
Type Class Polymorphism in an
Institutional Framework

Lutz Schröder, Till Mossakowski, and Christoph Lüth

BISS, Department of Computer Science,
University of Bremen

Abstract. Higher-order logic with shallow type class polymorphism is
widely used as a specification formalism. Its polymorphic entities (types,
operators, axioms) can easily be equipped with a ‘naive’ semantics de-
fined in terms of collections of instances. However, this semantics has the
unpleasant property that while model reduction preserves satisfaction of
sentences, model expansion generally does not. In other words, unless
further measures are taken, type class polymorphism fails to constitute
a proper institution, being only a so-called rps preinstitution; this is un-
fortunate, as it means that one cannot use institution-independent or
heterogeneous structuring languages, proof calculi, and tools with it.

Here, we suggest to remedy this problem by modifying the notion of
model to include information also about its potential future extensions.
Our construction works at a high level of generality in the sense that
it provides, for any preinstitution, an institution in which the original
preinstitution can be represented. The semantics of polymorphism used
in the specification language HasCasl makes use of this result. In fact,
HasCasl’s polymorphism is a special case of a general notion of poly-
morphism in institutions introduced here, and our construction leads to
the right notion of semantic consequence when applied to this generic
polymorphism. The appropriateness of the construction for other frame-
works that share the same problem depends on methodological questions
to be decided case by case. In particular, it turns out that our method is
apparently unsuitable for observational logics, while it works well with
abstract state machine formalisms such as state-based Casl.

1 Introduction

The idea that a logic is something that comes with signatures, models, sentences
and a satisfaction relation is formalized in the notion of institution as intro-
duced in [15]. In practice, this concept is exploited to support genericity and
heterogeneity in specification frameworks. For example, the semantics and proof
calculus for structured and architectural specifications in Casl [27] is generic
over institutions, and heterogeneous Casl [25, 26] uses a graph of institutions
for heterogeneous specification. The central condition governing the behaviour
of institutions is the satisfaction condition, stating that satisfaction of sentences
is preserved under both model expansion and reduction.

J.L. Fiadeiro, P. Mosses, and F. Orejas (Eds.): WADT 2004, LNCS 3423, pp. 234–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Type Class Polymorphism in an Institutional Framework 235

Type class polymorphism has been used in programming languages like
Haskell [31], as well as in the higher-order logic of Isabelle [38]. It is one of the cen-
tral features of the recently developed specification language HasCasl [35, 36].
Little attention has been paid in the literature to the question whether type
class polymorphism can be formalized as an institution, the main problem here
being that with the ‘naive’ semantics, the satisfaction condition fails in the sense
that satisfaction of polymorphic axioms is preserved only by model reduction,
not by model expansion, because expanded models may have more types. Thus,
the naive semantics defines only a so-called rps preinstitution [32] rather than
an institution.

The work of [28] is an initial attempt to define an institution for polymor-
phism but imposes severe restrictions on signature morphisms by simply ruling
out the introduction of new types. For the case of polymorphism without type
classes, one solution is to parametrize the notion of model by a fixed universe of
types [7, 19]; this solution, however, does not seem to be suitable for type class
polymorphism.

The main goal of the present work is to provide a semantics that avoids
both problems, i.e. caters for type classes and works with the usual structured
specification style where the signature is built up successively. In particular,
we wish to avoid restrictions on signature morphisms; instead, we argue that
the failure of the satisfaction condition points to a flaw in the notion of model.
The key idea is to notice that polymorphic axioms are intended as statements
about all types including those yet to be declared, and that therefore models
should take into account future extensions. Starting from this observation, we
obtain a general procedure that transforms a preinstitution into an institution,
the so-called institution of extended models. This construction is employed in the
semantics of HasCasl. It turns out that the notions of semantic consequence and
model-expansive extension engendered by the construction agree with intuitive
expectations, at least in sufficiently rich logics such as the logic of HasCasl.

More generally, HasCasl’s treatment of polymorphic sentences can be sub-
sumed under a definition of polymorphic formulae in institutions introduced
here. Such generic polymorphic frameworks are perfect candidates for the ex-
tended model construction, and indeed it turns out that the notion of semantic
consequence in the institution of extended models over a generic polymorphic
framework is simpler and more natural than the original notion.

There are several other known examples of logical frameworks where the
satisfaction condition fails unless restrictions are imposed. E.g. in observational
logics, signature morphisms are usually not allowed to introduce new observers
[5, 16], precisely in order to rescue the satisfaction condition. Moreover, in the
(non-)institution of SB-Casl [3, 4], the satisfaction condition fails for signature
morphisms that introduce additional state components [3]. We discuss both these
examples from a methodological perspective; it turns out that our construction
cannot be recommended for the observational case, since it suppresses coinduc-
tion, while the semantics obtained for SB-Casl arguably provides the ‘right’
notion of semantic consequence.

236 L. Schröder, T. Mossakowski, and C. Lüth

The material is organized as follows. Sections 2 and 3 provide preliminary
material concerning the institution-theoretic background and type class poly-
morphism in HasCasl. The failure of the satisfaction condition in the various
settings mentioned above is treated in detail in Section 4. Section 5 defines
polymorphic formulae over an institution. The construction of an institution
from a given preinstitution is introduced in Section 6, and applied to generic
polymorphic frameworks in Section 7. The issue of model-expansive extensions
(also referred to as model-theoretically conservative extensions or, e.g. in the
semantics of Casl, just as conservative extensions) is discussed in Section 8.
Section 9 provides some observations on how the generic mechanism instantiates
in frameworks other than type class polymorphism.

2 Institutions

A specification formalism is usually based on some notion of signature, model,
sentence and satisfaction. These are the ingredients of the notion of institution as
introduced by Goguen and Burstall [15]. Contrary to Barwise’s notion of abstract
model theory [2], the theory of institutions does not assume that signatures are
algebraic signatures; indeed, nothing at all is said about signatures except that
they form a class and that there are signature morphisms, which can be composed
in some way. This amounts to stating that signatures form a category.

There is also nothing special assumed about the form of the sentences and
models. Given a signature Σ, the Σ-sentences form just a set, while the Σ-models
form a category (taking into account that there may be model morphisms). Sig-
nature morphisms lead to translations of sentences and of models (thus, the
assignments of sentences and of models to signatures are functors). There is a
contravariance between the sentence and model translations: sentences are trans-
lated along signature morphisms, while models are translated against signature
morphisms.

Following [15], this is formalized as follows.

Definition 1. An institution I = (SignI ,SenI ,Mod I , |=I) consists of

– a category SignI of signatures;
– a functor SenI : SignI → Set giving, for each signature Σ, the set of sen-

tences SenI(Σ), and for each signature morphism σ : Σ → Σ′, the sentence
translation map SenI(σ) : SenI(Σ) → SenI(Σ′), where SenI(σ)(ϕ) is often
written as σϕ;

– a functor Mod I : (SignI)op → CAT (where CAT denotes the quasicate-
gory of categories and functors [1]) giving, for each signature Σ, the category
of models Mod I(Σ), and for each signature morphism σ : Σ → Σ′, the
reduct functor Mod I(σ) : Mod I(Σ′) → Mod I(Σ), where Mod I(σ)(M ′),
the σ-reduct of M ′, is often written as M ′|σ; and

– a satisfaction relation |=I
Σ ⊆ |Mod I(Σ)| × SenI(Σ) for each Σ ∈ SignI ,

Type Class Polymorphism in an Institutional Framework 237

such that for each σ : Σ → Σ′ in SignI , the satisfaction condition

M ′ |=I
Σ′ σϕ ⇔ M ′|σ |=I

Σ ϕ

holds for all M ′ ∈ Mod I(Σ′) and all ϕ ∈ SenI(Σ).

The notion of institutions owes much of its importance to the fact that sev-
eral languages for modularizing specifications are generic over an underlying
institution [11, 12, 13, 18, 27, 33]. Furthermore, institutions form the basis of het-
erogeneous frameworks such as heterogeneous Casl [25, 26]. Such frameworks
require a means of interrelating institutions, i.e. some notion of morphism be-
tween institutions. There are various such notions in the literature; one of the
most important ones are institution comorphisms, which essentially express that
fact that one institution is encoded into another.

Definition 2. Given institutions I and J , an institution comorphism [17] (also
called a plain map of institutions [21]) µ = (Φ, α, β) : I → J consists of
– a functor Φ : SignI → SignJ ,
– a natural transformation α : SenI → SenJ ◦ Φ,
– a natural transformation β : Mod J ◦ Φop → Mod I

such that the following satisfaction condition is satisfied for all Σ ∈ SignI ,
M ′ ∈ Mod J(Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Φ(Σ) αΣϕ ⇔ βΣM

′ |=I
Σ ϕ.

Example 3. Equational logic and first-order logic can be formalized as institu-
tions [15], and the obvious inclusion is a comorphism.

3 Polymorphism in HasCasl

HasCasl is a wide-spectrum language which provides a common framework
for algebraic specification and functional programming, oriented in particular
towards Haskell. This is achieved by extending the algebraic specification lan-
guage Casl [6] with higher-order functions in the style of Moggi’s partial λ-
calculus [23], type constructors, type classes, and constructor classes (for details,
see [35, 36]); general recursion is specified on top of this in the style of HOLCF.
The semantics of a HasCasl specification is the class of its (set-theoretic) in-
tensional Henkin models: function types are interpreted by sets which need not
contain all set-theoretic functions, and two functions that yield the same value
on every input need not be equal.

The main point of interest for the purposes of this paper is the semantics of
HasCasl’s type class oriented shallow polymorphism. A type class in HasCasl
(for the sake of simplicity, we omit constructor classes here) gives rise to a subset
of the syntactical set of types, where types are generated from basic types and
type constructors, the latter either user-declared or, like function types, built-in.
The set of types associated to a class is determined by the explicitly declared
instances of the class. Instances may be monomorphic or polymorphic. E.g., the
specification

238 L. Schröder, T. Mossakowski, and C. Lüth

class Ord < Eq
vars a : Type, b : Eq
types Nat : Ord ;

List a;
List b : Eq

declares a class Eq with a subclass Ord , a unary type constructor List , and a
type Nat (without defining any of these items); moreover, Nat is declared to be
of class Ord , hence also of class Eq , and List is declared to produce types of class
Eq when applied to arguments of class Eq . In the signature determined by the
above declarations, the classes Eq and Ord coincide, both consisting precisely
of the types of the form List (List (. . .List Nat)). When further instances are
declared later on in the specification process, the two classes will in general be
different.

Axioms and operators may be polymorphic over classes. E.g., we can write
(continuing the above specification)

var c : Ord
op ≤ : Pred(c × c)
var x , y , z : c

• x ≤ x
• (x ≤ y ∧ y ≤ z) ⇒ x ≤ z

This means that ≤ is a polymorphic predicate over class Ord satisfying
reflexivity and transitivity. Operators and axioms may be explicitly tied to a
class by means of a bracket notation, thus making up the interface of the class
which generates proof obligations (which, like the proof obligations associated
to Casl’s semantic annotations, lie outside the scope of the semantics proper)
for later instantiations.

In general, polymorphic types, operators, and axioms are semantically coded
out by collections of instances. That is, the effect of a polymorphic type is essen-
tially just its contribution to the syntactic type universe; a polymorphic operator
is interpreted as a family of operators, one for each instantiation of its type argu-
ments; and a polymorphic axiom is understood as a collection of axioms, indexed
over all types in the classes named in the quantifiers. This constitutes the first
level of the semantics of polymorphism used in HasCasl; as will be explained
in detail in the next section, one does not obtain an institution at this level. This
deficiency is repaired at the second level of the semantics; this second level and
the general construction behind it are the subject of this paper. The semantics
of polymorphic formulas at the first level will moreover be identified as a special
case of a general definition of polymorphism in institutions in Section 5.

4 Failures of the Satisfaction Condition

There are various features in modern specification languages that tend to
cause the satisfaction condition (cf. Section 2) to fail; besides polymorphism as
discussed in the previous section, this includes observational satisfaction and

Type Class Polymorphism in an Institutional Framework 239

dynamic equations between programs in states-as-algebras frameworks such as
SB-Casl [4]. Briefly, the reasons for the failures are as follows:

– Parametric polymorphism: if a signature morphism σ introduces addi-
tional types, then the translation of a polymorphic axiom ϕ may fail in a
model M although ϕ holds in the reduct of M along σ, namely if ϕ holds
for the ‘old’ types, but not for the newly introduced ones.

– Observational equality: if a signature morphism σ introduces additional
observers, then observational equalities that hold in the reduct of a model
M under σ may fail in M , since the new observers may detect previously
unobservable differences.

– dynamic equations: if a signature morphism σ introduces additional state
components (i.e. dynamic functions, predicates, or sorts), then dynamic
equations p = q between stateful program expressions [4] that hold in the
reduct M |σ of a model M may fail to hold in M , since the interpretations
of p and q may differ on the new state components [3].

In all these cases, only one direction of the satisfaction condition holds, so that
logics with these features constitute proper rps preinstitutions; we explicitly
repeat the definition [32]:

Definition 4. A preinstitution consists of a signature category equipped with
model and sentence functors and a satisfaction relation in the same sense as
an institution (cf. Section 2); these data are not, however, required to obey the
satisfaction condition. A preinstitution is called an rps preinstitution (‘reducts
preserve satisfaction’) if

M |= σϕ implies M |σ |= ϕ

for all M , σ, ϕ, and an eps preinstitution (‘extensions preserve satisfaction’) if
the reverse implication holds.

Let PI1, PI2 be preinstitutions. A preinstitution comorphism [24] µ : PI1 →
PI2 consists of the same data (Φ,α, β) as an institution comorphism (in partic-
ular, sentence translation is covariant and model translation is contravariant),
without however being required to obey the satisfaction condition as in Defini-
tion 2. A preinstitution comorphism µ is called rps if

M |= αϕ implies βM |= ϕ,

and weakly eps if a model M satisfies αϕ whenever βK |= σϕ for all K, σ such
that K|Φσ = M .

Thus, an institution is a preinstitution that is simultaneously rps and eps, and a
preinstitution comorphism between two institutions is an institution comorphism
iff it is rps and weakly eps.

The typical remedy used hitherto to obtain institutions in the presence of the
mentioned features is to restrict signature morphisms to cases where the full sat-
isfaction condition holds. We discuss this point in more detail in Section 9; here,

240 L. Schröder, T. Mossakowski, and C. Lüth

we just note that this is not an acceptable solution for the case of polymorphism:
one has to require that signature morphisms do not introduce additional types,
a restriction that effectively prevents the use of structured specifications. We
emphasize that this problem is not solved by treating quantified types as first-
class types (higher rank polymorphism), even if one manages to work around the
obstacle that the latter is inconsistent with higher order logic [10]: e.g., the re-
striction that signature morphisms be surjective on types is imposed also in [28],
where it is needed in order to ensure preservation of coherent families of domains
in a semantics of higher rank polymorphism in the style of Reynolds. In other
words, ensuring coherence of polymorphic operators model-theoretically is not a
feasible option.

For plain shallow polymorphism without type classes, a further alternative is
to interpret the range of quantification over type variables in a fixed universe of
types, i.e. some collection of sets closed under a number of constructions, rather
than in the syntactical universe of declared types. This is the approach taken
e.g. in [7, 19]; it is not apparently suitable for HasCasl and similar frameworks
for two reasons:

– in connection with a Henkin style semantics of function types, it is unclear
what closure of the type universe under function types means;

– the type universe does not give an indication of what the interpretation of
type classes should be, in particular since type classes on the one hand can
be entirely loose and on the other hand are meant to contain only explicitly
declared instances rather than, say, all structures matching the interface.

Independently of these specific issues, a further general disadvantage of the uni-
verse approach is that the choice of a universe unduly influences semantic con-
sequence — the particularities of the chosen universe may induce unintended
semantic consequences in a rather unpredictable way, thus introducing an un-
necessary degree of incompleteness of deduction. The solution chosen in the
semantics of HasCasl is therefore to add a second level to the model semantics
according to the general construction described below.

5 Generic Polymorphism

We now introduce a general notion of syntactic polymorphism in an institution
which covers HasCasl’s type class polymorphism as a special case. This con-
struction provides a wide range of examples of rps preinstitutions. We will return
to this example in Section 7, where we will show that the notion of semantic
consequence between polymorphic formulae induced by our generic construc-
tion of institutions from preinstitutions is not only in accordance with intuitive
expectations, but also greatly simplifies the original notion.

Our construction of polymorphic formulae is similar in spirit to the open
formulae introduced in [37]: given a signature Σ1, an open Σ1-formula is just
a sentence φ in some extension Σ2 of Σ1, and a Σ1-model M satisfies such a
formula if all its expansions to Σ2 satisfy φ. In typical algebraic settings, this

Type Class Polymorphism in an Institutional Framework 241

produces exactly the right kind of first or higher order quantification if Σ2 intro-
duces only additional constants or function symbols, respectively; essentially, the
new symbols then play the role of universally quantified variables. However, the
given notion of satisfaction is rather too strong if Σ2 introduces additional types;
since new sorts and function symbols involving new sorts (including instances of
polymorphic operators for new sorts) can be interpreted with arbitrary malev-
olence in extensions of M , most open formulae involving such a Σ2 will in fact
be unsatisfiable.

Thus, we need a relaxed notion of satisfaction in order to arrive at the right
notion of universal quantification over types. The idea is to require satisfaction
of φ as above not for all extensions of M , but only for extensions by syntactic
definition, i.e. the new signature items in Σ2 have to be interpreted in terms of
the base signature Σ1. Of course, the involved notion of interpretation will have
to be sufficiently general. E.g., we will want to interpret function symbols by
terms, type constants by composite types etc. — in other words, we will need to
use derived signature morphisms. All this is formalized as follows.

Definition 5. An institution with signature variables is an institution I with
a distinguished object-full subcategory Var of the signature category Sign (i.e.
Var need not be full in Sign, but contains all objects of Sign) whose mor-
phisms are called signature variables. Signature variables are assumed to be
pushout-stable, i.e. pushouts of signature variables along Sign-morphisms exist
and are signature variables. (Morphisms in Sign should be thought of as derived
signature morphisms.)

In I, a polymorphic formula ∀σ. φ over a signature Σ1 consists of a signature
variable σ : Σ1 → Σ2 and a Σ2-sentence φ. A Σ1-model M satisfies ∀σ. φ if

M |= τφ for all τ in Sign such that τ ◦ σ = id.

A sentence τφ as above is called an instance of ∀σ. φ. The translation ρ(∀σ. φ)
of ∀σ. φ along a signature morphism ρ : Σ1 → Σ3 is defined to be ∀σ̄. ρ̄φ, where

Σ2
ρ̄� •

Σ1

σ �

ρ
� Σ3

σ̄�

is a pushout; note that σ̄ is indeed a signature variable. (This definition deter-
mines the translation only up to isomorphism; for similar reasons as given in
Remark 5.1. of [37], this is not actually a problem.)

The polymorphic preinstitution Poly(I) over I is given as follows: the notions
of signature, model, and model reduction are inherited from I; Σ-sentences are
polymorphic formulae over Σ; satisfaction and sentence translation are as above.

The sentences of I can be coded in Poly(I): a Σ-sentence φ in I is equivalent
to the polymorphic formula ∀idΣ . φ, where idΣ is indeed a signature variable
thanks to object-fullness of Var in Sign.

242 L. Schröder, T. Mossakowski, and C. Lüth

Example 6. An example of the syntactic polymorphism described above is
HasCasl’s type class polymorphism. The base institution is essentially as in
the first level of the HasCasl semantics, except that polymorphic sentences
are excluded, so that we actually obtain an institution rather than an rps pre-
institution. (Note that the base institution does have polymorphic types and
operators. In particular, signature morphisms can translate polymorphic oper-
ators only as a whole, not instance by instance.) Signature morphisms are, as
announced above, derived signature morphisms which map

– operator constants to terms;
– type constructors to λ-expressions which denote composite type constructors

possibly containing subtype formation; and
– classes to subsets of the syntactic type universe.

A signature variable in this institution is an injective plain HasCasl signature
morphism (which maps types to types, operators to operators etc. as usual)
which is bijective on all syntactic entities except types. (This illustrates the
necessity of the restricted cocompleteness requirement for institutions with sig-
nature variables: pushouts of derived signature morphisms in general fail to
exist, while pushouts of derived signature morphisms along signature variables
do exist; this phenomenon is typical of derived signature morphisms in general.)
Then, polymorphic formulae and their satisfaction as defined above coincide
with the corresponding notions in HasCasl as explained in Section 3. E.g., if
σ : Σ1 ↪→ Σ2 extends Σ1 by a single new type constant a, then the polymorphic
formula ∀σ. φ is equivalent to the polymorphic HasCasl sentence ∀a : Type. φ:
the left inverses τ of σ correspond to the possible instantiations of the type
variable a in Σ1. Note that the interpretation of instances of polymorphic oper-
ators involving a is forced by the interpretation of a, since, as emphasized above,
signature morphisms map polymorphic operators as single entities.

By the above example and Section 4, it is clear that the polymorphic prein-
stitution Poly(I) will in general fail to be an institution. However, we have

Theorem 7. The polymorphic preinstitution Poly(I) is an rps preinstitution.

6 A Generic Institutionalization

We now describe a general process that transforms preinstitutions into institu-
tions. We begin with a heuristic observation regarding the intended meaning of
polymorphic definitions. Consider the specification

spec Composition =
vars a, b, c : Type
op comp : (b → c) → (a → b) → a → c
vars f : b → c; g : a → b

• comp f g = λx : a • f (g x)

Type Class Polymorphism in an Institutional Framework 243

where for the sake of the argument we abuse HasCasl as a notation for the
simply typed λ-calculus with shallow polymorphism in much the same sense
as described in Section 3, the only real point of this being the assumption that,
unlike in actual HasCasl, there is no unit type. On the first level of the semantics
as described in Section 3, Composition is model-theoretically entirely vacuous,
since the syntactic set of types is empty and hence the polymorphic axiom is
trivially satisfied in ‘all’ models of the signature (there is in fact only one model,
since the signature is effectively empty). This is clearly not the intention of
Composition. Indeed this specification is necessarily meant as a building block
for other specifications that import the polymorphic operator and its definition,
which then induce instances according to the ambient signature. In other words,
the real purpose of Composition is apparently to say something about the
interpretation of comp at all types, even those not yet declared. Thus, a model
of the specification should contain information not only about the interpretation
of the presently declared signature, but also about all ‘future’ extensions of this
interpretation. This is the motivation for the following definitions:

Definition 8. Let PI be a preinstitution. An extended model of a signature
Σ1 is a pair (N,σ), where σ : Σ1 → Σ2 is a signature morphism and N is a
Σ2-model in PI. The reduct (N,σ)|τ of (N,σ) along a signature morphism τ is
(N,σ ◦ τ). The extended model (N,σ) satisfies a sentence ϕ if

N |= σϕ

in PI.

We record explicitly

Theorem and Definition 9. The extended models, together with the original
notions of signature and sentence from PI, form an institution, called the insti-
tution of extended models and denoted Ext(PI).

Proof. Functoriality of reduction is easy to see. To check the satisfaction condi-
tion, let τ : Σ1 → Σ2 be a signature morphism, let ϕ be a Σ1-sentence, and let
(N,σ) be an extended Σ2-model. Then (N,σ) |= τϕ in Ext(PI) iff N |= στϕ in
PI iff (N,σ)|τ = (N,σ ◦ τ) satisfies ϕ in Ext(PI).
�

The semantic consequence relation in Ext(PI) is precisely as expected:

Proposition 10. A Σ1-sentence ψ is a semantic consequence of a set Φ of Σ1-
sentences in Ext(PI) iff

σΦ |= σψ

in PI for each signature morphism σ : Σ1 → Σ2.

Proof. ‘If ’: trivial.
‘Only if ’: let σ : Σ1 → Σ2 be a signature morphism, and let N be a Σ2-model

such that N |= σΦ in PI. Then the extended model (N,σ) satisfies Φ and hence
also ψ, i.e. we have N |= σψ.
�

244 L. Schröder, T. Mossakowski, and C. Lüth

That is, a formula is a semantic consequence of a specification Sp = (Σ,Φ)
(where Φ is a set of Σ-sentences) iff this is the case, in PI, in all extensions
of Sp.

Example 11. In the example specification Composition from Section 4, all
formulae are semantic consequences on the first level, i.e. in PI, since all formu-
lae are vacuously true. This pathology disappears in Ext(PI), where semantic
consequences of the specification are only those formulae that follow from the
definition of composition independently of how many types are introduced, such
as e.g. associativity of composition. Thus, the notion of semantic consequence
at the second level, unlike the one at the first level, conforms to intuitive expec-
tations. We will make this more precise in Section 7.

One can give a concise description of extensions in Ext(PI):

Lemma 12. The extensions of an extended model (N, τ) along a signature mor-
phism σ are precisely the extended models (N, ρ) where τ = ρ ◦ σ.
We can represent PI in Ext(PI) by a preinstitution comorphism (cf. Defini-
tion 4)

η : PI → Ext(PI)

which is the identity on signatures and sentences, and takes every extended
model to its base model.

Proposition 13. The comorphism η is weakly eps. Moreover, η is rps if PI is
rps.

Remark 14. Interestingly, the concept of extended model is close to the very
abstract or hyper-loose semantics as introduced in [9, 30], where models may
interpret more symbols than just the ones named in their signature. This is used
e.g. in the semantics of RSL [14].

There are two crucial differences here. The first is of motivational nature:
the purpose of very abstract semantics is to ensure that refinement is model
class inclusion; there is no intended connection with repairing the satisfaction
condition, and in fact, the construction described in [9] is explicitly intended as
a construction on institutions (one of the example applications given in [9, 30] is
to the institution of many-sorted first order logic). Note that, when applied to
institutions, the very abstract semantics is equivalent to the original semantics
in terms of the engendered semantic consequence relation.

Secondly, at a more technical level, the phrase ‘models may interpret addi-
tional symbols’ means that very abstract semantics limits the notion of model to
extended models with injective signature morphisms; the main technical content
of [9] is to solve the difficulties caused by this restriction w.r.t. model reduc-
tion. For the purposes pursued here, the restriction to injective extensions is not
only unnecessary, but would indeed invalidate our main result; i.e. for models of
polymorphism modeled along the construction of [9], the satisfaction condition
would still fail.

Taking PI as the first level of the HasCasl semantics (cf. Section 3), we define
the second level of the semantics [36] to be given by Ext(PI).

Type Class Polymorphism in an Institutional Framework 245

7 Semantic Consequence for Generic Polymorphism

We now investigate the implications of the extended model construction ex-
plained in Section 6 in relation to the generic polymorphism introduced in Sec-
tion 5 — recall that generic polymorphism in general leads only to an rps prein-
stitution. For the remainder of this section, let I be an institution with signature
variables, and let Poly(I) denote the polymorphic preinstitution over I as defined
in Section 5.

Let ∀σ. φ and ∀ρ. ψ be polymorphic formulae over a signature Σ1. It is easy
to check that ∀ρ. ψ is a semantic consequence of ∀σ. φ in Poly(I) iff

{τφ | τ ◦ σ = id} |= πψ

in I for each signature morphism π such that π◦ρ = id. This is rather unpleasant,
since it means we have to prove a possibly infinite number of semantic conse-
quences, one for each instance πψ of ∀ρ. ψ in Σ1. Fortunately, the (stronger)
notion of semantic consequence in the institution Ext(Poly(I)) is much more
tractable:

Theorem 15. In Ext(Poly(I)), ∀ρ. ψ is a semantic consequence of ∀σ. φ iff

ρ(∀σ. φ) |= ψ

in Poly(I) (or, since ψ enjoys eps, equivalently in Ext(Poly(I)))

(Recall that ρ(∀σ. φ) = ∀σ̄. ρ̄φ, where (ρ̄, σ̄) is the pushout of (σ, ρ)). The above
condition can be equivalently rephrased as the semantic consequence

{λφ | λ ◦ σ = ρ} |= ψ (∗)

in I. Thus, unlike proofs of semantic consequence in Poly(I) as described above,
proofs in Ext(Poly(I)) are actually feasible, since we have to prove only a single
generic instance of the goal, rather than all instances that exist in the base
signature due to pure syntactic happenstance. Moreover,

any sound and complete deduction system for I induces a sound and
complete deduction system for Ext(Poly(I)),

while for Poly(I), one will in general only obtain a sound but not complete
deduction system.

The formulation of semantic consequence given in the theorem is exactly what
one would intuitively expect: we fix the additional syntactic material quantified
over by ρ and prove ψ only for this fixed instance; in the proof, we are allowed
to make use of all instances of φ, including instances involving the new syntactic
material. Proofs of polymorphic formulas e.g. in Isabelle [29] work in precisely
this way, which we have now provided with a semantic foundation.

Proof (Theorem 15). ‘Only If ’: by Proposition 10, we have ρ(∀σ. φ) |= ρ(∀ρ. ψ),
and ψ is an instance of ρ(∀ρ. ψ). The latter follows from the universal property
of the pushout of ρ with itself.

246 L. Schröder, T. Mossakowski, and C. Lüth

‘If ’: let Σ1 be the base signature of ∀σ. φ and ∀ρ. ψ, let κ : Σ1 → Σ2 be a
signature morphism, and let

• κ̄σ� • • κ̄ρ� •
and

Σ1

σ �

κ
� Σ2

σ̄�

Σ1

ρ �

κ
� Σ2

ρ̄�

be the associated pushout diagrams. Then κ(∀σ. φ) = ∀σ̄. κ̄σφ and κ(∀ρ. ψ) =
∀ρ̄. κ̄ρψ. By Proposition 10, we thus have to prove

∀σ̄. κ̄σφ |= ∀ρ̄. κ̄ρψ

in Poly(I), i.e. given a model M such that M |= ∀σ̄. κ̄σφ and τ such that τ ρ̄ = id,
we have to show M |= τ κ̄ρψ in I. Since semantic consequence in I is stable under
translation, this reduces by (∗) above to showing M |= τ κ̄ρλφ for all λ such that
λ ◦ σ = ρ. For such a λ, we have τ κ̄ρλσ = τ κ̄ρρ = τ ρ̄κ = κ, so that the pushout
property yields ν such that νσ̄ = id and νκ̄σ = τ κ̄ρλ. Then M satisfies the
instance νκ̄σφ of ∀σ̄. κ̄σφ; but νκ̄σφ = τ κ̄ρλφ.
�

8 Model-Theoretic Conservativity

While the semantic consequence relation engendered by the extended model
construction is without further ado precisely the ‘right’ one, the issue of model
expansion, i.e. of conservativity in the model-theoretic sense as used e.g. in Casl,
is somewhat more subtle. We recall a few definitions:

Definition 16. A theory in a (pre-)institution is a pair Sp = (Σ,Φ) consisting
of a signature Σ and a set Φ of Σ-sentences. A model of Sp is a Σ-model M such
that M |= Φ. A theory is consistent if it has a model. A signature morphism
σ : Σ1 → Σ2 is a theory morphism (Σ1, Φ1) → (Σ2, Φ2) if

Φ2 |= σΦ1.

A theory morphism σ : Sp1 → Sp2 is model-theoretically conservative or model-
expansive if every model M of Sp1 has an Sp2-extension, i.e. a model N of Sp2
such that N |σ = M .

Notice that by Proposition 10 and Example 11, the notion of theory morphism
in Ext(PI) is in general properly stronger than in PI.

Proposition 17. A theory is consistent in an rps preinstitution PI iff it is
consistent in Ext(PI).

Typical extensions that would be expected to be model-expansive e.g. in
HasCasl are (recursive) function definitions, loose declarations of new signature
elements, and declarations of free datatypes. An apparent obstacle to model-
expansivity of such extensions at the second level of the semantics is Part (i) of
the following observation:

Type Class Polymorphism in an Institutional Framework 247

Proposition 18. Let PI be an rps preinstitution, and let σ : (Σ1, Φ1) →
(Σ2, Φ2) be a theory morphism in Ext(PI). Then the following holds:

(i) If σ is model-expansive in Ext(PI) and (Σ1, Φ1) is consistent, then σ is
a section as a signature morphism; i.e. there exists a signature morphism
τ : Σ2 → Σ1 such that τ ◦ σ = id.

(ii) If σ is a section as a theory morphism in Ext(PI), i.e. there exists a theory
morphism τ : (Σ2, Φ2) → (Σ1, Φ1) such that τ ◦ σ = id, then σ is model-
expansive.

Proof. (i): By assumption and the rps condition, (Σ1, Φ1) has a model (M, id) in
Ext(PI). By Lemma 12, existence of an extension of this model along σ implies
that σ is a section.
(ii): Straightforward.
�
When plain signature morphisms are used, which typically map type constants to
type constants, operators to operators etc., then the necessary condition above
is clearly too restrictive; essentially, the only model-expansive extensions one
obtains are those that define symbols by other symbols already present. The
solution to this is to use derived signature morphisms instead, which typically
are allowed to map, say, type constants to composite types, operators to terms,
and the like; by the sufficient condition (ii) above, one then obtains as model-
expansive extensions all declarations and definitions which can be implemented
by some composite object in the present theory.

In the case of HasCasl, the notion of derived signature morphism required
here is the one already given in Example 6. Thanks to the richness of HasCasl
specifications, the model-expansive extensions are indeed the expected ones un-
der this definition; this includes

– equational definitions
– well-founded recursive definitions of functions into types that admit a unique

description operator [34]
– general recursive definitions over cpo’s
– inductive datatype definitions, provided that the base theory already con-

tains the natural numbers (this is a categorical result inherited from topos
theory [22])

– class declarations.

In general, it depends on the expressive power of signatures and theories in the
preinstitution at hand whether or not using derived signature morphisms leads to
a satisfactory notion of model-expansivity. It should however be noted that there
is usually quite some latitude in the definition of derived signature morphism;
many forms of extensions can be made model-expansive by just giving a more
liberal definition of what a derived signature morphism can do.

9 Application to Other Frameworks

We now briefly discuss the effects of the extended model construction in other
frameworks where the satisfaction condition may fail, to wit, in observational

248 L. Schröder, T. Mossakowski, and C. Lüth

and state-based frameworks as described in Section 4. Of course, the construction
will always work in principle; however, the question remains whether or not the
ensuing semantic modifications are methodologically desirable, and what the
actual benefits are. Here, we will concentrate on two issues:

A) Is the notion of semantic consequence engendered by the extended model
construction the expected one? I.e., in view of Proposition 10, is semantic
consequence intended to be independent of the surrounding signature?

B) Is the alternative solution of restricting signature morphisms acceptable?

We have seen that, in the case of type class polymorphism, the answer is ‘yes’
to Question A) and ‘no’ to Question B): semantic consequences that hold only
due to the particular nature of the presently declared types can be regarded
as unwanted side effects, and limiting signature morphisms to be surjective on
types is not an option.

The situation is different with observational satisfaction. It is precisely the
point of having distinguished observable operations or sorts that these govern
the notion of observational equality, and moreover that the given set of observers
determines a proof principle for observational equality, namely coinduction. This
proof principle is lost when extended models are considered (in a setting with
unrestricted signature morphisms): since deduction then has to work within
arbitrary signature extensions that may introduce any number of additional ob-
servers, the notion of semantic consequence for extended models is just semantic
consequence in standard equational logic. This is clearly not the desired effect,
so that the notion of extended model cannot in fact be considered suitable for
observational specification. It is thus lucky that, given this negative answer to
Question A), the answer to Question B) is affirmative: it is common practice to
restrict signature morphisms of observational specifications in such a way that
extensions never introduce new observers [5, 16]. This forces a specification style
where all observers are introduced in one go at the beginning, being regarded as
constituting the requirements on the system, and the non-observable part, i.e.
the implementation, is added later; indeed, this specification style is explicitly
advocated e.g. in [20].

Finally, let us have a look at the specification of stateful systems in the states-
as-algebras paradigm as used e.g. in the specification language SB-Casl [4].
The problem here, as pointed out in Section 4, are so-called dynamic equations
between program-like expressions called transition terms in SB-Casl (besides
these dynamic equations, SB-Casl also features pre- and postconditions, which
are however unproblematic w.r.t. the satisfaction condition). The purpose of
dynamic equations lies both in the (possibly recursive) definition of procedures
and in their loose equational specification e.g. as inverses of other procedures (a
very simple example of this is given in [4]). As indicated in Section 4, dynamic
equations may break in model expansions when signature morphisms introduce
additional state components.

The methodology of state-based specification in this sense is not as yet well
developed, so that we feel entitled to pitch in our own bit of philosophy, as
follows. Concerning Question B) above, it seems undesirable to have a develop-

Type Class Polymorphism in an Institutional Framework 249

ment paradigm where the specification process starts with defining the entire
state space in full detail and only then allows the formulation of requirements
for programs that work on this state space; to the contrary, one would normally
wish to start with the requirements, mentioning only the parts of the state space
relevant for input and output, and then work out the detailed design of the state
space. As to Question A), it appears for rather the same reason that semantic
consequences that hold only due to an insufficiently detailed description of the
state space should be regarded as spurious, so that the notion of semantic con-
sequence induced by the extended model construction is indeed an improvement
over the original one. As an extreme example, consider a specification that in-
troduces some procedure names, but no dynamic signature components at all
(presumably with the intention to specify these in later extensions), i.e. induces
a trivial state space; in SB-Casl, such a specification might look as follows:

spec Sp =
proc p, q
pre p : True
pre q : True

(the two preconditions express that p and q terminate). Then, unless extended
models are used, any two terminating programs (transition terms) would be
equal, i.e. their equality is a semantic consequence of the precondition expressing
their termination; in particular, the above specification implies the dynamic
equation p = q. We argue that this sort of semantic consequence is actually a
pathology, which is eliminated by our extended model construction.

10 Conclusion

Starting from the problem that type class polymorphism does not enjoy the sat-
isfaction condition of institutions, but only the reduction preserves satisfaction
(rps) half, we suggest a general construction of institutions from preinstitutions.
The construction is based on the idea that a model of a specification should
contain information not only about the interpretation of the presently declared
signature, but also about all ‘future’ extensions of this interpretation. Conse-
quently, the extended models of a signature are defined to consist of a signature
extension and a model of the extended signature. The arising notion of semantic
consequence is the expected one, namely, semantic consequence in all signature
extensions in the original preinstitution. Moreover, in sufficiently rich logics such
as the HasCasl logic, one also obtains the expected model-expansive extensions.

The semantics of polymorphism used in HasCasl makes use of this result,
so that HasCasl does indeed fit into the institution-independent framework of
Casl. We have also investigated the use of our construction in other frameworks
where the satisfaction condition fails for unrestricted signature morphisms, the
result being that the implications of our constructions are methodologically
undesirable in the case of observational satisfaction, but beneficial in the case
of dynamic equations in a states-as-algebras framework. The suitability of our

250 L. Schröder, T. Mossakowski, and C. Lüth

approach for security formalisms, which also exhibit the phenomenon that secu-
rity assertions tend to be unstable under refinement [8], is under investigation.

A particularly pleasing point is that HasCasl’s polymorphic sentences can
be subsumed under a general definition of polymorphic formulae over institu-
tions; the extended model construction, when applied to such generic polymor-
phic frameworks, leads to a very natural notion of semantic consequence which
agrees with proof principles used e.g. in Isabelle [29]. In this sense, our method
provides a semantic basis for existing proof methods.

Acknowledgements

The authors wish to thank Hubert Baumeister for valuable information about
SB-Casl and Tom Maibaum for useful hints and discussions.

References

[1] J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and concrete categories,
Wiley Interscience, 1990.

[2] J. Barwise, Axioms for abstract model theory, Ann. Math. Logic 7 (1974), 221–265.
[3] H. Baumeister, An institution for SB-Casl, talk presented at the 15th Interna-

tional Workshop on Algebraic Development Techniques, Genova, 2001.
[4] H. Baumeister and A. Zamulin, State-based extension of Casl, Integrated Formal

Methods, LNCS, vol. 1945, Springer, 2000, pp. 3–24.
[5] M. Bidoit and R. Hennicker, On the integration of observability and reachability

concepts, Foundations of Software Science and Computation Structures, LNCS,
vol. 2303, Springer, 2002, pp. 21–36.

[6] M. Bidoit and P. D. Mosses, Casl user manual, LNCS, vol. 2900, Springer, 2004.
[7] T. Borzyszkowski, Higher-order logic and theorem proving for structured specifica-

tions, Recent Trends in Algebraic Development Techniques, (WADT 99), LNCS,
vol. 1827, Springer, 2000, pp. 401–418.

[8] A. Bossi, R. Focardi, C. Piazza, and S. Rossi, Refinement operators and informa-
tion flow security, Software Engineering and Formal Methods, IEEE Computer
Society Press, 2003, pp. 44–53.

[9] M. Cerioli and G. Reggio, Very abstract specifications: a formalism independent
approach, Math. Struct. Comput. Sci. 8 (1998), 17–66.

[10] T. Coquand, An analysis of Girard’s paradox, Logic in Computer Science, IEEE,
1986, pp. 227–236.

[11] R. Diaconescu, J. Goguen, and P. Stefaneas, Logical support for modularisation,
Workshop on Logical Frameworks, Programming Research Group, Oxford Uni-
versity, 1991.

[12] F. Durán and J. Meseguer, Structured theories and institutions, Category Theory
and Computer Science, ENTCS, vol. 29, 1999.

[13] H. Ehrig and B. Mahr, Fundamentals of algebraic specification 2, Springer, 1990.
[14] C. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. Bendix Nielson,

S. Prehn, and K. R. Wagner, The Raise Specification Language, Prentice Hall,
1992.

[15] J. Goguen and R. Burstall, Institutions: Abstract model theory for specification
and programming, J. ACM 39 (1992), 95–146.

Type Class Polymorphism in an Institutional Framework 251

[16] J. Goguen and G. Malcolm, A hidden agenda, Theoret. Comput. Sci. 245 (2000),
55–101.

[17] J. Goguen and G. Rosu, Institution morphisms, Formal aspects of computing 13
(2002), 274–307.

[18] J. Goguen and W. Tracz, An implementation-oriented semantics for module com-
position, Foundations of Component-Based Systems, Cambridge, 2000, pp. 231–
263.

[19] R. Kubiak, A. Borzyszkowski, and S. Sokolowski, A set-theoretic model for a
typed polymorphic lambda calculus — a contribution to MetaSoft, VDM: The Way
Ahead, LNCS, vol. 328, Springer, 1988, pp. 267–298.

[20] A. Kurz, Logics for coalgebras and applications to computer science, Ph.D. thesis,
Universität München, 2000.

[21] J. Meseguer, General logics, Logic Colloquium 87, North Holland, 1989, pp. 275–
329.

[22] I. Moerdijk and E. Palmgren, Wellfounded trees in categories, Ann. Pure Appl.
Logic 104 (2000), 189–218.

[23] E. Moggi, Categories of partial morphisms and the λp-calculus, Category Theory
and Computer Programming, LNCS, vol. 240, Springer, 1986, pp. 242–251.

[24] T. Mossakowski, Representations, hierarchies and graphs of institutions, Ph.D.
thesis, Universität Bremen, 1996, also: Logos-Verlag, 2001.

[25] , Foundations of heterogeneous specification, Recent Trends in Algebraic
Development Techniques (WADT 02), LNCS, vol. 2755, Springer, 2003, pp. 359–
375.

[26] , HetCasl - heterogeneous specification. Language summary, 2004,
http://www.tzi.de/cofi/hetcasl.

[27] P. D. Mosses (ed.), Casl reference manual, LNCS, vol. 2960, Springer, 2004.
[28] M. Nielsen and U. Pletat, Polymorphism in an institutional framework, Tech.

report, Technical University of Denmark, 1986.
[29] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — a proof assistant for

higher-order logic, LNCS, vol. 2283, Springer, 2002.
[30] P. Pepper, Transforming algebraic specifications – lessons learnt from an example,

Constructing Programs from Specifications, Elsevier, 1991, pp. 1–27.
[31] S. Peyton-Jones (ed.), Haskell 98 language and libraries — the revised report,

Cambridge, 2003, also: J. Funct. Programming 13 (2003).
[32] A. Salibra and G. Scollo, A soft stairway to institutions, Recent Trends in Data

Type Specification (WADT 91), LNCS, vol. 655, Springer, 1993, pp. 310–329.
[33] D. Sannella and A. Tarlecki, Specifications in an arbitrary institution, Information

and Computation 76 (1988), 165–210.
[34] L. Schröder, The HasCasl prologue: categorical syntax and semantics of

the partial λ-calculus, available as http://www.informatik.uni-bremen.de/~
lschrode/hascasl/plam.ps

[35] L. Schröder and T. Mossakowski, HasCasl: Towards integrated specification and
development of functional programs, Algebraic Methodology And Software Tech-
nology, LNCS, vol. 2422, Springer, 2002, pp. 99–116.

[36] L. Schröder, T. Mossakowski, and C. Maeder, HasCasl – Integrated functional
specification and programming. Language summary, available under http://www.
informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL

[37] A. Tarlecki, Quasi-varieties in abstract algebraic institutions, J. Comput. System
Sci. 33 (1986), 333–360.

[38] M. Wenzel, Type classes and overloading in higher-order logic, Theorem Proving
in Higher Order Logics, LNCS, vol. 1275, Springer, 1997, pp. 307–322.

