
CCC – The CASL Consistency Checker

Christoph Lüth1, Markus Roggenbach2, and Lutz Schröder1

1 Department of Mathematics and Computer Science, Universität Bremen, Germany
2 Department of Computer Science, University of Wales Swansea, United Kingdom

Abstract. We introduce the Casl Consistency Checker (CCC), a tool
that supports consistency proofs in the algebraic specification language
Casl. CCC is a faithful implementation of a previously described con-
sistency calculus. Its system architecture combines flexibility with cor-
rectness ensured by encapsulation in a type system. CCC offers tactics,
tactical combinators, forward and backward proof, and a number of spe-
cialised static checkers, as well as a connection to the Casl proof tool
HOL-Casl to discharge proof obligations. We demonstrate the viability
of CCC by an extended example taken from the Casl standard library
of basic datatypes.

1 Introduction

Consistency of specifications is an important issue: validating a specification by
proving intended consequences (sanity or conformance checking) is meaningless
without a consistency proof – ex falso quodlibet –, and implementing a specifi-
cation is impossible in the presence of inconsistencies. Some formal development
paradigms and specification languages handle this problem by excluding inconsis-
tent specifications. In contrast, algebraic specification languages such as Casl [4,
13] allow inconsistent specifications. This allows the developer to concentrate on
the desired properties of the system during the requirements engineering phase,
then validate their consistency in a separate, later step, before finally proceeding
to implement the specification.

This paper describes a prototype of the Casl Consistency Checker (CCC),
a tool that supports consistency proofs for Casl specifications. It is a faithful
implementation of the previously introduced calculus for consistency proofs of
Casl specifications [15]. CCC is part of wider effort to provide tool support for
Casl, comprising the Casl tool set CATS [12] which includes a parser, static
analysis, and an encoding into higher-order logic, which is used to embed Casl
into Isabelle/HOL [14], thus providing proof support for Casl specifications
(HOL-CASL).

The material is structured as follows: in Sect. 2, we review the basic concepts
of the consistency calculus [15]. We then describe the system architecture in
Sect. 3 and show the CCC at work with an extended example in Sect. 4.

J.L. Fiadeiro, P. Mosses, and F. Orejas (Eds.): WADT 2004, LNCS 3423, pp. 94–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 The Consistency Calculus

The specification language Casl [4, 13] constitutes a standard in algebraic spec-
ification. Its features include total and partial functions, predicates, subsorted
overloading, sort generation constraints, and structured and architectural spec-
ifications. A method for proving consistency of Casl specifications has been
introduced in [15]; we briefly recall the main features of the calculus.

The consistency calculus comprises three parts, concerned with specification
equivalence, conservativity of extensions, and definitionality of extensions, re-
spectively. The core of the method is the conservativity calculus; consistency of
a specification is encoded as conservativity over the empty specification. The
implementation extends the calculus of [15] by well-formedness assertions, so
that well-formedness also of unparsable specifications (namely, specifications
that contain specification variables) can be guaranteed.

The Extension Calculus This calculus handles extension judgements of the
form Sp1 � Sp2 which state that one has a signature inclusion which is a specifi-
cation morphism Sp1 → Sp2. Equivalence of specifications Sp1 ' Sp2 is defined
as mutual extension. These notions of extension and equivalence are meant to
be used only for minor syntactical adjustments; in particular, the extension cal-
culus is not intended as a means to establish so-called views, which serve to
describe general specification morphisms in Casl. Typical rules of the calculus
state that (Sp1 then Sp2) extends Sp1, that the union of specifications is idem-
potent, commutative, and associative, and that (Sp1 then Sp2) is equivalent to
(Sp1 and Sp2), provided the latter is well-formed (this is an example where a
well-formedness assertion is needed).

The Definitionality Calculus An extension Sp1 � Sp2 is called definitional
if each model of Sp1 extends uniquely to a model of Sp2; in Casl, this is ex-
pressed by the semantic annotation %def. In particular, definitionality implies
conservativity (see below). A definitionality assertion is written

def (Sp1)(Sp2).

The definitionality calculus plays an auxiliary role, since the main concern of
the method is conservativity. It presently covers definition by abbreviation and
primitive recursion; further extensions such as well-founded recursion are obvi-
ous, but require more elaborate tool support.

The Conservativity Calculus The notion of conservativity denoted by the
Casl annotation %cons is that of model extensivity: an extension Sp1 � Sp2 is
conservative if each model M of Sp1 extends to a model of Sp2; this is written

cons(Sp1)(Sp2).

The consistency assertion c(Sp) abbreviates cons({})(Sp), where {} denotes the
empty specification. Since the empty specification has a unique model, c(Sp)
indeed states that Sp is consistent. The conservativity rules divide into three
major groups:

.

.

.

CCC – The Casl Consistency Checker 95

– Basic language-independent rules, typical examples being a rule that states
that conservative extensions compose and a rule which allows deducing con-
servativity from definitionality.

– Logic-independent rules that propagate conservativity along the various
Casl structuring constructs. E.g., unions of specifications are treated by
the rule

(union)

Spi defines the signature Σi, i = 1, 2 Sp � Sp1, Sp � Sp2

Σ1 ∪Σ2 is amalgamable Sp defines Σ1 ∩Σ2

cons(Sp)(Sp1)
cons(Sp2)(Sp1 and Sp2)

Approximative algorithms for checking amalgability are already imple-
mented in CATS. This is a typical case where static side conditions are
relegated to further tools integrated into CCC.

– Logic-specific rules that guarantee conservativity for certain syntactic pat-
terns such as data types or positive Horn extensions. A simple example is

(free)

newSort(DD1 . . . DDn)(Sp)
Sp then types DD1; . . . ;DDn has a closed term for each new sort

cons(Sp)(Sp then free types DD1; . . . ;DDn)

where the DDi are datatype declarations and the assertion
newSort(DD1 . . . DDn)(Sp) states that the sorts declared in DD1 . . . DDn

are not already in Sp – another example of a proof obligation that is
discharged by a static checker.

The strategy for conservativity proofs is roughly as follows: the goal is split into
parts using the logic-independent parts of the conservativity calculus, occasion-
ally using the extension calculus for certain sideward steps; at the level of basic
specifications, conservativity is then established by the definitionality calculus
and the logic-specific rules of the conservativity calculus. This may involve the
use of built-in static checkers, and, at eventually pinpointed hot spots, actual
theorem proving.

3 System Architecture

For a tool such as a consistency checker or theorem prover, correctness is critical:
if the tool asserts that a specification is consistent, we need to be sure that this
follows from the consistency calculus, not from a bug in the implementation. On
the other hand, flexibility is important as well: users should be as unconstrained
as possible in the way which they conduct their consistency proofs.

CCC’s design follows the so-called LCF design [8], where a rich logic (such
as higher-order logic) is implemented by a small logical core of basic axioms and
inference rules. In this design, the logical core implements an abstract datatype
of theorems, with logically correct inference rules as operations. Other theorems
can only be derived by applying these operations, i.e. by correct inferences; thus

96 C. Lüth, M. Roggenbach, and L. Schröder

the correctness of the whole system is reduced to the correctness of the logical
core. The logic encoded within the logical core is called the meta-logic, whereas
the logic being modelled by the rules is the object logic.

Figure 1 shows the system architecture in three layers: innermost, we have
the logical core, surrounded by the extended object logic which supplements the
meta-logic with specialised proof procedures. The outermost layer is given by
auxiliary proof infrastructure.

CATS
Static Analysis

HOL−CASL

is_definitional

Unification &

Axiomatic Rule Base

Proof Infrastructure

Derived
Rules

Tactics &
Tacticals

Goal Package
Rules Library

CASL Abstract Syntax
Meta−Logic Substitution

CCC

is_primrec_opdefn Provers

... wellformed

is_theorem

Logical Core

Extended Object Logic

Fig. 1. CCC System Architecture

3.1 The Logical Core

The logical core of CCC implements the meta-logic, the axioms of the object
logic, and the axiomatic rule base.

The meta-logic is a weak fragment of conjunctive logic. It formalises rules as
we have seen in Sect. 2 above, and ways in which to manipulate them. A rule
allows us to deduce a proposition, the conclusion, from a list of propositions,
the premises. All deductions live in the context of a particular (global) environ-
ment which maps names to specifications; hence, all rules are parameterised by
an environment. We write such a rule as Γ ` P1, . . . , Pn → Q, where Γ is an
environment, P1 to Pn are the premises, and Q is the conclusion. Figure 2 shows
the rules of the meta-logic (where Pσ is the application of a substitution σ to
a proposition P , and mgu is the most general unifier of two propositions). This

CCC – The Casl Consistency Checker 97

formulation of the meta-logic allows proofs by both forward and backward reso-

lution. Forward resolution is application of the meta-rule composei and allows us
to derive a new rule from two old ones. Backward resolution allows goal-directed
proof (see Sect. 3.3 below).

Γ ` P → P
assume

Γ ` P1, . . . , Pn → Q ∆ ` R1, . . . , Rm → S

1 ≤ i ≤ m
Γ ⊆ ∆

σ = mgu(Q, Ri)

∆ ` R1σ, . . . , Ri−1σ, P1σ, . . . , Pnσ, Ri+1σ, . . . , Rmσ → Sσ
composei

Γ ` P1, . . . , Pn → Q
i 6= j, 1 ≤ i, j ≤ n,

Pi = Pj

Γ ` P1, . . . , Pj−1, Pj+1, . . . , Pn → Q
contracti,j

Γ ` P1, . . . , Pn → Q

Γ ` P1σ, . . . , Pnσ → Qσ
specialise

Fig. 2. Inference Rules of the CCC meta-logic

The object logic implements the judgements of the conservativity calculus.
They are modelled by a datatype prop, with CATS used to model the abstract
syntax of Casl (in particular, AS.L SPEC is the type of specifications):

datatype prop = consistent_SPEC of AS.L_SPEC
| conservative of AS.L_SPEC * AS.L_SPEC
| definitional of AS.L_SPEC * AS.L_SPEC
| implicational of AS.L_SPEC *AS. L_SPEC
| ext of AS.L_SPEC * AS.L_SPEC
| equiv of AS.L_SPEC * AS.L_SPEC
| provable of pprop

The datatype pprop is explained in detail below.
The third component of the logical core is the rule base. This is a collection of

rules the correctness of which has to be proved outside of the system by appealing
to the Casl semantics, as opposed to all other rules, which are derived from these
rules using the meta-rules; in other words, the rule base contains all rules of the
consistency calculus of [15] except the ones explicitly stated as derived.

3.2 Provable Propositions and Provers

The extended object logic adds decision procedures, called provers, to the logi-
cal core. Provers apply to specific proof obligations called provable propositions

98 C. Lüth, M. Roggenbach, and L. Schröder

represented by the datatype pprop. There are about thirty kinds of provable
propositions; an excerpt of the datatype pprop showing three typical cases is
this:

datatype pprop = well_formed of AS.L_SPEC
| is_just_signature of AS.L_SPEC
| is_theorem of AS.L_SPEC * AS.FORMULA list | ...

The first type of proof obligations states that a particular specification is well-
formed; this can be discharged by calling CATS’ static analysis. The second
states that a specification is merely a signature, and can be discharged by a
straightforward recursive function which descends the syntax tree of the speci-
fication and returns false as soon as it finds something which does not belong
into a signature (such as axioms or free datatypes). The third says that a list of
formulae is provable from the given specification, and requires interactive theo-
rem proving using HOL-CASL. A typical rule that has a provable proposition
as a premise is the conservativity rule for subtype definitions,

(sub)

newSort(s)(Sp)
implies(Sp)(Sp then axiom ∃ v : t • F)
cons(Sp)(Sp then sort s = {v : t • F})

.

Here, the provable proposition newSort(s)(Sp) states that the sort s is not
already declared in Sp, a fact that is easily checked statically.

By distinguishing propositions (prop) and proof obligations (pprop), we re-
strict the potential harmful effects of wrongly implemented provers. For example,
it is impossible to write a prover which returns consistent SPEC(Sp) for every
specification Sp. Note that provers are supplied when the system is built, never
at run-time by the user.

3.3 Proof Infrastructure

The proof infrastructure contains further modules which facilitate interactive
or semi-automatic proof. Derived rules are those of the rules from the calcu-
lus [15] which can be derived from the rule base. The tactics package allows us
to write advanced proof procedures. A tactic is a function on rules. The rules
of the meta-logic give us elementary tactics, which together with combinators
such as case distinction or sequential composition can be composed to more
sophisticated tactics such as one which handles all definitional extensions. The
rule library stores and retrieves previously shown results, and the goal package
allows backwards proof, starting from a stated goal and reducing it to the list of
empty premises by tactics application.

Users interact with the system using the SML command line interface, or
more comfortably using an instance of the Proof General interface [1]. The latter
combines SML’s flexibility and expressional power with script management and
a comfortable interactive environment.

CCC – The Casl Consistency Checker 99

spec Nat = free type Bool ::= TT | FF

then free type Nat ::= 0 | suc(pre:? Nat)

then op __<=__: Nat * Nat -> Bool

...

then op __ * __ : Nat * Nat -> Nat;

forall m,n : Nat

. 0 * m = 0

. suc(n) * m = (n * m) + m

then op 1: Nat = suc (0); ...; op 9: Nat = suc (8);

op __ @@ __ (m:Nat;n:Nat): Nat = (m * suc(9)) + n

end

Fig. 3. The specification Nat

spec Char = Nat

then sort Byte = { n: Nat . (n <= 255) = TT }

then free type Char ::= chr(ord: Byte)

then op ’\000’ : Char = chr(0 as Byte);

...

then op NL:Char = LF;

then op ’\n’ : Char = NL;

end

Fig. 4. The specification Char

CCC consists of about 7500 lines of SML code (excluding CATS and HOL-
CASL). It runs under SML of New Jersey, but should be easily portable to other
SML implementations. Source code and binary builds can be downloaded from
the CCC web site [5].

4 Extended Example

To demonstrate the CCC’s capabilities, we will show the consistency of the
specifications Nat of natural numbers (see Fig. 3) and Char of the datatype
of ASCII characters (see Fig. 4), taken from the Casl standard library of Basic
Datatypes [13]1. The simple structure of these specifications allows a detailed
discussion of their respective CCC proof scripts. However, the proofs involve
non-trivial consistency arguments. Furthermore, in the case of the specification
Char a complete consistency proof is not feasible without tool support due to
the length of the specification which involves more than 1000 axioms.

1 For the purposes of this paper, the specification text has been slightly modified to
make the consistency proof more readable.

4.1 Consistency proof of

Figure 5 shows the CCC proof script. We start by loading the library containing
Nat (load lib "Numbers"), stating our goal, and unfolding the specification

100 C. Lüth, M. Roggenbach, and L. Schröder

Nat

1 load_lib "Numbers"; ccc "Nat"; (* start the proof *)

2 ap (compose’ Struct.name1); (* unfold the spec *)

3 ap (Repeat(OpDefns)); (* deal with Op defns *)

4 ap (Repeat prim_rec_defns); (* deal with prim rec defs *)

5 ap (prove_free_type "0" 1); (* deal with free type Nat,

6 "0" as witness for non-empty carrier set *)

7 ap (prove 2 Prover.p_holcasl_auto);

8 ap (compose Struct.add_empty 1); (* add empty spec as start point *)

9 ap (prove 1 Prover.p_well_formed);

10 ap (prove_free_type "TT" 1); (* deal with free type Bool:

11 "TT" as witness for non-empty carrier set *)

12 ap (prove 2 Prover.p_holcasl_auto);

13 ap (compose’ Basic.triv_consistency); (* empty spec is consistent *)

14 ap (prove 1 Prover.p_is_just_signature);

15 qeccc "Nat"; (* store the result *)

Fig. 5. The CCC proof script for the specification Nat

(lines 1–2). The general idea of consistency proofs in CCC is to reduce the
overall goal to simpler goals by working backwards through the specification
text, reducing it to structures simple enough to show their consistency directly.

In our example, the first step is to show that the operation definition

op @@ (m:Nat;n:Nat): Nat = (m * suc(9)) + n

is definitional. If this is the case, the whole specification Nat is consistent if its
specification text without the last line is consistent. This type of argument (the
tactic OpDefns, line 3) can be repeated for all the digit definitions from op 1:
Nat = suc (0) to op 9: Nat = suc (8). Here, we can use the tactical combi-
nator Repeat, which applies its argument until it fails. Applying the composed
tactic reduces our goal to consistency of this smaller specification:

free type Bool ::= TT | FF
then ...
then op __ * __ : Nat * Nat -> Nat;

forall m,n : Nat
. 0 * m = 0
. suc(n) * m = (n * m) + m

Here, multiplication on natural numbers is a new operation whose axioms are
primitive recursive. This is verified by the tactic prim rec defns (line 4). Again,
this type of argument can be repeated, as also + and <= are defined
by primitive recursion. Hence, we have reduced the specification to be shown
consistent to

free type Bool ::= TT | FF
then free type Nat ::= 0 | suc(pre:? Nat)

CCC – The Casl Consistency Checker 101

1 load_lib "SimpleDatatypes"; ccc "Char"; (* start the proof *)

2 ap (compose’ Struct.name1); (* unfold the spec *)

3 ap (Repeat(OpDefns)); (* deal with the Op Defns *)

4 ...

5 ap (prove 3 Prover.p_new_sorts_closed_terms_dd);

6 (* deal with free type *)

7 ap (specialize_with (("t", 0), "chr(0 as Byte)") 3);

8 ap (prove 3 Prover.p_closed_term_for_sort);

9 holcasl 3; ...; caslqed();

10
11 ap (compose SpecialExt.sub 2); (*deal with subsort definition*)

12 ap (prove 2 Prover.p_new_sort);

13 ap (compose Imp.theorem_prover_basic 2);

14 holcasl 2; by (rtac exI 1); (* proof in HOL-CASL *)

15 by (rtac leq_def1_Nat 1); caslqed ();

16
17 ap (compose’ Struct.named); (* use the result c(Nat) *)

18 ap (compose’ (get "Nat"));

19 qeccc "c_Char"; (* store the proof *)

Fig. 6. The CCC proof script for the specification Char

Next, we deal with the definition of the natural numbers as a free type. The
tactic prove free type (line 5) takes 0 as a witness that there exists a defined
term of type Nat. In the next step, the definedness of 0 is verified by simple
theorem proving in HOL-CASL. These arguments reduce the specification text
relevant for consistency to

free type Bool ::= TT | FF

Now we add the empty specification (lines 8–9), as justified by our equivalence
rules:

{} then free type Bool ::= TT | FF

This allows us to apply again the tactic prove free type (line 10), this time
with TT as a witness. After discharging the proof obligation that TT is defined
(line 12), it remains to prove that the empty specification is consistent (line
13). This is verified by the prover Prover.p is just signature, which checks
that the empty specification does not contain any axioms. Finally, we store our
consistency result under the name Nat for later re-use (line 15).

4.2 Consistency proof of

For this example, see the proof script in Figure 6, we need to load the library
SimpleDatatypes (line 1), which imports the specification Nat the consistency
of which we have shown in the previous section. After stating our proof goal (line

102 C. Lüth, M. Roggenbach, and L. Schröder

Char

1) and unfolding the specification (line 2), the first actual proof steps consist of
showing that all the operation definitions op ’\ n’ : Char = NL till ’\000’ :
Char = chr(0 as Byte) are definitional (remember that we are working back-
wards). For this purpose we repeat again the tactic OpDefns (line 3). This reduces
our goal to show the consistency of this smaller specification:

Nat then sort Byte = { n: Nat . (n <= 255) = TT }
then free type Char ::= chr(ord: Byte)

To deal with free type Char ..., we have to show that the sort Char is new
and non-empty. The prover Prover.p new sorts closed terms dd checks the
first condition (line 5) and generates a proof obligation, where the user has to
provide a closed term as a witness that the carrier of the sort Char is non-
empty; here, we choose "chr(0 as Byte)" (line 6) and can then discharge the
proof obligation (line 7)2. This leaves us with the proof obligation that chr(0
as Byte) is actually defined, which we discharge with a small HOL-CASL proof
(line 8; the details of the proof are elided here).

Similarly, to deal with the subsort definition Byte, we need to check that sort
Byte is new (Prover.p new sort, line 11) and its carrier is non-empty. To this
end, we need to show that there exists an element in the sort Nat which is less
or equal to 255 (rule Imp.theorem prover basic, line 12), which requires more
theorem proving in HOL-CASL (lines 13–14).

We finish the proof by recalling the consistency of Nat using the above es-
tablished result (line 16–17). This is possible, because the specification Nat has
been imported and hence is part of the global environment in which we prove
the consistency of Char. Finally, the established theorem "c Char" is stored with
the command qeccc (line 18).

5 Conclusions and Future Work

CCC is a tool to support consistency proofs for specifications written in the stan-
dard algebraic specification language Casl. The calculus implemented by CCC
supports a proof method where large specifications are split into parts along their
explicit specification structure; trivial consistency issues are discharged along the
way, leading to the real hot spots of the specification that possibly require actual
theorem proving. As presented here, the tool should be seen as a prototype and
research vehicle, which we can use to study how to conduct consistency proofs
for large, realistic Casl specifications using our calculus; it is certainly not a
ready-to-use industrial strength tool yet.

The design of CCC focuses on two main issues: firstly, by basing the design
on a small and encapsulated logical core, correctness of the tool reduces to
the correctness of this core, i.e. essentially correctness of the calculus in [15].

2 These are the steps which we combined to the tactic prove free type used in the
previous section in the consistency proof of Nat.

CCC – The Casl Consistency Checker 103

Secondly, tactics, tactical combinators, forward and backward proof give users
the flexibility to conduct consistency proofs in a comfortable and extensible
way, and to design powerful proof strategies. This allows us to gradually develop
effective and efficient proof tactics for realistic specifications.

The use of CCC has been illustrated by means of an extended exam-
ple. Further experiments include specifications from the libraries Numbers,
RelationsAndOrders, Algebra I from the Casl standard library of Basic
Datatypes [13] as well as consistency checks of datatypes evolving in an indus-
trial case study of specifying an electronic payment system [7]. While logically
simple, these examples provide enough material both in terms of structure and
size to show not only that the tool is able to deal with substantial specifications,
but that its use indeed represents added value.

Related work: We can distinguish between approaches which avoid inconsistency
by construction, and approaches which show consistency by showing satisfiabil-
ity. The first approach comprises model-based specification formalisms such as
Z [16] and VDM [10], where a model of the system is constructed rather than
an axiomatic description; systems based on conservative extension such Isabelle
[14], where specifications are built by conservatively extending consistent ones;
and systems based on constructive type theory such as Coq [3] or Alfa/Agda [9,
6]. Following the second approach, there is a huge body of work on the satisfi-
ability (and hence consistency) of first-order formulae, which is complimentary
to our work; in our terminology, such automatic tools are provers which can be
used to prove the consistency of a set of axioms, and we aim to integrate these
tools into our system in the future. However, the contribution of our work is to
provide a framework in which to conduct consistency proofs for large, structured
specifications.

Future work: We will focus on designing more powerful tactics by testing the
tool with more examples selected from a wide range of case studies including
specifications found in [4, 13, 2, 7]. These examples will be more involved at the
level of basic specifications (i.e. in terms of logic rather than in terms of struc-
turing). On the other hand, more decision procedures will be provided in order
to increase the degree of automation. Obvious candidates include decision pro-
cedures already implemented in the Casl tool set (for example concerning the
search for witnesses of non-emptiness of types), as well as existing automatic
consistency checkers or SAT solvers such as Chaff [11].

The authors would like to thank Janosch Neuweiler and Tobias Thiel for their
help in implementing CCC, Erwin R. Catesbeiana for asking the right ques-
tions, Till Mossakowski for consultations on HOL-CASL and CATS, and David
Aspinall for helping to set up the Proof General interface.

104 C. Lüth, M. Roggenbach, and L. Schröder

Acknowledgements

References

1. D. Aspinall, Proof General: A generic tool for proof development, Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), LNCS, vol. 1785,
Springer, 2000, pp. 38–42.

2. H. Baumeister and D. Bert, Algebraic specification in Casl, Software Specification
Methods: An Overview Using a Case Study (M. Frappier and H. Habrias, eds.),
Springer, 2000.

3. Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions, Springer, 2004.

4. M. Bidoit and P. D. Mosses, Casl User Manual, LNCS, vol. 2900, Springer, 2004.
5. The CCC homepage, http://www.informatik.uni-bremen.de/cofi/ccc.
6. C. Coquand, Agda homepage, http://www.cs.chalmers.se/~catarina/agda.
7. A. Gimblett, M. Roggenbach, and H. Schlingloff, Towards a formal specification of

an electronic payment system in Csp-Casl, Recent Trends in Algebraic Develop-
ment Techniques (WADT 204) (José Luiz Fiadeiro, Peter Mosses, and Fernando
Orejas, eds.), LNCS, Springer, To appear.

8. M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF: a Mechanised Logic of
Computation, LNCS, vol. 78, Springer, 1979.

9. T. Hallgren, Alfa homepage, http://www.cs.chalmers.se/~hallgren/Alfa.
10. C. B. Jones, Systematic Software Development using VDM, Prentice Hall, 1990.
11. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, Chaff: Engineering

an efficient SAT solver, Design Automation, ACM, 2001, pp. 530– 535.
12. T. Mossakowski, Casl - from semantics to tools, Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), LNCS, vol. 1785, Springer, 2000,
pp. 93–108.

13. P. D. Mosses (ed.), Casl Reference Manual, LNCS, vol. 2960, Springer, 2004.
14. T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, LNCS, vol. 2283, Springer, 2002.
15. M. Roggenbach and L. Schröder, Towards trustworthy specifications I: Consistency

checks, Recent Trends in Algebraic Development Techniques (WADT 201), LNCS,
vol. 2267, Springer, 2002, pp. 305–327.

16. M. Spivey, The Z Notation: A Reference Manual, Prentice Hall, 1992, 2nd edition.

CCC – The Casl Consistency Checker 105

