implicit assumptions concerning a function symbol
F have been made explicit, as in the transformed theorem above, all relevant in-
formation about this function symbol is contained within the new theorem. The
function symbol has become an eigenvariable because the proof of the theorem
is independent of the context with regard to this function symbol. Such function
symbols can be replaced by variables throughout the proof. Let φ[x/t] and π[x/t]
denote substitution, replacing t by x in a formula φ or proof π, renaming bound
variables as needed to avoid variable capture.

A central idea in logical framework encodings is to represent object logic vari-
ables by meta-logic variables [19], which are placeholders for meta-logic terms.
Hereafter, all free variables will be meta-variables and the abstraction process
replaces function symbols by meta-variables. If the function symbol F is of type
τ and a is a meta-variable of this type, the theorem (ψ′

1 ∧ . . . ∧ ψ′
i) =⇒ φ may

be further transformed into

(ψ′
1[a/F ] ∧ . . . ∧ ψ′

i[a/F ]) =⇒ φ[a/F ], (1)

by transforming the proof π′ into a new proof π′[a/F ].

2.3 Abstracting Types

When all function symbols depending on a given type have been replaced by term
variables, the name of the type is arbitrary. In fact, we can now replace such
type constants by free type variables. The higher-order resolution mechanism of
the theorem prover will then instantiate type variables as well as term variables
when we attempt to apply the derived inference rule to a proof goal. However,
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the formal languages used by theorem provers have structured types which may
give rise to type-specific inference rules. When these occur in the proofs, they
must also be made explicit for type abstraction to work. This is illustrated by
the following example.

2.4 Example

We assume as object logic a higher-order equational logic, with axioms including
symmetry (sym), reflexivity (refl), etc. In this object logic, consider a theory
including the standard operations 0, S, +, and axioms defining addition and
induction on the type N of natural numbers:

ax1 ≡ x+ 0 = x ax2 ≡ x+ Sy = S(x+ y)
ind ≡ [[p(0);

∧
t.p(t) =⇒ p(St)]] =⇒ p(x).

A proof of x+ 0 = 0 + x in this theory is as follows, slightly edited for brevity:

refl
...

0 + 0 = 0 + 0

ax1
...

St+ 0 = S(t+ 0)

[t+ 0 = 0 + t]1

...

ax2
...

S(t+ 0) = 0 + St trans
St+ 0 = 0 + St

t+ 0 = 0 + t =⇒ St+ 0 = 0 + St
=⇒-intro1

∧
t · t+ 0 = 0 + t =⇒ St+ 0 = 0 + St

∧
-intro ind

...
x+ 0 = 0 + x

=⇒-elim

(2)
Applying the first step of the abstraction method, all theorems from the theory
become assumptions, which results in a proof of the following theorem:

[[[[p(0);
∧
t.p(t) =⇒ p(St)]] =⇒ p(x);x+ 0 = x;x + Sy = S(x+ y))]]

=⇒ x+ 0 = 0 + x

In the second and third step of the process, we first replace 0, S, and + by the
meta-variables a, b, and c, respectively. When this is done, we can replace the
type constant N with a free type variable α, resulting in a proof of the theorem

[[[[p(a);
∧
t.p(t) =⇒ p(b(t))]] =⇒ p(x); c(x, a) = x; c(x, b(y)) = b(c(x, y))]]

=⇒ c(x, a) = c(a, x),

which can be applied as an inference rule to a formula of any type. In order to
discharge the applicability conditions of the inference rule, the formula repre-
senting the induction rule must be a theorem for the new type.

3 Implementation of the Abstraction Techniques

Under the Curry-Howard isomorphism, proofs correspond to terms in a typed
λ-calculus. We have implemented the abstraction processes from Sect. 2 in the
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theorem prover Isabelle, which records proofs as meta-logic proof terms. The user
can use all of Isabelle’s automatic and semi-automatic proof infrastructure and
Isabelle automatically constructs the corresponding meta-logic proof term [4].
Given a proof term, a theorem may be derived by replaying the meta-logic
inference rules. We use this facility to derive new theorems: Given a theorem to
abstract, we obtain its proof term, perform appropriate transformations on the
proof term and replay the derived proof term to obtain a generalised theorem.
Hence, the correctness of the derived theorem is guaranteed by the Isabelle’s
replay facility for proof terms. The implementation of abstraction functions does
not impose any restrictions on the proof or the theorem: The abstraction process
can be applied to any theorem, including those from Isabelle’s standard libraries.

3.1 Proof Terms

This section introduces Isabelle’s proof terms, which may be presented as

p ::= h | c[τn/αn] | λh : φ.p | λx :: τ.p | p · p | p t (3)

where h, c, x, t, φ, α, and τ denote proof variables, proof constants, term vari-
ables, terms of arbitrary type, propositions, type variables, and types, respec-
tively. The language defined by (3) allows for abstraction over term and proof
variables, and application of proofs and terms to proofs, corresponding to the
introduction and elimination of

∧
and =⇒. Proof terms live in an environment

which maps proof variables to terms representing propositions and term variables
to their type. Proof constants correspond to axioms or already proved theorems.
For more details and formal definitions, including the definition of provability in
this setting, see [4].

Proof terms can be illustrated by the example of Proof (2). We identify
theorem names with proof constants: ax1, ax2, refl, etc. The leftmost branch of
the proof consists of the axiom refl ≡ x = x, with x instantiated by 0. This is
reflected by the proof term

π1 = refl 0.

The middle branch introduces a meta-implication in the proof term

π2 = (λH : (
∧
x : N.x+ 0 = 0 + x). ψ),

where ψ represents the body of the proof term (omitted here). The proof vari-
able H represents an arbitrary proof of the proposition

∧
x : N.x + 0 = 0 + x

and is introduced by proof term λ-abstraction. We can refer to a proof of this
proposition in the proof term ψ by the proof variable H . The whole proof term
for (2) becomes

π = ind (λu. u + 0 = 0 + u) x · π1 · π2.

The premises π1 and π2, which correspond to the base case and the induc-
tion step, are applied to the induction rule ind, reflecting elimination of meta-
implication. In contrast to proof level λ-abstraction, term level λ-abstraction
allows the higher-order variable p in ind to be instantiated with λu. u+0 = 0+u.
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3.2 Implementing Abstraction by Proof Term Transformations

The abstractions presented in Sect. 2 are implemented as functions which take
theorems to theorems by transforming proof terms.

In proof terms, assumptions are represented by proof constants correspond-
ing to previously proved theorems. For example, the proof term π above contains
proof constants ax1, ax2 and ind, which can now be lifted to applicability condi-
tions as described in Sect. 2.1. This is done by adding a proof term λ-abstraction
outside the proof term and replacing occurrences of the theorem inside the proof
term with an appropriate variable. After abstraction over ax1 and ax2 (omitting
the lengthy but similar abstraction over ind), we obtain the proof term

φ = λH : (
∧
x y : N.x+ Sy = S(x+ y)).λH ′ : (

∧
x : N.x+ 0 = x).π[ax1/H ′, ax2/H ]

which can be replayed to yield the following theorem:

[[∀x, y · x+ Sy = S(x+ y); ∀x · x+ 0 = x]] =⇒ x+ 0 = 0 + x

Internally, deBruijn indices are used for bound variables, which explains the
occurrence of H ′ in the second proof term. This gives a first simple version
of the theorem abstraction function: traverse the proof tree, replace all nodes
referring to the theorem we want to abstract over with the appropriate deBruijn
index, and add a λ-abstraction in front of the proof term.

When we use a theorem in a proof, both schematic and type variables are
instantiated. If we make the theorem an applicability condition we need to quan-
tify over both the schematic and type variables, hence the meta-quantification
in H and H ′ above. However, abstraction over type variables is not possible in
the Hindley-Milner type system of Isabelle’s meta-logic, where type variables are
always implicitly quantified at the outermost level. Instead, distinct assumptions
must be provided for each type instance. For example, a proof of the theorem

map (f · g) x = map f (map g x), (4)

contains three different type instances of the definition of map for non-empty
lists map f (Cons x y) = Cons (f x) (map f y).

At the implementation level, abstracting operations (Sect. 2.2) and types
(Sect. 2.3) is more straightforward. Traversing the proof term we replace opera-
tions and types by schematic and type variables, respectively. When abstracting
over polymorphic operations, we need distinct variables for each type instance of
the operation symbol, similar to the theorems above. If we consider map in The-
orem (4), we need to abstract over each of the three type instances separately,
resulting in three different function variables.

3.3 Abstraction over Theories

The previously defined elementary abstraction functions operate on single theo-
rems, operations, and types. For a more high-level approach, abstraction tactics
may be defined, which combine series of elementary abstraction steps.
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An example of such a tactic is abstraction over theories. A theory in Isabelle
can be thought of as a signature defining type constructors and operations, and
a collection of theorems. Theories are organised hierarchically, so all theorems
established in ancestor theories remain valid.

The tactic abstracts a theorem which belongs to a theory T1 into an ancestor
theory T2. It collects all theorems, operations, and types from the proof term
which do not occur in T2, and applies elementary tactics recursively to abstract
over each, starting with theorems and continuing with function symbols and
types. Finally, the derived proof term is replayed in the ancestor theory, thus
establishing the validity of the abstracted theorem in the theory T2

1.
Abstraction over all theorems, function symbols, and types will generally lead

to theorems which are hard to reuse. In the next section, we will consider tactics
which aid in the abstraction and reuse of abstracted theorems.

4 Reapplying Abstracted Theorems

This section considers different examples of abstraction, and scenarios to reap-
ply abstracted theorems. As part of our experimentation with the abstraction
method, we have generalised approximately 200 theorems from Isabelle’s li-
braries, and reapplied these. A systematic approach to reapplication is suggested
in order to facilitate reuse of sets of theorems.

4.1 Simple Abstraction and Reuse

A simple example of abstraction and reuse is to derive a theorem about natural
numbers by abstraction from the theorem append_Nil2≡ x@[ ] = x about lists.
Applying the abstraction tactic abs_to_thy described in Sect. 3.3, we derive a
theorem independent of the theory of lists:

[[∀P l. [[P nil ; ∀a l. P l =⇒ P (cons a l)]] =⇒ P l;
∀y. app nil y = y ;
∀u x y. app (cons u x) y = cons u (app x y)]]

=⇒ app x nil = x

(5)

The abstraction process introduces new names for the constant [ ] and the infix
operator @, favouring lexically suitable variable names.

We can now use this theorem to show that x + 0 = x. We proceed in two
stages: we first instantiate the variables nil with 0, app with + and cons with
λx.Suc (note we need the vacuous argument x here). This yields

[[∀P l. [[P 0; ∀a l. P l =⇒ P (Suc l)]] =⇒ P l;
∀y. y + 0 = y;
∀u x y. Suc x+ y = Suc(x + y) ]] =⇒ x+ 0 = x.

1 Due to Isabelle’s typeclasses an operation which is defined in T may not occur in
the signature of T directly; in this case, the user has to explicitly give the operation.
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The premises correspond to well-known theorems about natural numbers (in-
duction and the definition of +). Resolving with these, we obtain the theorem
x + 0 = x. Apart from the small simplification step required by moving from a
parametric to a non-parametric type, this process can be completely automated.

4.2 Change of Data Representation

A more challenging situation occurs when we want to implement a datatype by
another one. For example, suppose we implement the unary representation of
natural numbers by a binary representation, which may be given as follows:

datatype bNat = datatype Pos =
Zero One

| PBin Pos | Bit Pos bool

The standard functions on Nat may be defined by means of bit operations in
the binary number representation. We first define the successor functions bSucc
on bNat and pSucc on Pos by primitive recursion. The latter is defined as

pSucc One = Bit One False
pSucc (Bit x b) = if b then Bit (pSucc x) False

else Bit x True

Subsequently, we define binary addition bPlus by primitive recursion by

bPlus Zero x = x
bPlus (Pbin x) y = (case y of Zero ⇒ Pbin x

| Pbin y ⇒ Pbin (pPlus x y))

For Pos, we get:

pPlus One y = pSucc y
pPlus (Bit x b1) y =

(case y of One ⇒ pSucc (Bit x b1)
| (Bit z b2) ⇒ Bit (pPlus x (if (b1 & b2) then pSucc z

else z))
(b1 �= b2)

We show how to prove bPlus x Zero = x by reusing the abstracted form (5)
of theorem append_Nil2 (xs @ Nil = xs). We instantiate, this time nil with
Zero, app with bPlus and cons with λx.bSucc, and obtain the theorem

[[∀P l.[[P Zero; ∀a l. P l =⇒ P (bSucc l)]] =⇒ P l;
∀x. bPlus Zero x = x;
∀u x y. (bSucc x) y = bSucc (bPlus x y)]] =⇒ bPlus x Zero = x

(6)

The first premise corresponds to the induction scheme, and the second and third
premises correspond to the primitive recursive definition of addition on natu-
ral numbers. The induction principle on Pos is given by the structure of the
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datatype, not by natural induction. For the first premise, we therefore need to
show that the usual natural induction rule can be derived for bNat. This is done
by first establishing an isomorphism between Nat and bNat, i.e. two functions
n2b : nat −→ bNat and b2n : bNat −→ nat which are shown to be mutually in-
verse. The second premise is given by the definition of bPlus. The third premise
can be proved through case analysis on x and y.

We next show how to prove bPlus x (bSucc y) = bSucc (bPlus x y) by reusing
the proof of ∀m n. m + Suc n = Suc (m + n) from the theory of natural numbers.
The abstraction tactic gives us the theorem:

[[ ∀P n. [[P zero; ∀n. P n =⇒ P (suc n)]] =⇒ P n;
∀n. plus zero n = n;
∀u n. plus (suc u) n = suc (plus u n) ]]

=⇒ plus m (suc n) = suc (plus m n)

Instantiation (zero with Zero, plus with bPlus, suc with bSucc) yields a theorem
with three premises, which are identical to the premises of (5), except that
there are no vacuous quantified variables in the first and third premise. Hence,
resolution with the theorems needed above directly proves the goal.

4.3 Moving Theorems Along Signature Morphisms

In the previous examples, the process of moving theorems from the theory Nat to
bNat is quite mechanical: take a theorem from Nat, abstract all operations and
types from Nat, then instantiate the resulting variables with the corresponding
operations from bNat. In general, we can move theorems from a source theory to
a target theory if there is a suitable mapping of types and operations between the
theories. Such mappings between types and operations are known as signature
morphisms.

A signature Σ = 〈T,Ω〉 is given by type constructors T , with arity arT :
T → N, and operations Ω, with arity arΩ : Ω → T ∗. T ∗ is the set of all well-
formed types built from the type constructors and a (finitely countable) set of
type variables. A signature morphism is a map between type constructors and
operations preserving the arities of the type constructors, and the domain and
range of the operations. Formally, given two signatures Σ1 = 〈T1, Ω1〉 and Σ2 =
〈T2, Ω2〉, a signature morphism σ : Σ1 → Σ2 is given by a map σT : T1 → T2 on
type constructors and a map σΩ : Ω1 → Ω2 on operation symbols, such that

∀τ ∈ T1. arT1(τ) = arT2(σT (τ)) (7)
∀ω ∈ Ω1. σT (ω) = σΩ(ω) (8)

where σT : T ∗
1 → T ∗

2 is the unique extension of σT to all well-formed types. A
partial signature morphism is given by partial maps σT : T1 ⇀ T2 and σΩ : Ω1 ⇀
Ω2 such that all type constructors appearing in the source of any operation in
the domain of σΩ are in the domain of σT .

Let Thy1 and Thy2 be Isabelle theories with signatures Σ(Thy1) and Σ(Thy2),
and let σ : Σ(Thy1) → Σ(Thy2) be a signature morphism. Any proof term from
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Thy1 can be translated into a proof term in Thy2 if the proof does not con-
tain references to theorems from Thy1. This gives us a canonical way of moving
theorems from Thy1 to Thy2: first abstract all theorems from Thy1 occuring in
the proof of the theorem, then replace type constructors τ with σT (τ), and all
operation symbols ω with σΩ(ω), and replay the proof. Conditions (7) and (8)
ensure that the translated proof term is well-typed.

In order to extend the implementation of the theorem reuse method with
mappings of this kind, we define an abstract ML type sig_morph for partial sig-
nature morphisms. Signature morphisms are obtained using a constructor which
checks the conditions (7) and (8) above, when given source and target signatures
and the function graphs. We can apply the signature morphism in order to map
types and terms from the source into the target signature. The invariants of the
signature morphisms make sure that a translated term typechecks if the original
term did. Given this type, we can define an abstraction tactic

val abs_translate : sig_morph-> thm-> thm

which moves a theorem along a signature morphism. Applying this abstraction
tactic to our example, we can move any theorem from Nat to bNat, such as the
theorems add_0_right, add_Suc_right (see Sect 4.2), and add_commute:

[[ ∀P n. [[ P Zero; ∀n. P n =⇒ P (bSucc n) ]] =⇒ P n;
∀n. bP lus Zero n = n; ∀m. bP lus m Zero = m;
∀u n. bP lus (bSucc u) n = bSucc (bP lus u n);
∀m n. bP lus m (bSucc n) = bSucc (bP lus m n) ]]

=⇒ bP lus m n = bP lus n m

In the translated theorems, the applicability conditions correspond to the-
orems that were used in the proof of the source theorems. This suggests that
we can partially automate discharge of the applicability conditions when moving
several theorems from a source theory to a target theory by considering the order
in which the theorems are established in the source theory.

4.4 Analysing Theorem Dependencies

This section considers how to reduce proof work when moving theorems between
theories. In the previous examples, we have seen that it was necessary to prove
certain applicability conditions in the derived theorems. Some applicability con-
ditions occur in several theorems (e.g. the induction rule above) and a derived
theorem may occur as an applicability condition in another. Proof of applicabil-
ity conditions may be considerably simplified by analysis of the source theory
prior to theorem reuse.

In the example of Nat and bNat, successor and addition for bNat were defined
in terms of bit operations. This resulted in applicability conditions to ensure that
the definition of addition in Nat was valid in bNat. In general, we would like to
identify an appropriate, small set of theorems that need manual proof in a target
theory in order to move a larger selection of theorems from the source theory to
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the target theory automatically. We shall call such a set of theorems an axiomatic
base. Finding an axiomatic base is a process which is hard to automate; for the
Nat example above, the axiomatic base is the Peano axioms and the definition of
addition. We will below give an algorithm which checks if a given set of theorems
form an axiomatic base, and if so provides an abstraction tactic to move across
theorems automatically. Isabelle’s visualisation tool for the dependency graph
may help determine an appropriate axiomatic base.

We say that a theorem ϕ depends on another theorem ψ, written ψ −→ ϕ,
if ψ occurs as a leaf node in the proof of ϕ. The premises prem(ϕ) of a theorem
ϕ is the set of all theorems on which the theorem depends, i.e. prem(ϕ) =
{ψ | ψ −→ ϕ}. This allows the construction of a dependency graph for a theory,
in which the nodes are theorems of the theory, and the (unlabelled) edges are
ψ −→ φ for theorems ψ and φ. The dependency graph of the source theory helps
to identify an appropriate axiomatic base.

Given a set Φ of theorems, let pre(Φ) denote the preconditions of Φ, i.e. the
set of all theorems needed to derive the theorems in Φ. This set can be obtained
from the dependency graph by a simple depth- or breadth-first search:

pre(Φ) = Φ ∪ pre({ψ | ψ −→ ϕ for ϕ ∈ Φ}).
A theorem ϕ is directly derivable from a set Ψ of theorems, written Ψ � ϕ, if all
its premises (in the theory) are contained in Ψ :

Ψ � ϕ⇔ prem(ϕ) ⊆ Ψ.

This means that if we have translated all theorems in Ψ , we can establish the
translation of ϕ by replaying its translated proof term. The set of theorems deriv-
able by proof replay from a set of theorems Φ is the closure under derivability:

der (Φ) = Φ ∪ der ({ψ | Φ � ψ}).
Given a source theory with a set Φ of theorems and an axiomatic base B,

a target theory, and a partial signature morphism between the theories, we can
systematically abstract all theorems in the set

A
def= pre(Φ) \ pre(B)

and instantiate according to the signature morphism, deriving theorems in the
target theory. A necessary condition for the success of this translation is that
A ⊆ der (B), i.e. the axiomatic base is strong enough to derive the theorems in Φ.
In order to move theorems to another theory, the theorems of the axiomatic base,
translated according to the signature morphism, must be proved in the target
theory. In the example of Sect. 4.2, if Φ includes add_commute, the axiomatic
base will typically include the Peano axioms for addition, but need not include
add_0_right, which is derivable from these axioms. If the theorems of Φ are
translated in the order of dependency, such that the premises prem(ϕ) are moved
before ϕ for all ϕ ∈ A, the applicability conditions of the derived theorems in
the target theory can be discharged automatically.
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Our implementation provides a module which implements the necessary graph
algorithms. For simplicity and speed, we refer to theorems by their name through-
out. In particular, the function

val saturate : DG -> string list-> string list
-> (string* string list) list

will, given a dependency graph, an axiomatic base and a list of theorems, provide
a list of pairs of theorems and the names of their premises in order of dependency.
This list can be given to the abstraction tactic which moves across the theorems.

5 Related Work

The problem of proof reuse has been addressed previously. Some approaches
apply branches or fragments from old proofs when solving new problems: Melis
and Whittle [14] study reasoning by analogy, a technique for reusing problem
solving experience by proof planning; Giunchiglia, Villefiorita, and Walsh [7]
study abstraction techniques, where a problem is translated into a related ab-
stract problem which should be easier to prove as irrelevant details are ignored;
and Walther and Kolbe, in their Plagiator system [26], suggest proof reuse
in first-order equational theories by so-called proof catches, a subset of the leaf
nodes in a proof tree, similar to our applicability conditions.

The KIV system reuses proof fragments to reprove old theorems after mod-
ifications to an initial program [22]. The approach exploits a correspondence
between positions in a program text and in the proofs, so that subtrees of the
original proof tree can be moved to new positions. This depends on the un-
derlying proof rules, so the approach is targeted towards syntax-driven proof
methods typical of program verification. A more semantic approach are develop-
ment graphs as implemented in Maya [3], where a specification is represented by
a development graph, a richer version of the dependency graphs from Sect. 4.4.

In a logical framework setting, Felty and Howe [6] describe a generic approach
to generalisation and reuse of tactic proofs. In their work, a proof is a nested
series of proof steps which may have open branches. Reuse is achieved by replac-
ing the substitutions of a proof with substitutions derived from a different proof
goal by means of higher-order resolution. This opens for an elegant way to reuse
steps from abortive proof attempts for e.g. unfortunate variable instantiations,
which can to some extent be mimicked by considering different unifiers for our
derived inference rules. In contrast to the cited works, our approach allows a
generalisation over types as well as function symbols. In particular, proof reuse
as in the examples of Sect. 4 is not feasible in the cited approaches.

Proof reuse and generalisation of theorems have been studied in the Coq
system. Proofs in Coq resemble proof terms in Isabelle, but in a richer type the-
ory. Pons, Magaud and Bertot [13,20] consider transformation of proofs, similar
to ours, replacing operation symbols and types by variables, and Magaud and
Bertot [13] consider change of data representation in this setting, studying in
particular the same example as in Sect. 4.2 (in fact, our example was inspired by
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this work), extended further to type-specific inference rules in [12]. The richer
type theory used by Coq makes proof term manipulation more involved than
in the logical framework setting of our approach. For reuse, proofs have to be
massaged into a particular form, and e.g. induction and case distinction have to
be given special treatment. There are particular methods which either generalise
theorems [13, 20], or handle change of data type representations [12, 13]. In our
approach induction and case distinction are represented as meta-logic axioms,
which allows a uniform treatment of these situations by appropriate abstraction
tactics. For example, the dependency analysis (Sect. 4.4) is built on top of the
more elementary abstraction and reuse tactics. Further, theorems abstracted
with our method may be instantiated several times in different settings, thus
allowing multiple reuse.

Dependency graphs and similar structures have been considered in systems
such as KIV or Maya [3]. Isabelle can visualise the dependency graph, but not in
an interactive way. More interesting here is the work by Bertot, Pons and Pot-
tier [5], who implemented an interactive visualisation of the dependency graph,
allowing manipulations such as removing and grouping of edges and labels. An
interactive tool in this vein would greatly aid the user in establishing an ax-
iomatic base.

6 Conclusion and Future Work

This paper demonstrates how theorems can be generalised from a given setting
and reapplied in another, exploiting the possibilities offered by proof terms in
logical framework style theorem provers. This approach combines proof term
manipulation as known from type theory with the flexibility and power of log-
ical frameworks. The combination is particularly well suited for changing data
representations because object logic inference rules and theorems may be given a
uniform treatment in both the abstraction and reuse process. Consequently, the
transformation method may be applied to any theorem in a direct way, allowing
multiple reuse of the abstracted theorem in different settings.

The considered strategies for reuse point in interesting directions. Signature
morphisms are used as a structuring mechanism in algebraic specification lan-
guages such as CASL [2], and for structured development in e.g. Maya [3] or
Specware [23, 25]. The proposed analysis of theorem dependencies is promising,
and should be supported by a (probably graphical) tool, which would allow the
user to interactively determine an axiomatic base for the theory, assisted by
appropriate heuristics.

In addition to theorem reuse as discussed in this paper, the proposed method
may have applications in formal program development. In this field, several ap-
proaches have been suggested based on specialised transformation rules [23, 24]
or deriving rules from theorems [1,11]. However a coherent framework is lacking,
allowing users to systematically generalise existing developments to a widely ap-
plicable set of transformation rules. The proposed abstraction method may be
of use here. A small demonstration of this application, deriving transformation
rules from correctness proofs of data refinements, may be found in [10].
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The suggested proof term transformations and reuse strategies have been
implemented in Isabelle 20032. The implementation comprises only about one
thousand lines of ML code, with the abstraction tactics accounting for roughly
40%, dependency analysis and signature morphisms about 30%, and auxiliaries
and utilities the rest. The compactness of the code suggests that the framework
of meta-logic proof terms provided by Isabelle is well-suited for this kind of
transformations. At a technical level, there are several ways of improving the
proposed abstraction method. An interesting improvement is to incorporate the
technique of coloured terms [9], which would allow several variables to replace
the same function symbol during abstraction.
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