
Formal Software Development:

From Foundations to Tools

Exposé der schriftlichen Habilitationsleistung

Christoph Lüth

FB 3 — Informatik und Mathematik

Universität Bremen

Abstract

This exposé gives an overview of the author’s contributions to the area of
formal software development. These range from foundational issues dealing
with abstract models of computation to practical engineering issues con-
cerned with tool integration and user interface design. We can distinguish
three lines of work:

Firstly, there is foundational work, centred around categorical models of
rewriting. A new semantics for rewriting is developed, which abstracts over
the concrete term structure while still being able to express key concepts
such as variable, layer and substitution. It is based on the concept of a
monad, which is well-known in category theory to model algebraic theories.
We generalise this treatment to term rewriting systems, infinitary terms,
term graphs, and other forms of rewriting. The semantics finds applications
in functional programming, where monads are used to model computational
features such as state, exceptions and I/O, and modularity proofs, where
the layer structure becomes central.

Secondly, we are concerned with formal proof and development, where
we understand ‘formal’ as in formal logic (i.e. modelled inside a theorem
prover.) The main contribution here are techniques for systematic generali-
sation of developments and proofs, called abstraction for reuse. We develop
abstraction procedures for any logical framework, and implement them in
Isabelle, combining proof term transformation known from type theory with
tactical theorem proving. We further show how to model transformational
development in-the-small in the TAS system by modelling window inferenc-
ing in Isabelle, and model development in-the-large by theory morphisms
implemented via proof term transformation.

Thirdly, we turn to tool development. We discuss suitable system archi-
tectures to implement formal methods tools, or integrate existing tools into
a common framework. We consider user interfaces, introducing the design of
a graphical user interface for the transformational development system TAS
based on principles of direct manipulation, and showing how to combine
the graphical user interface with a textual one based on the popular Emacs
editor.

Contents

1 Introduction 5

2 Categorical Models of Rewriting 9

2.1 Categorical Term Rewriting 10

2.1.1 A Category Theory Prelude 10

2.1.2 Signatures, Algebraic Theories and Monads 12

2.1.3 Term Rewriting and Abstract Reduction Systems . . . 14

2.1.4 Categorical Models of Term Rewriting Systems 15

2.1.5 Other Forms of Term Rewriting 20

2.2 Infinitary Term Rewriting . 22

2.2.1 Coalgebraic Approaches: Algebraic and Rational Terms 23

2.2.2 The Weird And Wonderful World Of Comonads . . . 24

2.3 A General Model of Rewriting 25

2.4 Modularity and Compositionality 27

2.4.1 Coproducts of Monads 27

2.4.2 Ideal Monads . 29

2.4.3 Abstract Modularity 30

2.4.4 Monads in Denotational Semantics 30

2.4.5 Monads in Functional Programming 31

2.5 Concluding Remarks . 32

2.5.1 Bibliographical Remarks 33

3 Formal Proof and Software Development 34

3.1 Transformational Program Development 36

3.1.1 The TAS System. 37

3.1.2 Instances of TAS . 41

3.1.3 Conclusions . 43

3.2 Abstraction and Reuse . 44

3.2.1 General Principles . 45

3.2.2 Abstraction in Isabelle 47

3.2.3 Abstraction Procedures 49

3.2.4 Uses of Abstraction 49

3.3 TAS Revisited . 52

3

3.3.1 Development In-The-Large 52
3.3.2 Document Presentation 52
3.3.3 Example: Divide-And-Conquer Revisited 53
3.3.4 Deriving New Transformation Rules 56

3.4 Conclusions . 58
3.4.1 Bibliographical Remarks 59

4 Tool Development 60
4.1 Advantages of Functional Programming 61

4.1.1 LCF Architectur: The CCC 61
4.1.2 Typing in an Untyped World 63
4.1.3 Structuring with Functors and Classes 63

4.2 Tool Integration . 65
4.2.1 Framework Integration 65
4.2.2 Data and Control Integration 66

4.3 Interface Design . 67
4.4 The Next Generation . 70

4.4.1 Proof General . 70
4.4.2 The PG Kit Project 71

4.5 Conclusions . 73
4.5.1 Bibliographical Remarks 75

5 Conclusions 76
5.1 Concluding Summary . 76
5.2 Outlook . 77

A Publications 80

4

Chapter 1

Introduction

The development of correct software is one of the core problems of computer
science, and over the years numerous approaches have been developed. In
this exposé, we are concerned with approaches which apply mathematical
methods and theories to the development of software, collectively known as
formal methods.

Formal methods have been around for a while. Early beginnings can be
traced back to Turing [156] and von Neumann [57] in the dawn of comput-
ing,1 and the seminal work by Hoare [69] and Dijkstra [41] is by now over
thirty years in the past. So why has the formal derivation and verification of
programs not become common industrial practice today? Has the long his-
tory of formal methods not shown this up as a pipe dream? Of course not —
the history of formal methods has in fact been a long evolution always edging
closer to the goal of being able to completely formalise the software develop-
ment process rather than a single revolutionary breakthrough. It was a bold
vision thirty years ago; twenty years ago, the first pioneering systems such
as CIP [19] appeared; ten years ago theorem provers such as PVS [116],
Isabelle [112], HOL [59] or Coq [22] became mature, stable and powerful
tools, five years ago model-checking became industrially viable, and today,
mass-marketed microprocessors are verified formally, and semi-formal meth-
ods such as UML have become state-of-the-art, showing that indeed there
is an awareness and need for formal specification and development.

Thus, today the mathematics for formally developing sequential algo-
rithms is well-known, automatic theorem proving has become powerful enough
to tackle nearly all ‘trivial’ or ‘obvious’ proofs, and software development is
slowly inching towards industrial usability. What is still needed to help it
there?

One of the key challenges of formal software development is scalability.
Realistic software tends to be huge, and this is a challenge because mathe-
matics does not prepare us for this. Traditionally, mathematics is concerned

1Jones [79] gives a comprehensive account of the early history of formal methods.

5

with proving single theorems, not with structured reasoning; thus, while the
reasoning in-the-small is quite formal, the structure of a mathematics text,
and in particular the interrelation between different texts (such as results
from one being used in the other), are very much left implicit in the text, and
not formalised explicitly; in fact, the scalability problem arises for efforts to
formalise reasonable parts of mathematics just as it does for software. Apart
from that, rather more down-to-earth engineering problems (what is a good
system architecture for tools to support formal development, how can we
combine these tools, what should a good user interface look like, etc.) need
to be tackled in a systematic way. If we want formal program development
to become an engineering effort, surely the tools should themselves be well
engineered!

The work as summarised in this exposé is concerned with these areas of
formal software development. With the state of the art quite advanced, as
outlined above, there is no single breakthrough to be expected, but rather
slow advances in all areas. Hence, the main body of this exposé comprises
three chapters, concerned with categorical models of rewriting, formal proof
and development, and tool development.

Categorical Models of Rewriting

We develop a model for rewriting (or reduction) which generalises previously
known approaches to rewriting, and has applications from automated theo-
rem proving over denotational semantics to functional programming. This
new model is based on the concept of a monad as known from category
theory. Monads are well-known to model algebraic theories (i.e. equational
logic and universal algebra), so we generalise this to a treatment of directed
equations.

The crucial properties of our semantics are compositionality and mod-
ularity. The first means that it interacts well with structuring operations:
the semantics of a composed system can be given in terms of the semantics
of the components, and need not be recalculated from scratch. The second
means that reasoning about the combined system can be broken down into
reasoning about the components. Both together allow us to deal with large
systems: while composing them, compositionality allows us to handle the
complexity, and modularity makes reasoning about large systems feasible.

Formal Proof and Software Development

Theorem proving has come in leaps and bounds over the last fifteen years.
Today, higher-order theorem provers are powerful enough to cover nearly all
areas of mathematics. (Even though only a very tiny amount of mathematics
has been formalised yet — formalising a published proof, even one published
in a textbook, is still a large step, and will more often than not uncover small

6

inaccuracies or even errors — this has now become a problem of quantity,
rather than quality.) We use the theorem prover Isabelle as the basis for our
work, because it is powerful, generic, and allows easy but safe extension.

In formal development, reuse is a necessity, because one rarely gets a
specification right the first time, and formal proof is far too hard work to
start from scratch every time. In fact, changing the specification is the rule
rather than the exception, and so the ability to reuse as much of the proof
work is necessary. And there is an even greater potential gain: if we had
a systematic way to abstract a given development to make it more general,
we could systematically reuse developments on a large scale, building up
a library of readily usable, formally proven rules or patterns. The poten-
tial usefulness of is demonstrated by the recent emergence of (non-formal)
development patterns [52] in the OO community.

We develop inter alia an abstraction procedure for Isabelle, which allows
to generalise proofs from a given context, and reuse them elsewhere. This is
based on the technique of proof term transformation, and can also be used to
implement notions of theory morphisms leading to transformations in-the-
large. We further show how to encode a calculus for transformational proof,
namely window inferencing, into Isabelle, which gives a more transformation
style of reasoning and development.

Tool Development

The last chapter is concerned with the engineering of tools for formal de-
velopment. The main focus is tool integration and user interfaces. For
tool integration, we have had good experiences with loosely coupled tools
communicating in a light-weight protocol such as XML. This strikes a good
balance between being easy to implement on the one hand, and on the other
hand the well-formedness conditions of the XML documents guaranteeing
some consistency, in particular when we use a type-preserving embedding of
XML into a typed language such as Haskell [159].

Interface design has long since been neglected; for a long time, formal
method tools had a ‘one-user interface’ (the one user being their implemen-
tor), and still command-line interfaces with an often arcane syntax dominate
the scene. This need not be the case; we show how to design and imple-
ment graphical user interfaces for formal methods tools, and introduce a
project to implement a generic interface, which combines the best of graph-
ical and textual user interfaces, and can be connected to any prover by a
well-specified interaction protocol.

How to read this Document

This document summarises the author’s work over the last years. Due to
its expository nature, we neither give proofs nor go into the specifics of an

7

implementation, but we give the appropriate references where these details
may be found. We also do not necessarily follow the historical development
of the work, but rather give a comprehensive overview. Further, for reasons
of space we only briefly relate our work to others, but we endeavour to mark
our specific contribution.

At the end of each chapter, a brief section by the title of ‘Bibliographical
Remarks’ details the development of the author’s contributions, when and
where these were published, collaborations, research projects and so on. In
particular, we remark on the specific contribution of the author in case of
joint papers and research projects, if possible.

The author’s works are referenced as in [L-3], and a full list of publica-
tions can be found on page 80ff. In the appendix, we provide copies of the
relevant papers which appeared either in journal form or in refereed confer-
ences. We do not provide copies of papers which have been superceded by
later developments, e.g. journal articles.

8

Chapter 2

Categorical Models of

Rewriting

This chapter deals with foundational issues, centered around our work on
categorical models of rewriting. The notion of rewriting or reduction is
a flexible notion of computation with a long history dating back to the
beginnig of the 20th century, when first rewriting systems were used to study
the word problem in group theory. In the thirties, the emerging theory of
algorithms developed the theory of rewriting further, with systems such as
the λ-calculus, combinatory logic and Turing machines. In recent times, the
combination of abstract algebra with rewriting known as term rewriting has
become an important field of theoretical computer science, with applications
to programming and automated theorem proving.

Despite this wide applicability, or probably precisely because it, there
has been little meta-theory of rewriting. For example, the Knuth-Bendix
completion of term rewriting system, and the construction of a Gröbner
basis are clearly equivalent, but we lack a mathematical framework in which
to express this. Even in the more narrowly defined field of term rewriting,
there is no such unifying meta-theory; results are typically established and
proven at the syntactic level, which means that for different forms of term
rewriting results have to be reproven and they cannot benefit as much from
each other as potentially possible. This holds in particular for the results
we are most interested in, namely modularity results.

Our approach to this problem is to use category theory as the unify-
ing framework, as it has proven a useful meta-theory in other branches of
mathematics and computer science. Specifically, the categorical concept of
a monad captures the notion of inductively generated data at a sufficiently
abstract level, and will take center stage in our work. In the rest of this
chapter, we will explore the theory of categorical rewriting, following the
historic development: starting with a categorical treatment of term rewrit-
ing in Sect. 2.1, generalising gradually to other forms of rewriting, such as

9

infinitary term rewriting (Sect. 2.2), and finally arriving at a construction
where the rewriting is independent of the data being rewritten in Sect. 2.3.

All of these semantics are based on the categorical concept of a monad.
The key advantage of this semantics are compositionality and modularity, as
we will explore in Sect. 2.4. We will show how monads can be combined, al-
lowing us to combine the semantics of constituting parts (compositionality),
and to reason about properties of the whole by reasoning about proper-
ties of the constituting parts (modularity). This will have applications in
denotational semantics and functional programming as well.

2.1 Categorical Term Rewriting

Term rewriting systems (TRSs) combine the flexibility and generality of uni-
versal algebra with the computational notion of reduction. They originally
arose in the study of the λ-calculus and combinatory logic, and more re-
cently, have played a prominent rôle in the design and implementation of
logical and functional programming languages, the theory of abstract data
types, and automated theorem proving. They have also found applications
in recursion theory and algebra, as they are a Turing-complete model of
computation which can be used to provide decision procedures.

The concreteness of TRSs has lead to a tendency to concentrate on the
syntactical details of specific problems to the detriment of a wider under-
standing of the subject. Abstract models of TRSs have been developed
to address this problem with the simplest being abstract reduction systems
based upon relations. While useful for certain results, they nevertheless lack
sufficient structure to model key concepts such as substitution, context, re-
dex, or layer structure.

Our approach starts from the observation that term rewriting systems
can be regarded as generalisations of algebraic theories. Syntactically, alge-
braic theories declare term constructors and equations, while TRSs declare
term constructors and rewrite rules, thus both are presented via signatures.
Semantically, algebraic theories are modelled by sets of terms while TRSs
are modelled by pre-orders of terms. Categorically, algebraic theories are
modelled as monads on the category of sets and so it is natural to model a
term rewriting system by a monad over a more structured base category.

2.1.1 A Category Theory Prelude

Since a comprehensive introduction into category theory is out of the scope
of this text, we will assume a passing knowledge of the basic concepts such
as categories, functors, natural transformations, limits and colimits, and ad-
junctions, which can be found e.g. in Chapter I–V of [97]. The following
overview emphasises examples and motivation, giving basic definitions and

10

results while eliding the technical proofs which can be found in the refer-
ences. Instead, we shall concentrate on where the categorical perspective
gives new insights into rewriting.

However, we need some constructions which go beyond these basic con-
cepts, namely finitariness, rank, local presentability, and Kan extensions. so
we give brief definitions here; more details can be found in [97] or [5]. Read-
ers may want to skip this section and refer back to here once they encounter
the actual concepts in the text.

Finally, we put order structures on our hom-sets in the following, and
thus deal with enriched categories [85]; we de-emphasise this level here, since
all the constructions go through as usual, except where noted, if one takes
care that morphisms preserve the order structure.

Finitary and Ranked Monads

Let κ be a regular cardinal. A diagram D is κ-filtered iff every subcategory
with less than κ objects and morphisms has a compatible cocone in D.
A functor is κ-accessible iff it preserves κ-filtered colimits; we also say it
has rank κ. A monad has rank κ if its action has. We call an ℵ0-filtered
diagram filtered, and a ℵ0-accessible functor (monad) finitary. The category
of finitary functors from A to B is denoted by [A,B]f .

Given two monads T = 〈T, η, µ〉 and S = 〈S, ζ, ξ〉 on C, a monad mor-
phism is a natural transformation α : T ⇒ S between the actions com-
muting with unit and multiplication. The finitary monads on a category C
and monad morphisms between them form a category Monf (C); similarly,
monads with rank form a category Mon(C). Note that all monads do not
form a category, for the obvious size problems.

Locally Presentable and Accessible Categories

An object X of a category A is said to be κ-presentable iff the hom-functor
A(X,) preserves κ-filtered colimits. A category is locally κ-presentable (ab-
breviated as lκp) if it is cocomplete and has a set Nκ of κ-presentable objects
such that every object is a κ-filtered colimit of objects from Nκ. The dis-
crete category on Nκ is denoted Nκ. The full subcategory of κ-presentable
objects is denoted Aκ. The inclusion functors are denoted Jκ : Nκ

- Aκ

and Iκ : Aκ
- A.

For the special case of κ = ℵ0, we speak of finitely presentable objects,
locally finitely presentable categories (abbreviated lfp), and allow the sub-
script ℵ0 to be dropped. The subcategory of finitely presentable objects is
denoted as Af .

Finite presentability is the categorical notion for finiteness. For example,
for A = Set, the finitely presentable sets are precisely finite sets and the set
N can be taken to be the natural numbers which we denote N. Local finite

11

presentability is the categorical notion of being generated from a finite set of
elements and finitely many equations; for example, every set is the filtered
colimit of the diagram of all its finite subsets ordered by inclusion. A finitary
functor, then, is one who preserves this property of being generated in the
sense that its action on all objects is given by the action on the generating
objects. For example, a functor F : Set - Set is finitary if its action on
infinite set X is isomorphic to the the colimit of its images on finite subsets
X0 of X, ordered under inclusion: F (X) = ∪X0⊆XF (X0).

Kan Extensions

Given a functor I : A - B and a category C, precomposition with I
defines a functor ◦I : [B, C] - [A, C]. The problem of left and right Kan
extensions is the problem of finding left and right adjoints to ◦ I. More
concretely, given a functor F : A - C, the left and right Kan extensions
satisfy the natural isomorphisms

[B, C](LanIF,H) ∼= [A, C](F,H ◦I) [B, C](H,RanIF) ∼= [A, C](H ◦I, F).

Thus, one can view the left and right Kan extension of F along I as the
canonical extensions of F to B. Kan extensions can be given pointwise
using colimits and limits, or more elegantly using ends and coends (see [97]
for details). Since we work over the complete and cocomplete categories Set
and Pre, all our Kan extensions exist.

In fact, given a lfp category A, a functor F : A - B is finitary pre-
cisely if it is (isomorphic to) the left Kan extension of its restriction to Af

along the inclusion Af
- A. Thus, we have an isomorphism of monoidal

categories [A,A]f ∼= [Af ,A], with the composition of functors on the left
corresponding to the product G � F = LanIG.F . In other words, we have a
composition with finitariness built in.

2.1.2 Signatures, Algebraic Theories and Monads

Since our approach generalises the categorical treatment of universal algebra,
where algebraic theories are equivalent to monads on the category of sets,
we will give a self-contained presentation of this equivalence here (see also
[100] or [97, Chapter VI]).

Definition 2.1 (Signature). A (single-sorted) signature consists of a func-
tion Σ : N - Set.

As a running example, we use the following signature for addition:

Example 2.2 (Addition). The signature ΣAdd : N - Set for the theory
of addition is defined as ΣAdd(0) = {0},ΣAdd(1) = {S},ΣAdd(2) = {+} and
ΣAdd(n) = ∅ for all other n ∈ N. Thus ΣAdd declares one operation 0 of arity

12

0 (a constant), one unary operation S and one binary operation + (written
in infix notation).

Definition 2.3 (Term Algebra). Given a signature Σ and a set of vari-
ables X, the term algebra TΣ(X) is defined inductively:

x ∈ X
’x ∈ TΣ(X)

f ∈ Σn t1, . . . tn ∈ TΣ(X)

f(t1, . . . , tn) ∈ TΣ(X)

Quotes are used to distinguish a variable x ∈ X from the term ’x ∈ TΣ(X).
This will become important when analysing the layer structure on terms
formed by the disjoint union of signatures.

The key idea of the categorical semantics is that the free term algebra
construction, which for every set X gives us the set of terms TΣ(X), extends
to a functor TΣ : Set - Set over the category Set of sets. Further, every
variable x ∈ X gives a term ’x ∈ TΣ(X), so the variables induce a function
ηX : X - TΣ(X). Lastly, substitution takes terms built over terms and
flattens them, as described by a function µX : TΣ(TΣ(X)) - TΣ(X).
These three pieces of data define a monad:

Definition 2.4 (Monad). A monad T = 〈T, η, µ〉 on a category C is given
by an endofunctor T : C - C, called the action, and two natural trans-
formations, η : 1 ⇒ T , called the unit, and µ : TT ⇒ T , called the multi-
plication of the monad, satisfying the monad laws: µ.Tη = 1 = µ.ηT , and
µ.Tµ = µ.µT .

Lemma 2.5. For every signature Σ, TΣ = 〈TΣ, η, µ〉 is a monad.

The data from Def. 2.4 are actually enough to characterise term construc-
tion. The fact that the term algebra TΣ(X) is inductively defined is ex-
pressed categorically by the fact that TΣ(X) is the initial algebra of the
functor X + FΣ which sends Y to X + FΣY , where FΣ is the polynomial
endofunctor

FΣ(Y) =
∐

n∈N,f∈Σ(n)

Y n =
∐

n∈N

Y n × Σ(n) (2.1)

The structure map X + FΣTΣ(X) - TΣ(X) is equivalent to two maps
X - TΣ(X) and FΣTΣ(X) - TΣ(X) stating that all variables are con-
tained in TΣ(X), and all operations can be interpreted in TΣ(X). Initiality
of this algebra says that TΣ(X) is the smallest such set. For our running
example, we have

FΣAdd
(Y) = Y 0 + Y 1 + Y 2 = 1 + Y + Y 2

We can explicitly describe FΣ as calculating the terms of depth one over a
set of variables; for example,

FΣAdd
({x, y}) = {0, Sx, Sy, x + x, x+ y, y + x, y + y}. (2.2)

13

In summary, monads provide an abstract calculus for algebraic theories
where variables, substitution and term algebra (represented by the unit,
multiplication and action of the monad) are taken as primitive concepts.

2.1.3 Term Rewriting and Abstract Reduction Systems

This section reviews the basic concepts of term rewriting systems and ab-
stract reduction systems. Further details may be found in [13, 89].

Definition 2.6 (Rewrite Rules and TRSs). Given a signature Σ, a Σ-
rewrite rule is of the form Y ` l → r where Y is a set of variables and
l, r ∈ TΣ(Y). A term rewriting system R = 〈Σ, R〉 consists of a signature Σ
and a set R of Σ-rewrite rules.

Usually one requires that l is not a variable and that the free variables of
r are contained in the free variables of l, but semantically these restrictions
are not necessary and hence omitted here. In the following examples, we
denote the arity of an operation by subscripts; so f ∈ Σ(n) is denoted by
fn. We also use infix notation for binary operators:

Example 2.7 (Combinatory Logic). The TRS CL = 〈ΣCL, RCL〉 is defined
by

ΣCL = {S0,K0, .2},

RCL = {{x, y} ` (K .x).y → x,
{x, y, z} ` ((S.x).y).z → }

Example 2.8 (Addition). The TRS Add = 〈ΣAdd, RAdd〉 implements addition
on the natural numbers, and is defined by

ΣAdd = {00, S1,+2},

RAdd = {{x} ` 0 + x→ x,
{x, y} ` Sx+ y → S(x+ y)}

A term rewriting system R induces a one-step reduction relation → R

on the terms. Formally, this is obtained by closing the rewrite rules under
contexts and substitutions — for the exact definitions, see [89]. The many-
step reduction relation �R is the reflexive-transitive closure of the one-step
reduction relation. For example, the addition TRS supports the following
rewrites:

S(0 + 0) + 0 � S((0 + 0) + 0)

S0 + 0

↓↓
� S(0 + 0)

↓↓

� S0

Note that although the term S(0 + 0) + 0 can be reduced to two different
terms, this choice is vacuous as both reduce to S(0 + 0). Further, there are

14

no infinite reduction sequences starting from the term S(0 + 0) + 0. These
examples illustrate the two key properties of TRSs:

Definition 2.9 (Confluence and SN). A term rewriting system R =
〈Σ, R〉 is confluent iff ∀t, s1, s2. t �R s1 ∧ t �R s2 ∃u. s1 �R u ∧ s2 �R u.
It is strongly normalising (SN) iff there is no infinite sequence t1 → Rt2 →

Rt3 → R

Example 2.7 is confluent, but not strongly normalising while Example 2.8
is confluent and strongly normalising. This may not be apparent at first
sight, and indeed in general these properties are undecidable. Consequently
a variety of proof tools have been developed which are helpful in certain
cases [68, 90, 114], but these methods are rather technical, often involving
copious amounts of induction on the structure of terms, and tend to impose
syntactic preconditions on term rewriting systems, such as left-linearity or
orthogonality.

In order to remedy this situation, we turn to the semantics of term
rewriting systems hoping to obtain a new ontology for rewriting. The sim-
plest models of TRSs are the abstract reduction systems based upon rela-
tions; the advantages of this approach are its simplicity and versatility.

Definition 2.10 (Abstract Reduction Systems). An abstract reduction
system (ARS) is a pair A = 〈A,→ A〉 consisting of a carrier set A and a
binary relation → A ⊆ A×A, called the reduction or rewrite relation.

For every term rewriting system R = 〈Σ, R〉, the one-step reduction relation
defines an ARS. Properties like confluence and strong normalisation can
be (and usually are) defined on the level of ARSs. We can then prove
lemmas and theorems about these properties at the level of relations, such
as Newman’s Lemma (if an ARS is locally confluent and strongly normalising
then it is confluent), or the Hindley-Rosen Lemma (if two ARS are confluent
and commute, then their union is confluent). These lemmas are formulated
and proven at the level of relations. Nowhere do we need the fact that the
carrier set consists of terms and subsequently, we cannot prove results by
induction on the term structure. And while these lemmas are very useful,
we cannot express or prove more sophisticated results. Hence, ARSs are
mainly used as an organisational tool, while the difficult results are proven
directly at the syntactic level. The very simplicity which is the advantage of
relational models is also its main limitation. What is needed is a semantics
at an intermediate level of abstraction between the actual syntax and the
relational model.

2.1.4 Categorical Models of Term Rewriting Systems

The key observation underlying our semantics for TRSs is that TRSs can be
viewed as generalised algebraic theories. This generalisation occurs at both

15

a syntactic and a semantic level. Syntactically, algebraic theories and TRSs
are both presented via signatures — the former declares term constructors
while TRSs declare term constructors and rewrite rules. Semantically, al-
gebraic theories are modelled by sets with extra structure while TRSs are
modelled by pre-orders with extra structure.

Given the categorical modelling of algebraic theories by monads on Set
as presented in Sect. 2.1.2, it is natural to model a term rewriting system by
a monad over a more structured base category. In this section we formalise
these comments, first with a concrete construction and then with a more
abstract, and in many ways more illuminating construction.

A Monadic Semantics for TRSs

We will now generalise the monadic semantics from algebraic theories to
TRSs. Our aim is to model a TRS R = 〈Σ, R〉 by a monad TR.

First, we have to decide on the base category of the monad. Since the
main focus of rewriting is to prove properties of the many-step reduction
relation, we choose to use the category Pre of pre-orders and monotone
functions. Other possibilities are the category Cat of all small categories
and functors, if we were interested in labelled many-step reduction (i.e.
distinguishing between different rewrites between the same two terms), or
the category Rel of relations and monotone maps if one wanted to model
the one-step reduction relation.

Next, we consider the action of the monad TR. Recall that if Σ is an
algebraic theory, then TΣ maps a set of variables to the free algebra over
it. In general, the action is an endofunctor, and variables and theory must
belong to the same category which in our case is Pre. Thus, the action
TR should map a pre-order of variables P to the pre-order of terms and
rewrites built over P . The order structure on the variables can be thought
of as reduction assumptions: if a → b, then whatever we substitute for a
has to reduce to what we substitute for b.

Thus, we have two main differences from the traditional semantics: a
TRSs is modelled by a particular kind of function rather than a relation; and
we endow variables with an order structure. A third categorically inspired
idea is that there is no fixed collection of variables, but that we have a term
reduction algebra defined for every pre-order of variables.

Definition 2.11 (Term Reduction Algebra). Given a term rewriting
system R = 〈Σ, R〉 and a pre-order X, the term reduction algebra TRX is
the smallest pre-order → on the terms TΣ(X) satisfying the following rules:

[Var]
x→ y in X
’x - ’y

[Cong]
f ∈ Σn, t1 - s1, . . . , tn - sn

f(t1, . . . , tn) - f(s1, . . . , sn)

[Inst]
Y ` l → r ∈ R, σ : Y → TRX

lσ - rσ

16

As with algebraic theories, the term reduction algebra gives rise to a monad.
The essential observation is that the action, unit and substitution preserve
the reduction order; note how the clause [Var] guarantees that the unit is
a monotone function.

Lemma 2.12. Let R be a TRS. The map X 7→ TR(X) extends to a monad
TR = 〈TR, η, µ〉 on Pre.

Lemma 2.12 provides us with a categorical semantics for TRSs. This se-
mantics is powerful enough to prove non-trivial modularity results, but in a
number of ways, it is still unsatisfactory and can be improved on. Firstly, the
semantics is still term-generated, so proofs about it may still use induction
on the term structure; secondly, the semantics has been constructed based
on a number of choices, like that of the base category, and if we change any
of these, we have to start the construction from scratch again; and thirdly,
the construction does not generalise easily to other forms of rewriting. These
deficiencies are answered by the theory of enriched monads.

TRSs and Enriched Monads

As we have seen, algebraic theories are modelled by monads over Set while
TRSs are modelled by monads over Pre. These results are instances of
a general theory developed by Kelly and Power [85, 87] which shows how
monads over categories other than Set give rise to a generalised notion of
algebraic theories. For any such category A, this theory provides us with
suitably generalised notions of signature, term, and equations (Def. 2.13,
2.16 and 2.17 below). Technically, we enrich the monads [85], but because
of the overview nature of this paper, we de-emphasise this here; we also
make several simplifications to keep technicalities at a minimum. A gentle
but more exact introduction into this theory can be found in [126].

In general, we replace every occurrence of Set in our definitions by an
arbitrary lfp category A (as introduced in Sect. 2.1.1 above). Recall from
Def. 2.1 that a signature is a function Σ : N - Set; here, we replace a set
of operations by an A-object of operations. The key point is that the natural
numbers represent the isomorphism classes of finite sets (i.e. objects of the
base category). Hence, we replace N by the object N of A representing sets
of finitely presentable objects of A:

Definition 2.13 (Generalised Signatures). If A is a category, then a A-
signature is a map Σ : N - A. The category of A-signatures is written
Sig(A) and is the functor category Sig(A) = [N ,A]

A pre-order is finitely presentable iff its carrier set is finite. Hence if we
present a TRS as a generalised signature Σ, the signature will map a finite
pre-order P to a pre-order Σ(P) of operations of that arity. The carrier
set of Σ(P) can be thought of as term constructors and the order relation

17

as rewrite rules. This is another instance where the categorical approach
differs from the traditional one where rewrite rules are more often viewed as
oriented equations rather than constructors in their own right.

We write 1,2, . . . ,n for the finite discrete pre-orders, the elements of
which we denote as x1, x2, . . . , xn.

Example 2.14 (Addition cont’d). In the generalised signature RAdd for the
addition TRS, the term constructors retain their arities, while the two
rewrite constructors have arity 1 and 2, respectively. Hence, we have

RAdd(∅) = {0}

RAdd(1) = {S, s1
r1−→ t2}

RAdd(2) = {+, s2
r2−→ t2}

RAdd(X) = {} for all other X

Since the arity of the rewrite rule 0+x1
- x1 is the discrete 1-element

pre-order, we have represented it by an arrow in RAdd(1). But of course
arrows need sources and targets, and hence the carrier set of RAdd(1) has
three elements and thus declares three term constructors. To model a TRS
as a generalised signature we extend the signature of the TRS with a term
constructor for the source and target of every rewrite rule ri (which above
are denoted by si and ti). We shall later use equations to enforce that e.g.
the target of rule r2 equals S(x1 + x2). Importantly, arities can be non-
discrete. Syntactically, this means we allow generalised rewrite rules, given
as Y ` l → r where Y is a pre-order and l, r ∈ TΣ(Y).

The next step is to generalise the term algebra construction from Def. 2.3.
Equation (2.1) generalises with FΣ the left Kan extension (see Sect. 2.1.1
above) along the inclusion J : N - Af , i.e. FΣ = LanJΣ. The associated
term algebra TΣ : A - A is then the free monad over the endofunctor
FΣ, which can be constructed in a number of ways [84]:

Lemma 2.15. Let F be a finitary endofunctor over an lfp category A. Then
the free monad HF on F satisfies the following:

1. For every X in A, HF (X) is the carrier of the initial X + F -algebra.

2. The forgetful functor U : F−alg - A from the category of F -
algebras to A has a left adjoint L, and HF

∼= UL.

3. HF is the colimit of the sequence

S0 = 1 Sn+1 = 1 + F � Sn HF = colim
i<ω

Si (2.3)

and the composition of F,E : Aκ
- A is given as F �E

def
= (LanIF ◦

E).

18

The sequence Si in (2.3) in Lemma 2.15 is called the free algebra sequence
and can be seen as a uniform calculation of the initial X + F− algebra.

Definition 2.16 (Generalised Term Algebra). For a A-signature Σ :
N - A, the term algebra TΣ(X) over an object X of A is the free algebra
over the free polynomial generated by the signature:

TΣ(X) = HFΣ
(X)

We can calculate TΣ(X) more explicitly, using the formula for left Kan
extension and Lemma 2.15, as the limit of the following sequence:

TΣ(X)
def
= colim

n<ω
Tn(X)

T0(X)
def
= X

Tn+1(X)
def
= X +

∑

c∈N

A(c, Tn(X)) × Σ(c)

The semantics given by Def. 2.16 is free in the sense that there this an
adjunction between the category of signatures, and the category of finitary
monads over A [87]:

SigA

T
-

⊥�

U

Monf (A) (2.4)

Resuming our running example, we now need to replace the term construc-
tors representing the source and target of rewrites with the intended terms.
Intuitively, we would like to write

s1(x) = 0 + x, t1(x) = x, s2(x, y) = Sx+ y and t2(x, y) = S(x+ y).

In order to be able write down equations like this, we turn towards the
categorical treatment of equations.

Given a signature Σ, a Σ-equation is of the form Y ` l = r where Y is
a set of variables and l, r ∈ TΣ(Y). An algebraic theory 〈Σ, E〉 consists of a
signature Σ and a set E of Σ-equations.

The term algebra construction generalises from signatures to algebraic
theories by mapping a set X to the term algebra quotiented by the equiv-
alence relation ∼ generated from the equations. That is, T〈Σ,E〉(X) =
TΣ(X)/∼. To move to generalised algebraic theories, note that an alge-
braic theory 〈Σ, E〉 specifies a set of equations, each of which has a left
hand side and a right hand side. Thus, the appropriate generalisation is to
represent an algebraic theory as a pair of maps:

Definition 2.17 (Generalised Algebraic Theory). A A-algebraic the-
ory A = 〈Σ, E〉 is given by an A-signature Σ, and a set of equations, which

19

are given by a function E : N - A together with a family of pairs of
maps

{

E(c)
σc

-

τc
- TΣ(c)

}

c∈N

The idea is that E specifies the shape of the equations while the maps σ and
τ can be thought of as exhibiting a subobject of TΣ(c) × TΣ(c), i.e. pairs of
terms, just like usual equations.

In the addition example there are two equations between terms of arity 1
and two equations between terms of arity 2, hence E(1) = {e1, e2}, E(2) =
{e3, e4}. The maps σ1 and τ1 pick out a pair of elements of TΣ(1), and
similarly σ2 and τ2 of TΣ(2). Therefore we define:

σ1(e1) = s1(x1), σ1(e2) = t1(x1),
τ1(e1) = 0, τ1(e2) = x1,
σ2(e3) = s2(x1, x2), σ2(e4) = t2(x1, x2),
τ2(e3) = Sx1 + x2, τ2(e4) = S(x1 + x2).

This definition forces the source and targets of the rewrites to be the terms
we want. Just as for usual algebraic theories, the semantics of such a gen-
eralised algebraic theory is constructed as the quotient of the term algebra
by the equations. Categorically, quotients are defined by coequalisers and
hence the monad TA is given as the coequaliser of the transposition of the
two maps σ and τ in the category of finitary monads over A (or in other
words the smallest monad which makes these maps equal):

TE

l′
-

r′
- TΣ. (2.5)

Under adjunction (2.4), such pairs of maps are in bijection to families of
maps as in Def. 2.17. As a side note, every finitary monad can be given
as the coequaliser of two such free monads; we say every monad can be
represented by generalised operations and equations [87].

We finish this section with a crucial observation about our semantics,
namely that it is constructed categorically, and hence we can reason about
it categorically. This contrasts, for example, with the 2-categorical semantics
of a TRS where the theory of a TRS is constructed syntactically. It is also
more amenable to generalisations, as we shall see in the following sections.

2.1.5 Other Forms of Term Rewriting

The most simple way of generalising the construction is to allow equations
not only between a source or target and a term, but also between any
two terms. This models equational rewriting, where we rewrite equivalence
classes of terms with respect to a set of equations. However, more interesting
generalisations can be developed if we start varying the base category.

20

Many-Sortedness and Order-Sortedness

The term rewriting systems from Def. 2.6 are homogeneous (i.e. there is only
one sort). In order to model many-sorted term rewriting systems given a set
S of sorts, we pick the base category PreS of maps from S to Pre as our
base.

Instantiating Def. 2.13, we get a functor Σ : N - PreS as a signature.
The objects N presenting finitely presentable objects are S-tuples of natural
numbers1[126]. Under the bijection [N ,PreS] ∼= [N × S,Pre] a signature
takes the form of a map Σ′ : N × S - Pre which gives us a pre-order of
operations for each tuple 〈s1 · · · sn, t〉 of source sorts s1 · · · sn (with si ∈ S)
and target sort t ∈ S; this is the form known from the literature (e.g.
[47]). More details of this construction, including how to choose the correct
enrichment, can be found in [126], which also shows how a certain form of
order-sorted signatures can be modelled by allowing S a pre-order of sorts
rather than a discrete set.

Higher-Order Rewriting and Variable Binding

Modelling higher-order systems as such is pretty straightforward; after all,
Example 2.7 is a higher-order system. However, typically higher-order sys-
tems include variable-binding (e.g. the λ-calculus).

To model variable binding, we can combine our categorical model of
rewriting with Fiore, Plotkin and Turi’s [50] model of variable binding in

so-called pre-sheaves, i.e. the category F
def
= [F,Set], where F is the cate-

gory of finite cardinals and functions between them, or equivalently the free
cocartesian category on one object. To see how this works, consider the
special case of the λ-calculus. Let Λα(n) be the set of λ-terms quotiented by
α-equivalence with free variables represented by indices 1, . . . , n. λ-binding
takes a term from Λα(n + 1) and binds one variable, giving a term from
Λα(n). We can then describe the set of Λα(n) as the smallest set closed
under variables, λ-binding and application by the following isomorphism

Λα(n) ∼= n+ Λα(n+ 1) + Λα(n) × Λα(n). (2.6)

Now define δ : F - F as the pointwise application of the function (−)+1
in F (corresponding to λ-binding above), then the functor Λα from (2.6) is
given as the fixpoint

Λα
def
= µM.1 + δM +M ×M,

and we have seen above how fixpoints are given by a signature; here, we
have the variables, an operation of arity δ, and an operation of arity 2 (see
e.g. [122] for a more exact definition of signature in this context).

1Only finitely of which are allowed to be non-zero; this is vacuously true of S is finite.

21

To model rewriting, we replace the target Set with Pre. In the example
of λ-calculus, this lets us write down β-reduction as a rewrite rule. Hamana
[63] has developed this combination of our model of categorical rewriting
with variable binding in more detail.

To treat typing as well, we can use the approach of the previous section,
at least for the simply typed λ-calculus. From a set S of base sorts, we
generate the set of TS types as the smallest set closed under a function space
constructor and finite products. Then, our base category is the presheaf
[F,PreTS] (see [63] for details).

2.2 Infinitary Term Rewriting

Another possible generalisation is to dualise the construction, a well-known
principle in category theory. This is no idle fancy, but motivated by the
success of using coalgebraic methods to model such things as transition sys-
tems, process algebras and other potentially infinite systems. As coalgebras
are dual to algebras — and in particular the final coalgebra is the dual of the
initial algebra — the question arose wether a dualisation of our construction
gives us a model of infinitary term rewriting, i.e. rewriting infinite terms.

It turns out that our construction can be dualised in more than one way
[L-6]. As mentioned above, a signature Σ gives rise to a free endofunctor
FΣ, and the initial algebra of terms gives the free monad TΣ. One dualisa-
tion is therefore to consider not initial algebras, but rather final coalgebras,
while the other dualisation considers not the free functor and monad over
a signature, but rather the cofree functor and comonad over the signature.
Dualising the initial X + FΣ-algebra of terms built over variables X to the
final X +FΣ-coalgebra gives not just finite terms, but the finite and infinite
terms built over X. On the other hand, the final X × GΣ-coalgebra (or
initial X ×GΣ-algebra), where GΣ is the cofree endofunctor generated from
Σ, defines a comonad (and no terms, but something entirely different, as we
will see below).

Monads Comonads

Initial Algebras µY.X + FY µY.X × FY

Final Coalgebras νY.X + FY νY.X × FY

Table 2.1: Algebras and Coalgebras for an endofunctor

Table 2.1 summarises the possible dualisations. The upper left-hand
entry is the traditional initial algebra semantics, the lower left-hand entry
is the coalgebraic approach which we will explore in Sect. 2.2.1, the lower
right-hand entry will be explored in Sect. 2.2.2, and the upper right-hand
entry has remained unchartered territory.

22

2.2.1 Coalgebraic Approaches: Algebraic and Rational Terms

The first result in comparing the initial algebra µY.X + FY to the final
coalgebra νY.X+FY is due to Barr [17], who showed that the final coalgebra
is the Cauchy-completion of the initial algebra. In other words, if F arises
from a finitary signature, then νY.X + FY is the set of terms of finite and
infinite depth. Barr’s result was generalised from the base category of Set
to lfp categories by Adámek [3].

The first version of the following result was shown by Moss [106]; the
present form was shown indepently by Aczel, Adamék and Velebil [2], and
de Marchi [38],[L-6].

Lemma 2.18 (Final Coalgebras form a Monad). Let A be an lfp cate-
gory such that the unique map ! : 0 - 1 is a strong monomorphism. Let
F be a polynomial functor such that F preserves monos and ωop-chains, and
that there is a map p : 1 - F0.

Then the map T∞
F assigning X to the carrier of the final coalgebra νY.X+

FY can be extended to a monad of rank ℵ1.

Crucially, the monad T∞
F has a higher rank than the monad TF which assigns

X to the initial coalgebra. This can be seen easily — consider F as arising
from the signature with just one unary operation, then T∞

F is the monad
which assigns X to the set of infinite streams of elements from X. If X is
infinite, an infinite stream can contain an infinite number of elements from
X, so it cannot arise from a finitary monad.

Lemma 2.18 requires some technical conditions, which may be awkward
to verify. In subsequent work, these conditions have been replaced by more
tractable conditions, which describe the terms by means of recursive equa-
tions. We can show that all terms arising as solutions of rational and al-
gebraic equations form a monad. Algebraic equations for a signature Σ
equations of the form

φi(xi,1, . . . , xi,ni
) = ti(xi,1, . . . , xi,ni

)

for i = 1, . . . ,m where the unknowns φ1, . . . , φm form a signature Ω and
the terms t1, . . . , tm are all finite terms in TΩ∪Σ(X) with the top symbol
from Σ. As an example, consider the single equation φ(x) = A(x, φ(B(x))).
(Rational equations are similar, but the unknowns are not allowed to have
parameters.)

Categorically, algebraic equations can be regarded as a natural transfor-
mation

Ω - (1 + FΣTΣ∪Ω).J (2.7)

where J is the inclusion of the finitely presentable objects into the base cat-
egory, and FΣ the free functor on the signature Σ (2.1). This sort of scheme
can be captured abstractly by the closely related notions of F -coalgebraic

23

[L-5] and F -guarded [L-4] monad; the latter means that the monad comes
equipped with an endofunctor F and a natural transformation α : F - T
(where F is the abstract counterpart of the concrete FΣ in (2.7)).

In general, [L-4] also gives criteria when pointwise colimits (such as the
Cauchy completion) form a monad. Using this, we can also show that term
graphs form a monad, by showing that term graphs can be considered as a
coalgebra: a term graph with nodes S can also be given as a coalgebra

S - X + FΣ(S)

which maps every node S to a variable if this node corresponds to a variable,
or a term ω(s1, . . . , sn) (where ω is an operation of arity n and s1, . . . , sn are
successor nodes), if this node represents an operation ω applied to arguments
represented by the successor nodes.

Summing up, we can show that various and interesting subclasses of infi-
nite terms form monads, hence the underlying notion of monads as abstract
models of computation captures all of these. Note that all of these monads
are infinitary, i.e. of rank ℵ1.

What has not been developed in depth yet is the modularity theory for
infinite terms. It is known that in contrast to the results for term rewrit-
ing, strong normalisation is modular and confluence is not modular for term
graph rewriting; a categorical account of these phenomena would be inter-
esting.

2.2.2 The Weird And Wonderful World Of Comonads

Whereas the consideration of the final coalgebra of an endofunctor leads
to a wealth of useful and well-known concepts, the comonad and its final
coalgebra lead us into stranger territory.

First, we have to be careful what to dualise. Obviously, the base category
should stay lfp (as all well-known base categories such as Set, Pre, Cat etc.
are lfp and not co-lfp). Recall that given a finitary signature Σ : N - A,
we constructed the corresponding endofunctor FΣ : Af

- A as the left
Kan extension, followed by the left Kan extension to get a finitary monad,
and the free algebra sequence. Now, in the dual case given a signature
Σ : N - A we first take the right Kan extension to get a functor GΣ :
Af

- A from the f.p. objects, and then the left Kan extension to get a
finitary endofunctor with the free algebra sequence as before. This mix of
left and right Kan extensions makes the construction technically challenging.

In the comonadic case, signatures behave differently so it makes sense
to actually talk about cosignatures, even if the definition is the same. For
example, for signatures we usually have Σ(c) = ∅ for many arities c, i.e.
the signature has no operations of that arity. For cosignatures, if there is
one or more arities c with Σ(x) = ∅, then GΣ(X) = ∅ for all X, i.e. there
are no terms! (This is because the right Kan extension is calculated as a

24

product.) It turns out that the default case is Σ(c) = 1, i.e. the unit of the
monoidal structure. The simplest non-trivial cosignature we can consider is
therefore ΣP (2) = 2 and ΣP (c) = 1 for all c 6= 2 (working over Set); then
GΣP

(X) = [Set(X, 2), 2] = [[X, 2], 2].

To see what this means more concretely, let us consider models for these
cosignatures. A comonadic model of a cosignature Σ is a GΣ-coalgebra (with
some size restrictions), or in more elementary terms an object X (of certain
size) together with, for each arity c a function A(X, c) - A(X,Σ(c)).
Then, a model for ΣP is a finite setX and a function Set(X, 2) - Set(X, 2)
(for all other arities, we have Set(X, c) = 1, and exactly one function into
it). Since maps f : X - 2 are just predicates over X, this is akin to a
predicate transformer, and if we move to the base category ωCPO of ω-
complete partial orders and continuous maps we get the usual definition of
predicate transformer as a model.

Building the cofree comonad (or equivalently constructing the final coal-
gebra) over the endofunctor GΣ is again not quite straightforward, because
of the increase in rank; in general, the cofree comonad has a higher rank
than GΣ, and it is not given by the straightforward colimit of a chain of
terms of increasing depth, but as the quotient of a generating set in the
categories of GΣ-coalgebras. For certain cases, this construction is known;
for example, for the case of ΣP above, the cofree comonad maps sets X
to the final X +GΣP

-coalgebra, which are bipartite, rooted, acyclic graphs
(quotiented by bisimulation; see [L-27] for more details).

We can then define a notion of coequational presentation as the equaliser
of two cofree comonads in the category of accessible comonads, which gives
a notion of equation restricting the coalgebras of a comonad. For example,
we can specify that in the bipartite, rooted acyclic graphs mentioned before
no state has more then n outgoing branches.

All of these are rather abstract characterisations, and they do not lend
themselves to the clean syntactic treatment of their initial counterpart. Re-
lated work [4, 12] characterises coequational presentations as monomor-
phisms into the final coalgebra, which is equivalent to our description as
an equaliser, or a modal logic [94].

Briefly summing up this sections, it turns out that monads also capture
the notion of coalgebras, and hence can also be used to model potentially
infinite objects such as infinite terms or term graphs, whereas comonads are
a completely different kettle of fish.

2.3 A General Model of Rewriting

We have started to model unsorted first-order term rewriting with monads,
and extended this to cover various other structures: many-sorted, higher-
order, equational, rational and algebraic terms, and term graphs. And yet

25

there are more structures which may want to rewrite: to solve the ideal
membership problem, we may want to rewrite polynomials over a given ring
(to obtain the Gröbner basis) [31], or we may want to rewrite strings to
solve word problems in group theory [49]. In each of these cases, we have
to instantiate the general framework from Sect. 2.1 separately. Can we not
get a general framework to model rewriting independently of the data being
rewritten?

The answer to this goes back to Gordon Plotkin, who once remarked that
‘rewriting is just equational logic without symmetry’. At first this is obvious
— if we present equational logic by a set of rules and delete the symmetry
rule we get term rewriting — but the real insight is that this holds for all
forms of rewriting. Hence, we can develop a general model of rewriting if
we take the categorical model of equational logic — a coequaliser — and
remove the symmetry by inserting a 2-cell to obtain a coinserter.

A coinserter [86] is a particular instance of a weighted colimit [85]. It
can be defined in any preorder-enriched category:

Definition 2.19 (Coinserter). Let A be a preorder-enriched category with
a pair of arrows f, g : A - B. Their coinserter is given by an object
coin(f, g) and a morphism k : B - coin(f, g), such that kf ⇒ kg.

B

A

f -

⇓ coin(f, g)

k
-

B
k

-

g -

Furthermore, for any other object P and morphism p : B - P such
that pf ⇒ pg, there exists a unique morphism !p : coin(f, g) - P such
that !pk = p; and this assignment is monotone, i.e. if there is another p′ :
B - P such that p′ ⇒ p and p′f ⇒ p′g, then !p′ ⇒!p.

In the particular case of monads over a base category A, we have mor-
phisms between monads, and 2-cells between the morphisms (for example,
by pointwise ordering if the base category is ordered).

The data to be rewritten are modelled as monads, as these model the key
notions of substitution, layer, and variables. Thus, a rewrite presentation is
given given by two finitary monads T,E on Pre and a pair of arrows l, r :
E - T in Monf (Pre), and their coinserter coin(l, r) is the representing
monad for the corresponding rewrite system [L-2]. This means that l and
r pick pairs of terms from T, and if we spell out Def. 2.19 here, this means
that l always reduces to r (this is the existence of the 2-cell k), and that the
coinserter has the least such order (i.e. only as much rewrites as necessary;
this is the universal property of the coinserter). Note that we do not require
the monads E,T to be free, since T contains the data to be rewritten, which
for example in the higher-order case is not given by a free monad.

26

However, this generality comes at a price — for example, there are no
obvious modularity results to prove anymore, since modularity results vary
considerably across the different forms of rewriting (see the remarks above
about modularity of confluence and strong normalisation in term graph
rewriting and term rewriting respectively). As we will see later, it can
also be fruitful to go the other way — to be less general in order to capture
situations where more can be said.

2.4 Modularity and Compositionality

We have developed a semantics for various flavours of rewriting, but is it
of any use? It is of a certain elegance, fitting everything nicely into one
semantic framework, but can we prove something substantial with it? It
turns out we can, and it turns out there are further applications in such
fields as functional programming.

The two main advantages of the semantics are that it promotes modular-
ity and compositionality, i.e. it allows top-down reasoning about large sys-
tems, breaking down assumptions about the whole into assumptions about
its components and promoting results about the components to results about
the whole, and it allows us to compose without having to recalculate the
semantics from scratch.

For this, it is essential that our semantics is free, i.e. that the mapping
from the category of rewriting systems to the representing monads is a left
adjoint. This enables compositionality: many structuring operations, such
as disjoint union, shared union or parameter instantiations, can be modelled
by colimits, and left adjoints preserve colimits, hence instead of combining
the rewriting systems, we can combine their semantics. For example, given
two term rewriting systems R1, R2, we have

TR1+R2

∼= TR1
+ TR2

(2.8)

where the coproduct on the left is the disjoint union of the term rewriting
systems, and the coproduct on the right is the disjoint union of the two mon-
ads. We will first turn to the construction of this coproduct (and colimits of
monads in general), considering first the general and then simplified cases.

2.4.1 Coproducts of Monads

We first look at coproducts: given two monads T1 and T2, what should their
coproduct look like? As an example, consider the coproduct of two monads
TΩ and TΣ given by two signatures Σ and Ω. The terms in TΣ+Ω(X) (which
by (2.8) is equivalent to coproduct) have an inherent notion of layer: a
term in TΣ+Ω decomposes into a term from TΣ (or TΩ), and strictly smaller
subterms whose head symbols are from Ω (or Σ). This suggests that we can

27

build the action of the coproduct TΣ+Ω(X) by successively applying the two
actions (TΣ and TΩ):

TΣ + TΩ(X) = X + TΣ(X) + TΩ(X)+
TΣTΣ(X) + TΣTΩ(X) + TΩTΣ(X) + TΩTΩ(X)+
TΣTΩTΣ(X) + TΩTΣTΩ(X) + . . .

(2.9)

Crucially, theories are built over variables, and the instantiation of variables
builds layered terms. The quotes of Def. 2.3 can now be seen as encoding
layer information within the syntax. For example, if Σ = {F, G} then the
term G’G’x is an element of TΣ(TΣ(X)) and hence has two Σ-layers. This
is different from the term GG’x which is an element of TΣ(X) and hence has
only one Σ-layer.

Equation (2.9) is actually too simple. In particular there are different
elements of the sum which represent the same element of the coproduct
monad, and we therefore need to quotient the sum. To see this, note that
variables from X are contained in each of the summands in the right hand
side. Similarly, operations from the same signature are layered above each
other and should be composed using the multiplication from that monad.
Therefore, the coproduct is a quotient of the sum in equation (2.9).

Kelly [84, Sect. 27] has shown the construction of colimits of ranked
monads, from which we can deduce coproducts of monads as a special case.
Roughly, the construction of the coproduct for such monads proceeds in two
steps: we first construct the coproduct of pointed functors, and then the
coproduct of two monads.

A pointed functor is an endofunctor S : A - A with a natural trans-
formation σ : 1 - S. Given two pointed functors 〈T, ηT 〉 and 〈R, ηR〉,
their coproduct is given by the functor Q : A - A which maps every
object X in A to the colimit in (2.10).

X
ηT

- TX

RX

ηR
?

σR

- QX

σT
?

(2.10)

The coproduct of monads is constructed pointwise as well: the coproduct
monad maps each object X to the colimit of a specific diagram.

Theorem 2.20. Given two finitary monads T = 〈T, ηT , µT 〉 and R = 〈R, ηR, µR〉,
the coproduct monad T + R maps every object X to the colimit of sequence
Xβ defined as follows:

T +R(X) = colimβ<ω Xβ

X0 = X X1 = QX Xβ+1 = colim(Dβ)

28

where Q,σT , σR is the coproduct of the pointed functors 〈T.ηT 〉 and 〈R, ηR〉,
and Dβ is the diagram (2.11) with the colimiting morphism xβ : Dβ

- Xβ+1.
Given the shape of the diagram, xβ is a single morphism xβ : QXβ

- Xβ+1

making all arrows in the diagram commute.

TXβ−1

TTXβ−1
1

-

µT
-

TTXβ−1
TσT

-

Tη
T

-

TQXβ−1

Txβ
- TXβ

QXβ

σT
-

RRXβ−1
1

- RRXβ−1
RσR

- RQXβ−1
Rxβ

- RXβ σR

-

RXβ−1

RηR

-

µ
R -

Note that the two triangles on the left of (2.11) are not the unit laws of
the two monads T,R, otherwise the diagram would be trivial.

Despite being the general answer to the construction of the coproduct
of two monads, the usefulness of Theorem 2.20 is limited in practice since
the shape, size and contents of the diagram make it difficult to reason with
directly. Hence, we consider alternative constructions which trade less gen-
erality for greater simplicity.

2.4.2 Ideal Monads

An ideal monad (called non-collapsing in [L-14]) is one where, in rewriting
terms, there are no rewrites where either the left-hand or right-hand side
is a variable and the other one is not. Categorically, this means that TX
can be decomposed into the variables X and non-variable terms T0X, i.e.
TX = X + T0X for some T0. More succinctly, this decomposition can be
written as an equation on functors, i.e. T = Id+T0 (where Id is the identity
functor):

Definition 2.21 (Ideal Monads). A monad T = 〈T, η, µ〉 is ideal iff T =
Id + T0, with the unit the inclusion in1 : Id ⇒ T and the other inclusion
written αT : T0 ⇒ T . In addition, there is a natural transformation µ0 :
T0T ⇒ T0 such that α.µ0 = µ.αT .

The fundamental observation behind the construction of the coproduct
R+S of two ideal monads R = Id+R0 and S = Id+S0 is that R+S should
essentially consist of alternating sequences of R0 and S0.

Theorem 2.22 (Coproduct of Ideal Monads). The action of the co-
product of ideal monads Id+R0 and Id+S0 is the functor T = Id+(T1+T2),
with

T1
∼= R0(Id + T2) T2

∼= S0(Id + T1)

29

The proof can be found in [L-14]. That paper also gives two other con-
structions, namely a quotiented layer structure where we first alternate the
coproduct Q of the two pointed functors, and then quotient (rather than
quotient as we build the chain, as in Theorem 2.20), and a non-alternating
layers structure which is similar to that of Theorem 2.22, but does not en-
force alternation of the layers, instead quotienting afterwards.

2.4.3 Abstract Modularity

A property P is modular (for the coproduct) if the coproduct T+R satisfies
P iff both T and R do. Modularity allows reasoning about the coproduct to
be broken down into reasoning about the constituting systems, and on the
other hand it allows desirable properties to be propagated from the smaller
systems to the whole.

Thus, modularity results are of great practical relevance. It is well-known
that confluence is modular for term rewriting systems [155], and that strong
normalisation is only under a variety of restrictions [114].

To show modularity in our setting, we first have to connect properties
about (term) rewriting systems with the corresponding monads. Typically,
such a property P is expressed as a predicate over the base category Pre, and
a term rewriting system Θ = 〈Σ,R〉 satisfies this property if TR(X) does (for
an arbitrary, countably infinite set X of variables). For a monad T, we can
say it satisfies this property if its action preserves it; so a monad is confluent
iff TX is confluent whenever X is. Of course, we have to show separately
that this coincides with the usual definition. We call such property monadic;
[L-8] shows that confluence and SN are monadic in this sense.

Once that is done, we can show modularity of the corresponding prop-
erty. In [L-22], modularity of confluence for all so-called regular monads,
which are monads arising from term rewriting systems was shown, but this
used a rather different diagram from Theorem 2.20, and in [L-14], modular-
ity of strong normalisation for ideal monads was shown, but again it was all
on a case-by-case basis. [L-8] shows a general result that for ideal monads,
any monadic property P is modular. In our view, this strong result justifies
singling out ideal monads as a particular class of monads.

2.4.4 Monads in Denotational Semantics

In denotational semantics, Moggi’s computational monads [105] have been
used to model computational effects such as stateful computations, excep-
tions, I/O etc. The idea is that a base category provides a basic computa-
tional model, and then a monad adds the desired feature.

The problem here is how do we combine two different computational
features? If there is a distributive law [18] between the two monads, then we
can combine them as in [80, 88] in what amounts to the compatible monad

30

construction from [18, Section 9.2]. Another way to combine computational
monads is by monad transformers, which are pointed endofunctors on the
category of monads over the base; however, monad transformers are used
as an organisational tool, not as a semantic framework, and for example we
have to determine all possible different combinations of our monads a priori,
which is not compositional.

We can use the coproduct to combine computational monads [L-14,L-13].
This combination is completely compositional — we can combine any two
monads — but it is no panacea, since all it does is layer the actions over
each other. So if we add the monad giving us stateful computations with
the monad modelling non-determinism, we get a monad where stateful com-
putations alternate with non-determinism, but the different layers do not
interact at all. This means that for example the states in two different lay-
ers of stateful computation do not interact, i.e. the state gets forgotten in
between, which may not be what we want. However, we can show that com-
bination with the exception monad always yields the desired result [L-14],
as this monad has a very simple structure, and that more general if there is
a strong distributive law between the two monads, their coproduct is equiv-
alent to their compatible monad, thus our construction generalises the ones
in [80, 88].

Since then, other authors have taken up this work. In particular, Plotkin,
Power and Hyland have given the tensor [74, 75], which corresponds to a
construction where each operations of one monad is forced to commute with
all operations from the other monad. Their construction is in terms of
Lawvere theories, but Lawvere theories and monads are well-known to be
equivalent [121]. The construction, however, is not modular as it takes the
disjoint union of all operations and adds in new equations. It would be
interesting to rephrase this construction in terms of monads, probably with
a colimit in the category of monads, as it seems clear that this construction
is what is needed for example when combining state with other effects, as
it forces the state to commute over any other action, and so preserves the
state across the other effects.

2.4.5 Monads in Functional Programming

Computational monads have been very successful in functional program-
ming, where they helped to solve the long-standing problem of integrating
inherently imperative (i.e. state-based) features such as I/O into a pure
functional language without comprising purity.

The solution taken for the language Haskell [118] was to encapsulate
all these effects in a parameterised datatype Monad (a so-called constructor
class), and only use the operations of the monad to combine computational
effects. The problem that we cannot combine monads was solved pragmat-
ically by combining all computational effects one can possibly want (I/O,

31

state, exceptions and concurrency, to name a few) into one particular monad
called IO.

The Monad datatype in Haskell cannot be a faithful representation of the
mathematical concept, as there is no way to enforce the monad equations
in Haskell; their validity is supposed to be checked by the programmer, but
in realiter even the ubiquitous IO monad does not satisfy the monad laws.

However, we can model the coproduct construction in Haskell. Just as
there is a parameterised datatype Monad, we can define a parameterised
datatype Plus which given two monads implements their coproduct. This
datatype comes together with two injections, and the universal property:

inl :: Monad t1=> t1 a-> Plus t1 t2 a

inr :: Monad t2=> t2 a-> Plus t1 t2 a

coprod ::(Monad t1, Monad t2, Monad s)=>

(forall a.t1 a-> s a)->

(forall a.t2 a-> s a)-> Plus t1 t2 a-> s a

The datatype can then be used without needing to know how it is im-
plemented. For the implementation, we employed another special case of
monads to make the construction of the coproduct tractable:

Definition 2.23 (Layered Monads). A layered monad is a monad T =
〈T, η, µ〉 such that there is a natural transformation η−1

X : TX ⇒ 1 + X,
which is a partial left inverse for ηX , i.e. for all X, η−1

X
.ηX = in1 (where

in1 : X - X + 1 is the inclusion).

The inverse of the unit makes it decidable whether a term is a variable or
not, and hence allows the construction of the coproduct [L-13]. Intuitively,
we build up the coproduct as a sequence of alternating layers (layers in the
term structure correspond to computations here); if we add two layers from
the same monad, we can use that monad’s computation, and if we add a
variable we do not need to add anything because of the unit law.

For the situations the coproduct can model (non-interacting combina-
tion), this works very smoothly, except it maybe needs some syntactic sugar
to make it more palatable.

2.5 Concluding Remarks

This chapter gave an overview of the work on categorical models of rewriting.
The key concept is the notion of a monad, which as we have shown captures
a wide array of useful computational models, from term rewriting systems
over infinite objects to computational effects.

The advantages of monads is that they can be combined using colimits,
allowing compositionality and modular reasoning. This allows us to build
systems in a compositional manner, combining the basic building blocks in

32

a modular way without concern for their inner structure. It also allows
modular reasoning, by breaking down properties of the whole system into
properties of the components.

Monads can be combined by using colimits in general. We have concen-
trated on the coproduct of monads, which have used to prove modularity
results in term rewriting, generalising known results and proving new ones,
and found new uses of the coproduct in denotational semantics and func-
tional programming. Other colimits, in particular the shared union (push-
out), will be the subject of future research. However, it transpired that in
all of these efforts it makes sense to restrict the monads considered (to such
as layered monads, ideal monads etc.), as in general a monad is such an
abstract concept that not much can be said. This is not a flaw, it shows
that we are working at the right level of abstraction.

2.5.1 Bibliographical Remarks

Category theory has been used to provide a semantics for term rewriting
systems at an intermediate level of abstraction between the actual syntax
and the relational model. Research originally focused on structures such as
2-categories [131, 135], Sesqui-categories [149] and ordered categories [77, 78]
as models of TRSs. However, despite some one-off results [53, 131], these
approaches did not make a lasting impact on term rewriting. Part of the
problem was that these semantics are for the most part term-generated, and
we often ended up translating the problem back into the syntax.

The papers [L-22,L-20] were the first to prove and extend state-of-the
art term rewriting results, due to the fact that a semantics had been found
which was not term generated but crucially could model the key concepts
of variables, layers and substitution. The joint paper [L-20] lead to a long-
standing collaboration with Neil Ghani (University of Leicester). Together
with Fer-Jan de Vries (then ETL Japan), we have organised the workshop on
categorical rewriting at the Rewriting Techniques and Applications RTA’98
conference 1998 in Tsukuba, Japan to disseminate these results further.

In fact, the work was taken up by the ‘Leicester school’ headed by
Dr Ghani. Starting with the question of dualising the approach [L-27,L-6],
this work lead to the investigation of infinitary rewriting [L-26,L-5,L-4] and
two EPSRC grants to investigate categorical rewriting and its applications.
Other work in Leicester, without direct involvement of the author, include
the categorical modelling of computational group theory though Kan exten-
sions [54, 55, 109]. Joint work further includes the applications in functional
programming [L-13].

After the rather diverse work over the last five years, the papers [L-2]
and [L-8] then developed a more abstract formulation, incorporating all the
various formalisms in one coherent framework with an aim of obtaining
results at that level.

33

Chapter 3

Formal Proof and Software

Development

This chapter deals with formal proof and software development. To start, we
make precise what we mean by formal proof: Formal does not merely mean
that it is written down in mathematical language, but that it is actually
written down in formal logic so it can be checked for correctness. Thus, a
formal proof (or development) is one which can be automatically checked for
correctness by a machine.

Formal software development in this sense has three distinct advantages:

• Firstly, it greatly increases correctness. Note there is still enough room
for mistakes — specifications can be wrong, proofs may rely on side
conditions or the implementation of the theorem prover may be wrong
or inconsistent. But formal proof make all these dependencies explicit
— we know precisely all side conditions which need to hold, and we
know also which parts of the prover we must trust.1

• Secondly, it opens the room for proof support. Once we write down
specifications formally, we can let the machine do the trivial and simple
parts of the development, leaving the user with the complicated design
decisions.

• Thirdly, it allows for abstraction and reuse. Once the development is
a formal object, we can develop techniques to reuse a development in
a different setting, or to make it generally more applicable.

While the first two advantages are widely acknowledged and utilised, the
third is still largely untapped potential; our advances in this area are the
major contribution here.

1This leads into questions of prover architecture which we will later consider.

34

The definition above is a rather loose, and covers a lot of different logics,
approaches and systems. In our work, we have made specific choices in these
matters, which we want to explicate — if not justify — in the following:

Firstly, we believe that higher-order logic is a sine qua non for realis-
tic proof and development. Nearly all realistic applications of formal soft-
ware development or verification use higher-order principles, sometimes in
restricted form; for example ACL2 [83] or Inka [10] restrict themselves to
induction. This makes perfect sense; most users certainly do not want to see
the encoding of the natural numbers in higher-order logic, they just want
the Peano axioms. Which brings us to the second principle:

Secondly, we believe that logical embeddings make perfect sense in the
context of software development: on the one hand, one wants to use domain-
specific languages, i.e. specification (or even programming) languages which
are tailored to the situation at hand; on the other hand, we want to reuse as
much of the technical infrastructure (proof support etc.) as possible. The
solution is to encode domain specific-languages into a meta-logic where the
actual formal proof work is done. Of course this needs a powerful enough
meta-logic, explaining our preference for higher-order logic above.

Thirdly, we found the generic theorem prover Isabelle to be an excellent
tool for our purpose. It is a logical framework in itself, but has a well-
supported encoding of classical higher-order logic (HOL) which can in turn
serve as a meta-logic for the encoding of other specification languages, in
particular with its encoding of the logic of computable functions (LCF) [108],
which gives us an executable sublanguage and makes HOL suitable as the
basis of a wide-spectrum language. It has powerful proof support which
is competitive with what most automatic provers can offer, and its flexible
syntax machine make it easy to encode one’s favourte logic or specfication
formalism in a readable way.

In the rest of this chapter, we will explain the logical foundations of a
generic system for formal development. We will argue that formal software
development comprises development in-the-small, which corresponds to for-
mal proof, and development in-the-large, which corresponds to the manip-
ulation of specifications. We will show the logical foundations of transfor-
mational program development, and see how this is implemented in Isabelle
in our TAS system. We will also investigate how to make theorems more
general, and how to use this to abstract develoments, e.g. to derive new
transformation rules. We will finally consider an ongoing refactoring of the
TAS system. We will not consider issues of system architecture, interface
design and implementation as this will be the focus of the next chapter.

35

3.1 Transformational Program Development

In general, a formal specification of a program or system is an abstraction on
the actual system, designed to make its properties clear and reasoning about
them feasible. In a formal development, the specification formalism comes
equipped with at least one transitive correctness-preserving refinement rela-
tion S v S′ which expresses that a specification S ′ is a correct specialisation
of another specification S. Refinement is used to verify that a proposed
system design preserves the properties of its specification, i.e. the correct-
ness of the implementation. However, as the program may be substantially
different from the original specification, it is preferable to repeatedly prove
refinement for minor changes one at a time until one has arrived at the final
program. A stepwise refinement process can be understood as a sequence of
specifications

SP1,SP2, . . . ,SPn, (3.1)

in which each successive stage of the program development process is a
correct refinement of its preceding stage, e.g. SPi v SPi+1 holds for i =
1, . . . , n−1. The transitivity of the refinement relation guarantees that SPn

is a refinement of SP1. Usually, SP1 is an initial (abstract) specification and
SPn is a program (or executable specification), but various cases in between
may be considered; for example, refining a requirement specification to a de-
sign specification or refining an executable specification to an equivalent but
more efficient one. This incremental approach has a long and distinguished
history. It has been present implicitly in Dijkstra’s and Gries’ early works
[42, 61], and been advocated and studied for different notions of refinement
in the literature [70, 29, 39, 133]. However, refinement relations provide lit-
tle guidance for program development. Stepwise refinement is essentially an
“invent and verify” process to prove the correctness of development steps
a posteriori; stepwise refinement is not an effective method for program
development.

Transformational development offers a solution to this problem. Instead
of inventing refinement steps, each step arises from applying a transforma-
tion rule, which has been proven correct previously. Thus, transformation
rules may serve to guide the development and to reduce the amount of proof
work, and the sequence (3.1) becomes a sequence of applications of trans-
formations T1, . . . , Tn:

SP1
T1

 SP2
T2

 SP3
T3

 . . .
Tn−1

 SPn (3.2)

and the correctness of the transformation rules guarantees that SPi v SPi+1.
This approach was first explicitly advocated for equivalence transformations
[32], and later on for development by transformation of predicate transform-
ers [15], or in general restriction of the class of models [133, 134].

36

Many systems have been built to support this notion of correct devel-
opment. Early systems such as CIP [19], KIDS [141] and its successors
Planware [25] and Specware [145, 142], KIV [123, 124] or PROSPECTRA
[71] have been constructed from scratch, with a built-in notion of correct-
ness, a fixed notion of refinement, and a given library of transformation
rules.

However, transformation systems can profitably be encoded in general
purpose theorem provers. The theorem prover helps organise the overall
development and provides proof support for discharge of applicability con-
ditions. If the theorem prover itself is correct, and every transformation
rule has been proved correct inside the theorem prover, correctness of the
overall development is guaranteed. This approach has particularly been
investigated for the Refinement Calculus (RC) [15]; examples are the Re-
finement Calculator [95, 35], the Program Refinement Tool [36], and the
work of Staples [147] or Hemer et al. [67]. One drawback of these systems
is that they use are built around a particular refinement methodology and
formal method, which may not be the one we may want to use in a particular
setting.

3.1.1 The TAS System.

TAS is a generic transformation system built on top of the Isabelle theo-
rem prover. It comes together with a graphical user interface (GUI), but
we will explain the design and construction of that in the next chapter. Al-
though TAS is built on Isabelle, the basic principles of modelling transforma-
tional proof and development hold for any logical framework. This treatment
of transformation based on rewriting program schemas and a second-order
matching algorithm was first proposed by Huet and Lang [72].

Transformational Development in a Logical Framework

A logical framework [64, 120] is a meta-level inference system which can be
used to specify other, object-level, deductive systems. Well-known examples
of implementations of logical frameworks are Elf [119], λProlog [103], and
Isabelle [117]. We use Isabelle, the meta-logic of which is intuitionistic
higher-order logic extended with Hindley-Milner polymorphism and type
classes. A central idea in logical framework encodings is to represent object
logic variables by meta-logic variables, which are placeholders for meta-
logic terms, and which can be instantiated by the unification of the logical
framework. Following Isabelle’s nomenclature, such variables will be called
meta-variables in the following.

We represent transformation rules by a theorem of the form

A =⇒ I v O (3.3)

37

where A is the applicability condition, I is the input pattern and O the
output pattern. Theorem (3.3) is called the logical core theorem of the rule.
To apply such a transformation to a term t, we match (or unify) the input
pattern I with a subterm of t, say t0, such that t = C[t0] where C[] is
the context. Let σ be a substitution which appropriately instantiates I, i.e.
Iσ = t0. Then Iσ may be replaced by Oσ at the position of this subterm,
i.e. the current specification t = C[t0] = C[Iσ] is transformed to C[Oσ].
Meta-variables which occur in the output pattern O but not in the input
pattern I will not be instantiated by this match; they are called parameters,
and their instantiation is left to the user. The instantiated applicability
condition Aσ becomes a proof obligation which ensures the correctness of
the transformational development. When Aσ holds, we know that Iσ v Oσ.
We now need to show that we can conclude SP1 = C[Iσ] v C[Oσ] = SP2,
and further that such a sequence of transformation steps

SP1 v SP2 v SP3 v . . . v SPm (3.4)

allows us to conclude that SP1 v SPm. Since the system should be generic
over the refinement relation used, which properties are needed for the re-
finement relation v?

• Firstly, in order to be able to apply the transformation rule to a sub-
term, we need monotonicity (or in general, the refinement to be a
congruence), i.e. Iσ v Oσ =⇒ C[Iσ] v C[Oσ].

• Secondly, transitivity is needed to deduce the refinement S1 v Sm

from the single refinements SPi v SPi+1 in (3.4).

• Thirdly, reflexivity is not strictly necessary, but its presence makes
reasoning much easier, and moreover we have not yet encountered
practical examples of non-reflexive refinement relations.

The first requirement is actually both too strong and too weak. Too strong
on the one hand, because a given refinement relation may not be monotone
with respect to all given operators, but only some. That means we can only
apply it in certain contexts, but when it occurs in these contexts, we are
fine. On the other hand, it is too weak, because refinement inside a given
context may add additional assumptions. For example, when refining the
positive part P of a conditional if B then P else Q we can assume that
the condition B holds. This is crucial: in the course of formal development,
we introduce conditional expression precisely in order to handle such case
distinctions.

Basics of Window Inferencing

Logically, these notions are captured by window inferencing [127], structured
calculational proof [43, 14, 15] or transformational hierarchical reasoning

38

[62]. We will subsume these as window inferencing in the following, since
they are quite similar. Window inferencing is a calculus for formal proof, just
like natural deduction or the sequent calculus; however, it is more compact
and built to mimic the equivalence-based transformational reasoning found
in algebra and calculus. Here is a short example proof of (A∧B =⇒ C) =⇒
(B ∧A =⇒ C).

We start with A ∧ B =⇒ C. In the first step, we open a subwindow on
the sub-expression B ∧ A, denoted by the markers. We then transform the
sub-window and obtain the desired result for the whole expression:

xA ∧By =⇒ C
⇒ {focus on A ∧B}

• A ∧B
= {∧ is commutative}

B ∧A
· pB ∧Aq =⇒ C

(3.5)

The proof uses the fact that we can replace equivalent subexpressions. This
is formalised by window rules. In this case the rule has the form

Γ ` A = B
Γ ` E[A] =⇒ E[B] (3.6)

where the second-order variable E stands for the unchanged context, while
the subterm A (the focus of the transformation) is replaced by the transfor-
mation.

Implementing Window Inferencing in Isabelle

The logical core of TAS is a generic window inference package, which trans-
lates proof in the window inference style above into Isabelle’s natural de-
duction, i.e. it allows transformational reasoning within Isabelle.

Just as equality is at the heart of algebra, at the heart of window infer-
ence there is a family of binary preorders (reflexive and transitive relations)
{vi}i∈I . These preorders are called refinement relations. Practically rel-
evant examples of refinement relations in formal system development are
impliedness S ⇐ P , process refinement S v P (the process P is more de-
fined and more deterministic than the process S), set inclusion, or arithmetic
orderings for numerical approximations [157].

The refinement relations have to satisfy a number of properties, given as
a number of theorems. Firstly, we require reflexivity and transitivity for all
i ∈ I:

a vi a [Refli]

a vi b ∧ b vi c =⇒ a vi c [Transi]

39

The refinement relations can be ordered. We say vi is weaker than vj if vi

is a subset of vj, i.e. if a vi b implies a vj b:

a vi b =⇒ a vj b [Weaki,j]

The ordering is optional; in a given instantiation, the refinement relations
may not be related at all. However, because of reflexivity, equality is weaker
than any other relation, i.e. for all i ∈ I, the following is a derived theorem:2

a = b =⇒ a vi b (3.7)

The main device of window inferencing are the window rules shown in the
previous section:

(A =⇒ a vi b) =⇒ F a vj F b [MonoF
i,j]

Here, F can either be a meta-variable, or a constant-head expression, i.e.
a term of the form λy1 . . . ym.cx1 . . . xn with c a constant. Note how there
are different refinement relations in the premise and conclusion of the rule.
Using a family of rules instead of one monotonicity rule has two advantages:
firstly, it allows us to handle, on a case by case basis, instantiations where
the refinement relations are not congruences, and secondly, by allowing an
additional assumption A in the monotonicity rules, we get contextual as-
sumptions assumptions when refining inside a context. To finish off the
picture, a transformation rule is given by a logical core theorem of the form
(3.3) above, i.e. a theorem the conclusion of which is a refinement relation.

As an example of contextual assumptions and window rules, consider
the expression x + (if y = 0 then u+ y else v + y). If we want to simplify
u + y, then we can do so under the assumption that y = 0 (hence in this
context u+ y = y), because of the window rule given by the theorem

(B =⇒ x = y) =⇒ (if B then x else z = if B then y else z) [MonoIf=]

Note that if we had just used the congruence rule for equality x = y =⇒
f x = f y we would have lost the contextual assumption x = 0 in the refine-
ment of u+ y.

The window inference package implements the basic window inferencing
operations as Isabelle tactics, such as opening and closing subwindows, ap-
plying transformations, searching for applicable transformations, and start-
ing and concluding developments. In general, our implementation follows

2In order to keep our transformation system independent of the object logic being used,
we do not include any equality per default, as different object logics may have different
equalities.

40

Staples’ approach [146]. When we start a proof, we may not know the goal,
i.e. we start with a specification and may not know what it is going to be
transformed into, so we use a meta-variable as a placeholder which eventu-
ally gets instantiated with the goal. Further, transitivity rules are used to
translate the forward chaining of transformation steps into backwards proofs
on top of Isabelle’s goal package, and the reflexivity rules are used to close
subwindows or conclude developments. Our implementation moreover adds
point&prove functionality (click on a subterm to open a window there), and
search and browsing functionalities (e.g. search for applicable transforma-
tions, or display current development). We always use the most specific rule
when opening a subwindow (cf. the example above). The search functions
use an indexing scheme for better performance, and users can configure the
search to their needs.

3.1.2 Instances of TAS

TAS has two main instances which we will consider in the following, namely
one for higher-order logic itself based on model restriction, and one for pro-
cess refinement.

Higher-Order Logic

As refinement relation, we will use model-inclusion — when refining a specifi-
cation of some function f , the set of possible interpretations for f is reduced.
The logical equivalent of this kind of refinement is the implication, which
leads to the following definition:

v : Bool × Bool - Bool P v Q
def
= Q −→ P

Based on this definition, we easily prove the theorems ref trans and ref refl

(transitivity and reflexivity of v). We can also prove that v is monotone
for all boolean operators, e.g.

s v t =⇒ s ∧ u v t ∧ u ref conj1

Most importantly, we can show that

(B =⇒ s v t) =⇒ if B then s else u v if B then t else u ref if

(¬B =⇒ u v v) =⇒ if B then s else u v if B then s else v ref then

which provides the contextual assumptions mentioned above.
On the face of it, this instance looks too basic to be of much use, but we

note that the underlying notion of refinement is the same as used in e.g. the
refinement calculus, and systems derived from it. In particular, we can now
formulate a substantial part of the theory of algorithm design [142, 139, 143]
in our framework. In this work, schemata for algorithms are formalised as

41

design transformations. A design transformation embodies a rather complex
design decision, typically one which transforms a specification of a given
form into an algorithm. Thus, a design transformation when encoded as a
logical core theorem (3.3) has a specification given by pre- and postcondition
as input pattern, and a program given as a recursive function as output
pattern. Examples of design transformations include branch and bound,
global search [143], or divide and conquer [140]. The latter implements a
program f : X - Y by splitting X into two parts, the termination part
of f , which can be directly embedded into the codomain Y of f , and the
rest, where the values are divided into smaller parts, processed recursively,
and reassembled. The core theorem for divide and conquer based on model-
inclusion refinement and well-founded recursion reads:3

A −→ (Pre(x) −→ Post(x, f(x))
v
Pre(x) −→ f = let fun F (x) = if isPrim(x) then Dir(x)

else Com(〈G,F 〉(Decom(x)))
in F end measure <)

(3.8)
where A are the (fairly lengthy) applicability conditions. As explained
above, the user has to instantiate the parameters of the transformation
when applying it. Here, the parameters are

• the termination criterion isPrim : X - Bool;

• the embedding of terminal values Dir : X - Y ;

• the decomposition function of input values Decom : X - Z ×X;

• a function G : Z - U for those values which are not calculated by
recursive calls of F ;

• the composition function Com : U × Y - Y that joins the subso-
lutions given by G and recursive calls of F ;

• and the measure < assuring termination.

Process Refinement

The instantiation of TAS for process refinement is based on the formalisation
of CSP [129] in Isabelle/HOL by Tej and Wolff [152]. CSP is a process cal-
culus with three different ways of process refinement, based on traces, failure
sets and failure-divergence sets [129]. Trace refinement is most commonly
used in security, whereas failure-divergence refinement is the one correspond-
ing to implementation; it expresses that one process is less deterministic and
less often diverging than the other.

3〈f, g〉 is the pairing of functions defined as 〈f, g〉(x, y)
def
= (f(x), f(y)).

42

There is no known theory of “process design”, in analogy to algorithm
design for sequential algorithm; instead, we have rich theory of simple refine-
ments given by the algebraic laws of CSP. Tej’s thesis [151] contains a couple
of useful transformations going into the directory of design transformations
for CSP, such as the following

∀m,a.m 6= e ∧ a 6= e ∧m 6= f ∧ a 6= f
=⇒ µX.e → f → X

v
(µX.e → m→ a→ X |[{m,a}]| µX.m→ f → a→ X) \ {m,a}

which splits a single process into two processes communicating over an in-
ternal channel; one can consider this to be a buffer introduction. The thesis
has longer case studies of transformational development in HOL-CSP.

Besides transformational development, the TAS instance introduces an-
other application, namely abstraction. Instead of refining a specification
into an executable process using correctness-preserving refinement, we can
transform an executable process into a more abstract specification which we
can then modelcheck, using for example the model-checker FDR [51]. This
allows the detection of deadlocks and livelocks in concurrent systems; the
same approach, but without using Isabelle and instead relying on pencil-
and-paper proofs, has been employed in [33, 34]. In order to formalise it in
our setting, we need a formalisation of the theory of deadlock-preserving (or
livelock-preserving) refinement, based e.g. on Lazić’ data independence [96].
We can then connect FDR as an external decision procedure (a so-called
oracle) to Isabelle, and obtain an integrated system where we can transform
arbitrary processes into a form where they can be model-checked.

3.1.3 Conclusions

We have shown the two main instances of TAS. There have been other,
less developed or prototypical instances, such as one for Staple’s set-theory
based refinement calculus [147, 148] in [L-16], or the specification language
Z [L-19], based on HOL-Z [92], the encoding of Z [144] into Isabelle/HOL.
We found that we could in principle capture all of the refinement-based
approaches found in the literature, although of course encoding them into
Isabelle first is hard work; hence we concentrated on the two main instances
above.

TAS was successful as an academic prototype. It has a novel user in-
terface and a generic architecture which can be instantiated to different
formalisms. However, its impact beyond the academic world was somewhat
limited.

In essence, we learned three lessons from building TAS:

• Transformational development is very appealing, and a calculus like
window inferencing is far more suitable to formal software development

43

then e.g. natural deduction. However, window inferencing is a calculus
to prove theorems, not to transform specifications. Thus, it is suitable
for development in-the-small, but not for development in-the-large.

• An easy-to-use, well-designed graphical user interface adds very much
to the usability of the system. However, one must be careful not to
tie the user interface too closely to the system; we will reconsider this
point in Sect. 4.3.

• Finally, TAS could display developments interactively, with the possi-
bility to navigate through subdevelopments, or export them as Isabelle
proof scripts. However, the development was represented internally,
so users had no specification text to work on; and moreover, although
users could annotate developments with comments, there was no inte-
grated view of the development.

The last point is a serious drawback. After all, the specification is the
main artefact the user is working on, and hence should always be in the
centre of both the user’s attention and the system’s presentation.

We do not claim that these points are in any way original; specification
languages like Focus [30], and Casl [24] also know the distinction between
in-the-small and in-the-large. Also, for example the Isar user interface for
Isabelle also supports the generation of typeset documentation from a proof
(although in Isar’s case, it is the theorem prover which generates the docu-
ment).

In Sect. 3.3, we will report on ongoing work to rectify these shortcomings.
However, this also incorporates work on abstracting developments for later
reuse, so we will elaborate on that first.

3.2 Abstraction and Reuse

From the three advantages given at the beginning of this chapter, the third
has until now not been supported by many systems. Some systems, such
as KIV [16, 123], Maya [11] or Specware [145] have good support for reuse,
that is if we have a development (or verification), and change the original
specification, a new proof is constructed, reusing as much of the original
proof as possible.

However, no system supports the systematic generalisation of develop-
ments. This seems surprising, because generalisation is actually the way in
which mathematics develops: one starts with a concrete example, and then
generalises it by deciding for each property whether it is actually relevant
or not. For example, we start with natural and rational numbers, and end
up with the theory of groups, rings and fields.

44

Since we identify transformation rules with their core theorem (3.3), the
foundations of abstracting transformational developments are the abstrac-
tion of proofs and theorems. We can formulate these principles for any
logical framework, and we have implemented them in our favourite one,
namely Isabelle. We will give a survey of this work in the following, and
consider its introduction into TAS in Sect. 3.3.

3.2.1 General Principles

The proposed generalisation process will transform a proof π of a theorem
φ in a stepwise manner into a proof of a schematic theorem which may be
instantiated in any other setting, i.e. a derived inference rule of the logic.
The process consists of three phases as follows.

Making Proof Assumptions Explicit

In tactical theorem provers such as Isabelle, the use of auxiliary theorems in
a proof may be hidden to the user, due to the automated proof techniques.
These contextual dependencies of a theorem can be made explicit by in-
specting its proof term. In a natural deduction proof, auxiliary theorems
can be introduced as leaf nodes in open branches of the proof tree.

Given an open branch with a leaf node theorem in the proof, we can
close the branch by the implication introduction rule, thus transforming
the conclusion of the proof. By closing all open branches in this man-
ner, every auxiliary theorem used in the proof becomes visible in the root
formula of the proof. To illustrate this process, consider the proof π of
theorem φ. At the leaf node of an open branch πi in the proof we find a
theorem, say ψi(x

i
1, . . . , x

i
ki

). We close the branch πi by applying =⇒ -
introduction at the root of the proof, which leads to a proof of a formula
∀xi

1, . . . , x
i
ki
ψi(x

i
1, . . . , x

i
ki

) =⇒ φ, where ψi has been transformed into a
closed formula ψ′

i by quantifying over free variables, to respect variable scop-
ing. The transformation of a branch is illustrated in Fig. 3.1. This process
is repeated for every branch in π with a relevant theorem in its leaf node.
If we need to make j theorems explicit, we thereby derive a proof π ′ of the
formula (ψ′

1 ∧ . . . ∧ ψ
′
j) =⇒ φ.

Abstraction Function Symbols

The next phase of the transformation process consists of replacing function
symbols by variables. When all implicit assumptions concerning a function
symbol F have been made explicit, as in the transformed theorem above,
all relevant information about this function symbol is contained within the
new theorem. The function symbol has become an eigenvariable because the
proof of the theorem is independent of the context with regard to this func-
tion symbol. Such function symbols can be replaced by variables throughout

45

ψi(x)

φ

may be transformed to

[ψi(x)]

φ

∀x. ψ(x) =⇒ φ

Figure 3.1: The transformation and closure of a branch in the proof, binding
the free variable x of the leaf node formula.

the proof. Let φ[x/t] and π[x/t] denote substitution, replacing t by x in a
formula φ or proof π, renaming bound variables as needed to avoid variable
capture.

If the function symbol F is of type τ and a is a meta-variable of this
type, the theorem (ψ′

1 ∧ . . . ∧ ψ
′
i) =⇒ φ may be further transformed into

(ψ′
1[a/F] ∧ . . . ∧ ψ′

i[a/F]) =⇒ φ[a/F], (3.9)

by transforming the proof π′ into a new proof π′[a/F].

Abstracting Types

When all function symbols depending on a given type have been replaced by
term variables, the name of the type is arbitrary. In fact, we can now replace
such type constants by free type variables. The higher-order resolution
mechanism of the theorem prover will then instantiate type variables as well
as term variables when we attempt to apply the derived inference rule to a
proof goal.

In order to replace function symbols by variables, all relevant informa-
tion about these symbols, such as defining axioms, must be made explicit.
In order to replace a type constant by a type variable, function symbols of
this type must have been replaced by variables. Hence, each phase of the
transformation assumes that the necessary steps of the previous phases have
already occurred. Note that a necessary precondition for the second abstrac-
tion step is that the logical framework allows for higher-order variables, and
for the third step that the logical framework allows for type variables (which
Isabelle does, with certain restrictions — see below).

It is in principle possible to abstract over all theorems, function symbols,
and types occurring in a proof. However, the resulting theorem would be
hard to use. For applicability, it is essential to strike a balance between

46

Object logic Meta-logic

theorem φ
derivation

- proof term π

theorem φ′ �

replay
proof term π′

transformation

?

Figure 3.2: Generalising theorems by proof term transformation.

abstracting too much and too little. Thus, abstraction can never be a fully
automatic process.

3.2.2 Abstraction in Isabelle

The proof terms of Isabelle are defined in a typed λ-calculus corresponding to
Isabelle’s meta-logic under the Curry-Howard isomorphism. Syntactically,
the meta-logic proof terms can be presented as

p ::= h | c[τn/αn] | λh : φ.p | λx :: τ.p | p · p | p t (3.10)

where h, c, x, t, φ, α, and τ denote proof variables, proof constants, term
variables, terms of arbitrary type, propositions, type variables, and types,
respectively. The language defined by (3.10) allows abstraction over term
and proof variables, and application of terms and proofs to proofs, corre-
sponding to the introduction and elimination of

∧

and =⇒ . Proof terms
live in an environment which maps proof variables to terms representing
propositions and term variables to their type. Proof constants correspond
to axioms or already proven theorems. More details, including the definition
of provability, can be found in [20].

The explicit representation of object logic terms, types, and proof rules
in the logical framework allows any object-logic proof to be transformed
by manipulating its meta-logic proof term (see Fig. 3.2). The manipulated
meta-level proof terms are replayed by a proof checker. Reduction of the
proof term yields a new object level inference rule, and the logical framework
ensures the correctness of the derived rule. This way, we have a conservative
implementation which does not compromise the integrity of Isabelle’s logical
kernel.

We have structured the abstraction process into the basic abstraction
steps, corresponding to the three steps above, and abstraction procedures we
can compose from these.

47

Basic Abstraction

The abstraction process iterates the following three basic abstraction steps,
which are implemented as functions in Isabelle (the technical details can be
found in [L-9]):

(i) Make an assumption explicit: A theorem ψ named thm used in the
proof π will appear as a proof constant thm : ψ. The implication in-
troduction rule (corresponding to abstraction in the λ-calculus) allows
us to transform the proof π into the proof λh : ψ.π[h/thm] of the
theorem ψ =⇒ φ, lifting ψ to a premise of the proof.

The implementation is not quite straightforward, as we need to quan-
tify over all free variables in ψ, and need to adjust the deBruijn-indices
used by Isabelle to handle bound variables in proof terms.

(ii) Abstract a function symbol: When function symbol has become an
eigenvariable because the proof of the theorem is independent of the
context with regard to this function symbol f , and can be replaced by
a variable x throughout the proof. We obtain a proof π[x/f] of the
theorem φ[x/f].

The implementation of this is straightforward: we traverse the proof
term, replacing the symbol f with a fresh meta-variable.

(iii) Abstract a type constant: Similarly, when all function symbols depend-
ing on a given type have been replaced by term variables, the name of
the type is arbitrary, and we can replace such type constants by free
type variables in a similar manner.

When we use a theorem in a proof, both schematic and type variables are
instantiated. If we make the theorem an applicability condition we need to
quantify over both the schematic and type variables. However, abstraction
over type variables is not possible in the Hindley-Milner type system of
Isabelle’s meta-logic, where type variables are always implicitly quantified
at the outermost level. Instead, distinct assumptions must be provided for
each type instance. For example, a proof of the theorem

map (f · g) x = map f (map g x), (3.11)

contains three different type instances of the definition of map for non-
empty lists map f (Cons x y) = Cons (f x) (map f y). Similarly, when
abstracting over polymorphic operations, we need distinct variables for each
type instance of the operation symbol; hence, in Theorem (3.11), we need to
abstract over each of the three type instances separately, resulting in three
different function variables.

48

3.2.3 Abstraction Procedures

One rarely wants to abstract over a specific theorem. Moreover, the previous
basic abstractions steps depend on each other; without first abstracting the
preconditions on which an operation symbol occurs, abstraction over this
operation will fail. Thus, users will not want to use the basic abstraction
steps directly. For a more high-level approach, abstraction procedures are
defined, which combine series of elementary abstraction steps.

One such procedure is abstraction over theories. A theory in Isabelle
can be thought of as a signature defining type constructors and operations,
and a collection of theorems. Theories are organised hierarchically, so all
theorems established in ancestor theories remain valid. The abstraction
procedure ABS THEORY abstracts a theorem which belongs to a theory
T1 into an ancestor theory T2. It collects all theorems, operations, and types
from the proof term which do not occur in T2, and applies elementary tactics
recursively to abstract over each, starting with theorems and continuing with
function symbols and types. Finally, the derived proof term is replayed in
the ancestor theory, thus establishing the validity of the abstracted theorem
in the theory T2.

Another abstraction procedure is abstraction over a given type, ABS TYPE.
In order to abstract over a type τ , we identify in the proof term all operations
f1, . . . , fn in the signature of which τ occurs, and all theorems φ1, . . . , φm

which contain any of these operations. We abstract over all occurrences of
these theorems and operations, and finally over the type.

The approach to abstraction as implemented here combines proof term
manipulation as known from type theory [99, 98] with the flexibility and
power of a logical framework like Isabelle. It can be applied to any theo-
rem directly, allowing multiple reuse of the abstracted theorem in different
settings, as we shall examine in the next section.

3.2.4 Uses of Abstraction

Most directly, we can reapply theorems in different settings; for example,
theorems about lists such as

append Nil2 ≡ x@ [] = x

can be abstracted and reapplied for natural numbers. However, in order to
reuse theorems on a larger scale (Isabelle has more then 200 theorems about
lists, reusing each individually requires more effort than work saved) a more
systematic approach is required.

49

Change of Data Type Representation

Change of data type representation occurs when we implement one data
type with another. For example, we may implement the natural numbers
by a binary representation:

datatype bNat = datatype Pos =
Zero One

| PBin Pos | Bit Pos bool

This binary representation has a different induction scheme than the usual
representation in terms of zero and successor, and a different recursion
scheme (see [98, 99]). However, we can prove that the usual induction as
theorems in this theory (rather than stating them axiomatically), and we
can further prover the usual recursive equations defining operations like ad-
dition. We can then abstract theorems about natural numbers up to the
induction scheme, and the recursive definitions, and reapply them in this
context. We have used this mechanism to move all theorems about natural
numbers and addition from Isabelle’s standard presentation to the binary
representation [L-9].

Signature and Theory Morphisms

In the previous example, we established a systematic mapping from natural
numbers to the binary representation. This approach is captured by the
notion of signature and theory morphisms.

In Isabelle, a signature Σ = 〈T,Ω〉 is given by a set T of type constructors,
and a set Ω of operations. Each type constructor c ∈ T has an arity ar(c) ∈
N. Assuming a fixed and infinite set of type variables X , the set T ∗ of types
generated from T is the smallest set containing all the type variables, and
closed under application of the type constructors. Each operation ω ∈ Ω
has a type τ(ω) ∈ T ∗. Given a signature Σ and a set X of variables together
with a type assignment τ : X - T ∗, the set TΣ(X) of terms is defined in
the standard way. Each term t ∈ TΣ(X) has a type τ , denoted t : τ .

A theory Th = 〈Σ,Ax 〉 is given by a signature Σ, and a set Ax of formu-
lae called axioms. Typical axioms include constant and data type definitions.
By closing the set Ax under derivability, we obtain the theorems of Th, writ-
ten as Thm(Th). Theories and signatures are organised hierarchically; we
build new theories by extending existing ones.

Signature morphisms are maps between signatures preserving operations
and arities. They allow us to move terms between signatures. Formally,
given two signatures Σ1 = 〈T1,Ω1〉 and Σ2 = 〈T2,Ω2〉 a signature morphism
σ : Σ1

- Σ2 consists of two maps σT : T1
- T2 and σΩ : Ω1

- Ω2,
such that

(i) for all type constructors t ∈ T1, ar(σT (t)) = ar(t), and

50

(ii) for all operations ω ∈ Ω1, σT (τ(ω)) = τ(σΩ(ω)),

where σT : T ∗
1

- T ∗
2 is the extension of the map between the type con-

structors to a map between the set of types built from these type construc-
tors.

Theory morphisms are maps between theories. Given two theories Th1 =
〈Σ1,Ax1〉 and Th2 = 〈Σ2,Ax2〉, a theory morphism σ consists of a signature
morphism σΣ : Σ1

- Σ2, and a map σA : Ax1
- Thm(Th2) which

maps every axiom of Th1 to a theorem of Th2.

A theory morphism gives us a canonical way of moving theorems from
Th1 to Th2: first abstract all theorems from Th1 occuring in the proof of
the theorem, then replace type constructors τ with σT (τ), and all operation
symbols ω with σΩ(ω), and replay the proof in Th2. Conditions (i) and (ii)
ensure that the translated proof term is well-typed.

Analysing Theorem Dependencies

In the example of natural numbers and their binary representation, it was
clear that we had to translate the induction scheme, and the defining equa-
tions of the operations into the binary representation, and translate them
there. In general, if we can identify such a small set of theorems from which
all (or many of) the others in the theory are derived, we call them an ax-
iomatic base. The axiomatic base divides the theorems into two parts, those
from which the axiomatic base derives, and those deriving from the base.

By analysing the proof objects, we also find out dependencies between
theorems (i.e. one theorem’s proof requires another theorem). These de-
pendencies impose an order on the translation: if one theorem Ψ depends
on Φ, then we have to translate Φ first, then Ψ. This dependency between
theorems defines the dependency graph, which has theorems as nodes and
dependencies as vertices. To establish an axiomatic base, we build the tran-
sitive closure under dependency, and then check whether the axiomatic base
forms a set of articulation points in the graph, i.e. whether their removal
makes the graph disconnected.

Of course, finding the axiomatic base requires some intuition. For the
natural numbers, the well-known Peano axioms are the starting point. For
other datatypes, we may equally try the relevant induction scheme, plus the
defining equations for the operations.

This section has shown how we can make theorems more abstract, and
how we can reapply those theorems in a different setting. The implemen-
tation technique was proof term transformation. Using this technique, we
also implemented signature and theory morphisms in Isabelle. These will
also be useful as a tool to structure developments in the next section.

51

3.3 TAS Revisited

In this section, we will describe a refactoring of the TAS system, alleviating
the shortcomings identified in Sect. 3.1.3, and integrating the facilities for
abstraction and reuse as presented in the previous section.

3.3.1 Development In-The-Large

In Sect. 3.1.1, we have introduced the TAS system, and we have seen how
window inferencing models transformational reasoning on the level of the-
orems. TAS relied on Isabelle’s theories to structure the development and
specification, but it had no support to transform theories. Here, the imple-
mentation of signature and theory morphisms by proof term transformation
from the last section can help, as they allow manipulation of theories.

In this approach, a transformation rule is modelled as parameterised
theory, i.e. a pair of theories Θ = 〈P,B〉 such that P ⊆ B. We call P
the parameter and B the body of the rule. In order to apply the rule, we
match the parameter P with an instantiating theory I by constructing a
theory morphism σ : P - I as in Diagram (3.12). The resulting theory

P
σ

- I

B
?

∩

σ′
- R

?

∩

(3.12)

R will be I extended with the part of B that does not come from P . All
theorems in B will be translated into this extension, reusing the proofs from
the generic setting of the transformation rule in the concrete context of I.
In order to construct the matching theory morphism σ, we have to provide
theorems for each axiom of P . In this way, the translated axioms of P
become applicability conditions. This notion of parameterised specifications
and their instantiation is also found in algebraic specification languages such
as Casl [24]; Diagram (3.12) can be more succinctly defined as the push-out
of σ along the inclusion of P in B.

3.3.2 Document Presentation

As opposed to TAS’ implicit presentation of developments, we propose a
document-centred approach to software development (aka. literate specifica-
tion). As a first step towards this, we have integrated our approach into
Isar [113, 111], Isabelle’s high-level proof language and user interface. Isar’s
proof language allows the user to write proofs in a structured, formal, and
human-readable format; it defines a notation for theories in Isabelle, and
for proofs within these theories. Isar’s user interface is a system for inte-
grated and interactive proof and document preparation for Isabelle. We are

52

utilising the second aspect here: using Isar’s extensibility, we have intro-
duced new commands for abstraction, transformation rules and so on. For
example, abstraction of theorems are realised with Isar’s attributes. The
following line abstracts the theorem append2 Nil2 from the type of lists,
using the abstraction procedure ABS TYPE mentioned in Sect. 3.2.3:

theorems TailRec = append2 Nil [ABS TYPE ”list”]

However, Isar’s document flow is too restrictive in the long run. Because
every document has to be fully run through Isar we can only use as much of
LATEX as Isar can parse, and mixing document text with specification is very
delicate. A better document flow would be to have one comprehensive docu-
ment, from which we can on the one hand extract a formal proof script, and
which on the other hand can be typeset. The technical and methodological
foundations for this literate specification technique can come from the work
in the MMiSS project [L-12,L-23]. Since this has not been implemented in
TAS yet, we will come back to this when discussing future work in Sect. 5.2.

3.3.3 Example: Divide-And-Conquer Revisited

In order to represent a transformation rule R = 〈P,B〉 in Isar, we de-
clare two theories, one called R parameter which contains the parameter
P , and one called R which extends R parameter and contains the body.
Both R parameter and R are regular Isabelle theories. However, in order to
guarantee that application of the transformation rule results in a conserva-
tive extension, we check that the transformation rule is well-formed, i.e. the
body does not contain axioms. The formulation of the divide-and-conquer
transformation from p. 42 in this approach is shown in Fig. 3.3.

The advantage of this formulation over the previous one is a clear sep-
aration of concerns. In the previous approach, we modelled the parameter
signature by type and functions variables in the core theorem (3.8). This
has the advantage that it allows Isabelle’s higher-order resolution to help
with the instantiation, but on the other hand formulae like (3.8) with six
free function and four free type variables do become awkward to handle.
Moreover, it mixes in-the-large structuring (signatures and theories) and in-
the-small structuring by reflecting the former back into the latter. This is
elegant, but as there is no way back it means we cannot use any of Isabelle’s
theory-level declarations, so e.g. a transformation cannot introduce recursive
definitions or datatype definitions. Note how in in (3.8) we had to provide
an object-logic representation of the recursive function definition (the let
fun. . . in. . .measure construct), whereas in Fig. 3.3 we can use Isabelle’s
standard recdef.

To apply a transformation rule, we need to construct a theory morphism
from the parameter part to the instantiating theory. This is done with the
new Isar command apply trafo, which lets the user specify mappings for

53

theory DaC parameter = Main :
typedecl Df

typedecl Rf

. . .
consts

measure :: Df ⇒ nat
primitive :: Df ⇒ bool
dir-solve :: Df ⇒ Rf

g :: Dg ⇒ Rg

compose :: (Rg(RfRf)) ⇒ Rf

. . .
axioms

A-AUX : ”∀x. gpre x −→ gpost x (g x)”
A-DS : ”∀x. (fpre x ∧ primitive x) −→ fpost x (dir-solve x)”
. . .

end

theory DaC = DaC parameter:
consts f :: Df ⇒ Rf

recdef f ”measure(λx. measure x)”
”f x = (if (primitive x) then (dir-solve x)

else (compose ◦ (prod g f f) ◦ decompose) x) ”
theorem DaC : ”∀x. fpre x −→ fpost x (f x)”
. . .
end

Figure 3.3: A representation of divide-and-conquer in Isar.

types, operations and the axioms which make up a theory morphism. We
only need to provide as much of the mapping as needed to make it unique;
the command constructs the rest of theory morphism and checks that the
provided mappings satisfy the necessary invariants and hence form a theory
morphism. We can additionally rename the resulting operations or theorems
from the body. The application of the divide-and-conquer rule, as declared
in Fig. 3.3, is shown in Fig. 3.4 with the resulting function renamed to
quicksort. As the main result of this instantiation we obtain the recursive
definition of quicksort along with a correctness theorem, namely a proof of
∀l. qsort-post l (quicksort l).

54

theory QuickSort = Main :
constdefs
qsort-pre :: nat list ⇒ bool -- specification

”qsort-pre
def
= λx. True” -- of QuickSort

qsort-post :: nat list ⇒ nat list ⇒ bool -- by pre- and

”qsort-post
def
= λli lo. permutation(li, lo) ∧ sorted lo” -- postcondition

. . .
qsort-aux :: nat ⇒ nat

”qsort-aux
def
= id”

qsort-dsolve :: nat list ⇒ nat list

”qsort-dsolve
def
= id”

qsort-measure :: nat list ⇒ nat

”qsort-measure
def
= length”

qsort-compose :: (nat nat list nat list) ⇒ nat list

”qsort-compose
def
= λ(x, l, r). l @ [x] @ r”

. . .
theorem a-ds : ”∀l. (qsort-pre l ∧ qsort-prim l) −→

qsort-post l (qsort-dsolve l)”
. . .
apply trafo((”DaC parameter”, ”DaC”), -- traforule

[(”Df” 7→ ”nat list”),
(”Dg” 7→ ”nat”), . . .], -- type map

[(”compose” 7→ ”qsort-compose”), . . .], -- operation map

[(”A-DS” 7→ ”a-ds”), . . .], -- theorem map

[(”f” 7→ ”quicksort”), . . .]) -- list of renames

. . .
end

Figure 3.4: Application of divide-and-conquer in Isar.

55

3.3.4 Deriving New Transformation Rules

One problem with transformation systems in general is how to come up with
transformation rules. The solution proposed here, and our long-term goal,
is to derive new rules by generalising existing developments.

In general, a transformation rule Θ can be constructed from an ordinary
unparameterised theory T by identifying a subtheory of T as the rule pa-
rameter P , i.e. Θ = 〈P, T 〉. The parameter should contain type declarations
and operations, and the body should contain the main proofs of the original
theory; exactly how to split T is a design decision. Some theorems of T can
be stated as axioms of P , turning them into applicability conditions. This
way, various assumptions from the body may be collected in the parameter.
Free term or type variables in the body can be replaced by operations or
type declarations from the parameter.

We will demonstrate this approach by deriving a (well-known) transfor-
mation rule from a simple refinement proof. Consider a function which adds
up a list of natural numbers. A simple recursive definition is

recdef sum x
def
= if x = [] then 0 else hd x+ sum(tl x).

An more efficient tail-recursive definition can be given as follows

recdef sum2(x, y)
def
= if x = [] then y else sum2(tl x, y + hd x),

and we can prove that the two are equivalent by showing that for all lists x,

sum(x) = sum2(x, 0), (3.13)

In Isabelle, the proof proceeds by induction on x using three lemmas, the
most involved of which is ∀x a l . sum2(l, x+ a) = x+ sum2(l, a).

With our abstraction procedure ABS TYPE from above, we can gen-
eralise this theorem away from the type nat, and replace it with a type
variable α; 0 and + are replaced by schematic variables zero and p (typed
as zero :: α and p :: α ⇒ α ⇒ α), and sum and sum2 by schematic vari-
ables sum and sum2, respectively. The procedure results in the following
abstracted theorem TailRec:

(∀x. sum x = if x = [] then zero else p (hd x)(sum (tl x))
∧ ∀x y. sum2(x, y) = if x = [] then y else sum2 (tl x, p y (hd x))
∧ ∀u. p zero u = u ∧ ∀u. p u zero = u
∧ ∀u v c. p u (p v c) = p (p u v) c)

−→ sum x = sum2(x, zero)

In TailRec, we find the definitions of the two functions as the first two
premises. In particular, the second line is a schematic definition of the
tail-recursive function, which will be instantiated when the transformation

56

theory TalRec parameter = Main :
typedecl a
consts

zero :: a
p :: a ⇒ a ⇒ a
sum :: a list ⇒ a list

axioms
ax1 : ”sum x = if x = [] then zero else p (hd x)(sum (tl x))”
ax2 : ”p zero u = u”
ax3 : ”p u zero = u”
ax4 : ”p u (p v c) = p (p u v) c)”

end

theory TailRec = TailRec parameter:
primrec

sum2-nil : ”sum2([], y) = y”
sum2-cons : ”sum2(x#xs, y) = sum2(xs, p y x))”

theoremTailRec : ”sum x = sum2(x, zero)”
. . .

Figure 3.5: The transformation rule derived from theorem TailRec.

rule is applied. The remaining three premises reflect those properties of the
natural numbers that were needed for the proof of the original theorem,
namely that (0,+) forms a monoid. All of this was derived automatically
by the abstraction procedure.

We can now make TailRec a transformation rule by making the param-
eter theory explicit (see Fig. 3.3.4), and reapply it as shown in the previous
section; for example, the signature morphism

σ = { sum 7→ concat, sum2 7→ sum2, zero 7→ ε, p 7→ Cat }

gives us a tail-recursive formulation of the function concat, which concate-
nates lists of strings.

Note that the abstracted theorem TailRec is useful in its own right; with
the substitution

[λl . (foldr f l e)/sum, λ(l, e) . (foldl f e l)/sum2]

we get the following generally useful theorem

(∀u . f e u = u ∧ ∀u . f u e = u ∧ ∀u v c . f u (f v c) = f (f u v) c)
−→ foldr f x e = foldl f e x

which states that folding from the left, and folding from the right are equiv-
alent if the arguments of the fold form a monoid.

57

A more extensive case study has been undertaken in [L-1], where we have
demonstrated how to derive transformation rules from refinement proofs.
The main example was a transformation rule derived by generalising the
well-known data refinement from stacks as lists to stacks as arrays with a
pointer.

This concludes our overview of the ongoing redesign of TAS. We have
seen how theory morphisms form the missing like to support development in-
the-large, taken first steps to a document-centred approach, and integrated
the work on abstraction to allow users to derive new transformation rules.
The document-centred approach requires reengineering the user interface as
well, as we will see in the next chapter.

3.4 Conclusions

This chapter has presented the foundations of formal program development.
We have made three specific choices here: we use higher-order logic, because
it is simple, powerful and allows for generalisation and abstraction; we work
in logical frameworks, because one should be able to switch object logics
while keeping the prover infrastructure, and because it allows us to use
domain-specific languages tailored to a specific purpose; and we use Isabelle
as our theorem prover, because it is a powerful, generic, easily extendible
higher-order prover.

Formal software development in Isabelle requires support for develop-
ment in-the-small and development in-the-large. The former corresponds to
the formal proof of theorems, except that we do not necessarily know the
goal of the proof; here, meta-variables can serve as placeholders to be filled
in during the development. In order to model transformational development,
we implemented a window inferencing package in Isabelle. The package is
generic over the refinement or logic used, and we have seen instantiations
for refinement along model restriction (i.e. inverse implication) in higher-
order logic, and for failure-divergence refinement in the process calculus
CSP. These two rather different examples show the usefulness of a generic
approach. The window inferencing package, together with a graphical user
interface to be presented in the next chapter, forms the TAS system.

One major untapped potential of formal software development is the
systematic generalisation of developments in order to make them applicable
in a wider context, which we call abstraction for reuse. In order to sup-
port the abstraction of whole developments, we have developed abstractions
for theorems, abstracting over assumptions, operations and types. We have
implemented these methods in Isabelle by transforming proof terms.The ad-
vantages of this approach are that we can add it as a conservative extension
to Isabelle, without changing its logical kernel and thus jeopardising its con-

58

sistency. This technique was also useful to implement signature and theory
morphisms in Isabelle.

The lack of support for abstraction, a lack of support for development
in-the-large and a rather implicit representation of the specification were
identified as the three shortcomings of TAS, and have lead to a refactoring
of the system which moreover integrates the abstraction procedures. The
implementation of theory morphisms provides the missing link for structur-
ing development of theories; transformation rules can now be modelled as
parameterised theories, with application of transformation rules by a push-
out construction.

In order to rectify the third deficiency and support a document-centred
approach to formal software development, we integrated our approach into
Isabelle’s command language and user interface, Isar. However, the resulting
document flow is still too restricted in the long run, as all documents have
to pass through Isabelle; we are planning to amend this with the techniques
for document structuring from the MMiSS project.

3.4.1 Bibliographical Remarks

TAS was based on the system YATS [91], which implemented transformation
rules by proven theorems but crucially had no support for window inferenc-
ing rules.

The TAS system underwent two refactorisations. The initial version of
TAS was a direct descendant of the YATS system [91]. Instead of using
window inferencing, it used Isabelle directly to discharge proof obligations.
This system was developed during the UniForM project, and presented on
the TAPSOFT’97 [L-21] and ETAPS’99 [L-17] conference.

The first refactoring made TAS into a generic window inferencing system,
and was presented at TPHOLs’00 [L-16] and ETAPS’00 [L-15] conferences.

In order to address the issue of reuse and abstraction, the project AWE4

was started in 2000, supported by the German research council DFG. The
methods of proof reuse ([L-9]), implementation of transformation rules as
parameterised theories the [L-24] and the abstraction case study [L-1] all
resulted from the first phase of this project. A second phase of this project,
in which we intend to finish the refactorisation of TAS by moving towards
fully towards the document-centred approach, is scheduled to start this year.

4Abstraktion und Wiederverwendung formaler Entwicklungen (Abstraction and Reuse
of Formal Developments)

59

Chapter 4

Tool Development

This chapter will deal with the technical side of tool development. We
will discuss issues of design, system architecture and implementation arising
when implementing tools for formal methods, summarising the experience
with the development and design of various tools the author has taken part
in, such as the generic transformation system TAS [L-16,L-7], the UniForM
workbench [L-18,L-19], the GUI libraries sml tk [L-35] and HTk, the MMiSS
repository [L-12], the Casl consistency checker CCC [L-10], or the generic
prover interface PG Kit [L-25]. We will present some of these systems as
case studies to illustrate the discussion.

We have mostly used functional programming languages in the imple-
mentation of these tools, so we will argue why functional languages are a
good choice for tool development; the key arguments are higher productivity,
strict typing and better structuring facilities.

We will then consider tool integration. This becomes relevant when one
wants to reuse tools written by other research groups or vendors. In the
previous chapter, we have argued for using domain-specific languages by
encoding them into a general meta-logic; this means that we also want to
reuse tools for these methods (e.g. a model checker), so tool integration
becomes an issue.

The design of user interfaces for formal tools has been a rather neglected
field for a long time. Typically, formal method tools come with command-
line interfaces aimed at the expert (i.e. the implementor of the tool). This
has been successful in the past as long as only experts would use these tools,
but as formal methods are in the process of becoming more and more main-
stream in computer science, more widely accessible interfaces are required.
We will first discuss the design of graphical user interfaces for provers, and
then the next generation of prover interfaces (the PG Kit), which allows a
synthesis of textual and graphical user interfaces.

60

4.1 Advantages of Functional Programming

Most of our implementation work involves functional programming lan-
guages, specifically Standard ML (SML, [104]) or Haskell [118]. The reasons
for this are threefold:

• By programming at a more abstract leve, functional languages are
well-suited to rapid prototyping. This is particularly useful in the
research context, where a working prototype or proof-of-concept is
more important than an industrial-strength production-ready tool.

• Functional languages are particularly suited for the kind of symbolic
computation that characterises formal development and proof.1 For
extending Isabelle (e.g. the window inference package for TAS), SML
is the logical choice.

• SML and Haskell have strict typing, allowing a more stringent system
design which can increase confidence in the correctness of the tool.
Further, modern functional languages have sophisticated structuring
mechanisms, such as SML’s functors or Haskell’s type classes, which
allow flexbile and exact ways of structuring the implementation.

Empirical evidence suggests that productivity with functional languages
is about three times as high than with usual (imperative or object-oriented)
programming languages. However, in day-to-day industrial software pro-
duction functional languages are still the exception rather than the rule.
Reasons for this apparent contradiction include that coding is in fact only
a small portion of software development, that functional languages do not
enjoy the same support as for example Java in terms of libraries and tools,
that functional languages are almost exclusively taught at universities (so
functional programmers are comparatively expensive), and finally that man-
agement is technologically agnostic and inherently conservative (‘Nobody
ever got fired for using C++’). Nevertheless, there are industrial success
stories involving functional programming, such as Ericsson’s Erlang [6].

4.1.1 LCF Architectur: The CCC

One can use the typing discipline of a strictly typed functional language to
increase confidence in the tool. One of the first tools to make use of this
was the LCF prover. In LCF, theorems were implemented as an abstract
datatype, and all operations on this datatype corresponded to correct log-
ical inferences. Thus, new theorems could only be produced by applying

1Indeed, Standard ML started out as the command language for the LCF prover [58];
ML stands for meta language, i.e. the command language as opposed to the object lan-
guage.

61

correct inference rules to existing theorems. This design, the so-called LCF
architecture, is still used with provers derived from the early LCF system,
such as HOL [59] or Isabelle [113]. The LCF architecture can also be good
design if building a new tool from scratch.

Proof ProceduresProof Procedures External Tools

Axiomatic Rule Base

Logical Core

Extended Object Logic

Proof Infrastructure

CASL Abstract SyntaxMeta−Logic

...

Figure 4.1: Simplified view of the CCC system architecture.

The Casl Consistency Checker (CCC, [L-10]) has an LCF-style architec-
ture. CCC is a faithful implementation of a calculus for consistency proofs
of Casl specifications [128]. The calculus comprises more than fourty rules,
organised in four different subcalculi. When implemening a system to con-
duct proofs in this calculus, we needed to ensure the following invariants:
firstly, that rules are only combined in a safe way; secondly, that no further
rules can be added axiomatically; and thirdly, that proof procedures needed
to discharge side conditions such as static typing of specifications can only
be used for this side conditions, not arbitrary propositions. These objectives
were achieved by a three-tier architecture (Fig. 4.1 shows a simplified view).

The core of the system is the meta-logic, a weak fragment of conjunc-
tive logic which allows us to write down rules with a number of premises
and one conclusion, to compose these rules and instantiate variables therein.
Premises and conclusion are given by propositions (corresponding to state-
ments to be shown, such as this specification is consistent). Rules and propo-
sitions are encoded by datatypes prop and rule. The meta-logic, together
the axiomatically assumed rules and the CASL abstract syntax form the log-
ical core, the innermost layer of the system. The second layer implements
proof procedures. By putting this in a separate layer from the logical core,
we ensure that no decision procedure, however erroneously implemented,
can prove arbitrary propositions; it may only wrongly prove the particular
proposition it was implemented for. The outermost layer contains proof in-
frastructure, e.g. derived rules, a database to hold proven propositions, and
facilities for goal-directed proof and automatic proof procedures.

62

4.1.2 Typing in an Untyped World

Typing and structuring can also be useful when we integrate a foreign li-
brary. For example, sml tk and HTk are encapsulations of the graphical user
interface toolkit and command language Tcl/Tk [115] in SML and Haskell,
respectively. Tk is the interface toolkit, implementing of a number of inter-
face elements (called widgets). Tk has a C API, or it can be programmed
in the tool command language Tcl, an untyped scripting language. Both
together form the wish, the window shell.

In Tcl/Tk, we first create widgets, and then we configure them. For
example, we can create a button, and label it with some text and a colour.
Tk knows about thirty widgets and at least twenty different configurations,
and not every configuration can be used on every widget. Because Tcl is
completely untyped, using an illegal or malformed configuration results in
a runtime error, so it is advantageous to ensure by typing at compile time
that this can not happen.

In HTk, we can do so by using Haskell’s type classes. Each configuration
option corresponds to a class, with the class functions setting or querying
the option. Each widget is represented by an abstract datatype, which is an
instance of the class if and only if that option is allowed on that widget.

For example, text configuration is given by this class:

class (GUIObject w) => HasText w String where

text :: HasText w => String -> Config w

getText :: HasText w => w -> IO String

Config w is a synonym for w-> IO w, the action which sets the configura-
tion. All widgets which instance HasText can be configured with a text.
For example the type Button is an instance of HasText, as buttons can be
labelled with a text, but the type ScrollBar representing scroll bars is not,
as scroll bars cannt be labelled.

Not only can we use typing to make programming the interface less error-
prone, we can also use an implementation of concurrent events as compos-
able first-class values in Haskell [130] to allow a more abstract, modular and
composable modelling of the behaviour of the user interface. This is a sig-
nificant abstraction over Tcl/Tk, where the behaviour is implemented using
call-back functions.

4.1.3 Structuring with Functors and Classes

In SML, modules are called structures, interfaces are called signatures, and
functors are parameterised modules. Functors are quite a powerful structur-
ing concept, unmatched by most other programming languages; the closest
are templates in C++ (and in Java, as of lately) or generic packages in
Ada, but functors are more versatile and type-safe, as anything can be the
argument of a functor, including datatypes and other structures.

63

The first good example of a functor is the window inferencing package
Trafos used for the TAS system. As mentioned in Sect. 3.1.1, the Trafos

package is parametric over a family of reflexive, transitive and monotone
relations. In order to describe such a family of of relations, we need to
give the theorems stating reflexivity, transitivity and monotonicity (and the
conversions between the different relations given by the weakening). This is
described by the following SML signature:

signature TRAFOTHY_SIG =

sig val refl : thm list

val trans : thm list

val mono : thm list

val refl : thm list

end

Note that we do not need to give the actual names of the relations, as these
can be found out by investigating the theorems. The Trafos package is now
implemented as a functor

functor Trafos(structure TrafoThy : TRAFOTHY_SIG) : TRAFOS_SIG = ...

where TRAFOS SIG describes the export interface of the Trafos package,
implementing essentially three functions to open and close subdevelopments,
and to apply transformations given by their core theorem (thm), where path
specifies the path in the subgoal term to the subdevelopment to be opened:

signature TRAFOS_SIG =

sig val open_tac : path -> int -> tactic

val close_tac : int -> tactic

val apply_tac : thm -> int -> tactic

By instantiating the functor Trafos with different theorems, we get dif-
ferent instances of the generic window inferencing. This use of functors is
good practice. For example, in Isabelle functors are used to implement au-
tomatic proof procedures in a generic way across different object logics (e.g.
a rewriting engine, a tableaux prover or an induction package).

Functors can also be used to describe program construction. In this
view, a functor is a parameterised module, but it rather constructs a new
structure from the arguments. This point of view is particularly useful when
considering refinement, as in Extended ML [132, 81] or refinement in CASL
[107]. However, one criticism levelled at SML functors is that they lead to a
program structure which is hard to understand; indeed, the revised version
of the Standard ML definition (SML’97, [104]) restricted the use of sharing
constraints to allay this criticism.

64

4.2 Tool Integration

Tool integration has many aspects. The ECMA reference model [46] distin-
guishes framework integration, data integration, control integration, presen-
tation integration and process integration as different areas of integration
which cover such different aspects as a common data exchange format, sim-
ilar appearance and user interaction, or integration into a common develop-
ment or business process. Here, we want to cover the first three: framework
integration, which means basic interoperability, control integration, which
means the ability to combine the functionalities, and data integration, which
is the ability to share and exchange data between tools.

4.2.1 Framework Integration

Framework integration covers a wide area, but here, we are concerned with
the integration on a technical level: how do we get our tools to run together
and talk to each other?

There are many ways to do this. We can make use of a component frame-
work such as CORBA, COM+ or JavaBeans, but these are fairly heavy-
weight if we just want to connect a modelchecker with a theorem prover, as
we have to wrap up each tool into a component.

Tight Coupling

By tight coupling, we mean that we combine the tools into a single program
and process by linking them into one executable. The advantages of tight
coupling are the compactness of the resulting tool. It is also the most efficient
way of combining tools, as there is nearly no communication overhead (only
marshalling if we convert data between different programming languages).
The disadvantages are technical complications (e.g. name clashes, different
calling conventions, cross-language interoperability) and a lack of modularity
in the development, as we have to track every minor change in the interface
of the tool. A further drawback of the lack of modularity is the resulting
instability (e.g. when one application diverges the whole tool does).

For these reasons, tight coupling should only be used with stable, mature
tools which are called frequently, or where a lot of data is exchanged across
calls. It is mostly useful with libraries or toolkits. For example, the MMiSS
repository [L-12] uses the Berkeley DB database [138], which consists of a
library with a C interface which can be linked into executable. For Haskell,
interfacing such libraries is a trivial effort, thanks to a standardised foreign
function interface [37].

65

Loose Coupling

A more light-weight method is to use loose coupling and run each tool as
a separate process, communicating over channels such as pipes or sockets.
The communication protocol is not given by the framework, but depends
on the tools involved. For a simple point-to-point connection, an ad-hoc
protocol may be used.

For example, both sml tk and HTk use loose coupling to run Tcl/Tk’s
main proces (the window shell wish) over a pipe. The communication is in
Tcl, which is easy to produce and read from SML and Haskell. Here, the
loose coupling has definitely been an advantage, as Tcl/Tk has gone through
a number of major revisions during the lifetime of sml tk and HTk, with
wide ranging changes in the C API (it can also be linked into the client
program), yet the Tcl interface has remained stable.

The Prosper toolkit [40] also uses loose coupling to integrate formal
method tools into a common framework. However, special precaution has
been taken to route interrupts around the system by developing a purpose-
built middleware, the Prosper Integration Interface (PII). The inability to
send asynchronous messages (such as interrupts) over pipes or sockets is one
of drawbacks of loose coupling, together with performance problems arising
from the communication overhead. However, the advantages outweigh these
problems in most cases: added stability, modularity in development, and
compositionality — we can run different tools on different machines for
better performance, or to avoid platform problems.

4.2.2 Data and Control Integration

Data integration is concerned with the exchange of data between tools, and
control integration is about combining the functionalities of single tools into
a meaningful whole. When we use a component framework, the format of
the data, and the interfaces of the tools (the available functions and their
signature), will be described in a particular interface language like IDL for
CORBA, or even in a programming language, like Java interfaces for Java
Beans.

Without a component framework, we need another way to define ex-
change formats, and a good choice here is XML [153]. Nearly all progam-
ming languages have tools to support XML parsing and generation (for the
functional languages we are interestd in, there is FXP for SML [110] or
HaXml for Haskell [159]). By defining the format of messages in an XML
document type definition (DTD), XML schema, or a Relax NG schema [125]
(our preferred option), a precise definition of the data format is given, and
it is easy to do sanity checks on both sides. The PG Kit framework (see
Sect. 4.4 below) shows an example of such a setup.

In fact, under the slogans of web services and service-oriented architec-

66

ture (SOA), loosely coupled components talking in XML (in particular, in
a standardised XML meta-format like SOAP or XML-RPC) have recently
become de rigeur.

The MMiSS repository [L-12] also uses XML for data exchange. Docu-
ments are exchanged in an XML format called MMiSS-XML, and externally
converted to and from a LATEX dialect. The use of XML here has been
beneficial, as it allowed easy integration of the XML-based ActiveMath tool
suite [101]. ActiveMath uses the XML format OMDOC internally, making
communication with MMiSS-XML was just a matter of defining the right
XSLT stylesheet.2 This is an advantage over the old UniForM workbench
[82], where the data to be exchanged was modelled using Haskell datatypes,
which limited portability and made it cumbersome to integrate other tools.

4.3 Interface Design

When it comes to interface design, graphical user interface (GUIs) have come
to be seen a necessity eo ipso. This is not necessarily the case; what matters
is good interface design, text-based or graphical. General design guidelines
for user interfaces can be found in the European Norm EN ISO 9241-10 [48].
Graphical user interfaces, if they are designed badly, can actually decrease
usability, and it has been argued that graphical user interfaces for theorem
provers are a bad idea [102]; the gist of that argument is that they invite
users to play around without purpose or planning proofs ahead, leading
to an overall loss of quality in the proof work. (The same argument has
been put forward against the use of debuggers in programming.) On the
other hand, there are strong arguments for graphical user interfaces: they
allow mathematics to be rendered in the traditional typeset form, lightening
the user’s cognitive load; having to remember an unfamiliar command-line
syntax while at the same time struggling with the mathematics may distract
users from their main aim, namely proving. There is not enough taxonomic
data for a conclusive answer yet, but initial studies suggest that a well-
designed GUI can increase productivity [76, 1].

Design Principles

Graphical or not, what we need is some good interface design principles.
Designing a graphical user interface should be more than ‘bolting a bit of
Tcl/Tk onto a text-command-driven theorem prover in an afternoon’s work’
[26]. Arguably, it is harder to design a good graphical user interface, as it is
easy to overwhelm the user with unnessary information, buttons and menues.

2Roughly spoken, an XSLT stylesheet defines rewrite rules which transform documents
from one XML format to another.

67

Figure 4.2: The TAS user interface: the upper half of the window shows the
notepad, with icons representing theories, transformations and specifications;
the lower half of the are is the construction area, where a development is
currently in progress.

An example of a well-designed interface is Jape [27, 28], which was designed
particularly to be quiet, i.e. convey exactly as much information as needed.

Another widely acknowldged principle of good user interface design is
direct manipulation [137, 154, 44], a term attributed to Shneiderman [136].
It is characterized by continuous representation of the objects and actions
of interest with a meaningful visual metaphor and incremental, reversible,
syntax-free operations with rapid feedback on all actions.

The design of the graphical user interface for TAS [L-7] follows this prin-
ciple. It is based on the visualisation metaphor of a notepad, which is in turn
motivated by the way we do everyday mathematics and calculations: one
typically uses a piece of paper or a blackboard to write down intermediate
results, calculations or lemmas, but overall in an unstructured way, adding
a column of numbers in one part of the pad, while doing a multiplication in
the lower corner and a difficult diagram-chase in the middle.

Thus, we have an area of the screen, the notepad, where we can manip-
ulate objects visualised by icons. Objects are typed, with the type deter-
mining the icon and the possible operations. Operations are either effected
by a pop-up menue, or by drag&drop, in which case the types of all objects
involved are taken into consideration. (E.g. dropping a transformation onto
an ongoing development applies that rule.) Objects can also be opened in

68

the construction area, where their inner structure can be manipulated (in
particular, where ongoing proofs and developments are conducted). Fig. 4.2
shows a screenshot of TAS’ user interface.

This user interface is functional : objects do not have an internal state,
and gestures correspond to applying operations, producing new objects.
Thus, we gradually build up terms (in the notepad metaphor above, we
do not overwrite existing results, altough we may hide previous results from
the user). The sequence of operations leading to the construction of a par-
ticular object is called its construction history. The functional character of
the interface makes undoing operations trivial. It allows systematic replay,
and even a limited form of reuse, by cutting out parts of the construction
history and replaying them on other objects.

TAS has a point&prove-functionality, i.e. one can select subterms with
the mouse, and apply an operation (such as opening a window, or applying
a rewrite rule) on this subterm. This was implemented using annotations,
i.e. user-invisible markup on the proof terms, which required a number of
technical modifications and extensions to Isabelle’s pretty-printer, which are
not easily portable across Isabelle versions; for this reason, TAS has not been
ported to Isabelle’s later versions.

The Generic Graphical User Interface

TAS is in fact one instance of the generic graphical user interface GenGUI,
which is implemented in SML using sml tk. The definition of objects, types
and operations is collected in an application structure characterised by a
signature APPL SIG. GenGUI is implemented as a functor, which given such
a description, returns an implementation of the GUI comprising notepad,
construction area, history display etc. A generic sessions management is
also provided.

GenGUI has two main instances, the window inferencing system TAS, and
IsaWin, a graphical user interface to Isabelle itself; the difference between
IsaWin and TAS is that IsaWin is based on Isabelle’s native calculus, natural
deduction with meta-variables, whereas TAS is of course based on window
inferencing.

Conclusions

While TAS and IsaWin are usually met with initial approval, in particular
from theorem proving neophytes, it has some drawbacks. From the user’s
point of view, it has a rudimentary management of target proof scripts, and
integrates foreign proof scripts only reluctantly. From the developer’s point
of view, customising or adapting it to other proof assistants requires Stan-
dard ML programming, and a good understanding of the data structures. It
is not possible to build a new instance gradually, and it is hard to connect

69

to provers not implemented in Standard ML. From an architecture view,
the tight coupling between prover and interface makes the interface difficult
to reuse, and it also makes the interface less robust (see the discussion in
Sect. 4.2.1 above). For these reasons, not many different adaptations of
GenGUI exist, and in comparison with other interfaces, GenGUI has not fully
delivered on its promise of genericity.

Also, the basic metaphor of the notepad bears some critical reflection:
when writing a mathematics proof, we may use a notepad or blackboard to
sketch calculations or diagrams, but in the end we do not want a proof scrib-
bled all over a notepad, we instead want to produce a linear, well type-set,
easy to read document which which we can print out and show to our peers.3

Similarly, when writing a specification or verification, we want something to
show for our trouble. Arguably, this is the most important aspect of formal
specification: it establishes a verified basis for communication between all
participants in the development process. This is the document-centered ap-
proach introduced above in Sect. 3.3.2. It does not mean we have to get rid
of the notepad completely, it is still useful for side-calculations and to organ-
ise the display, but the main focus of the interface should be the documents
representing the development we are producing.

In summary, TAS and IsaWin have been a successful design study. The
feasibility of the approach has been shown, and its strengths and weaknesses
highlighted. Now it is time for the next step.

4.4 The Next Generation

In order to refactor our design, it makes sense to look at other interfaces
and see if we can combine their advantages with ours, hopefully sharing
the implementation work in the process. An interface which has been very
sucessful with respect to genericity is Proof General [7, 9]. It has instances
for three major provers, and is document-centered in so far as it is built
on the Emacs text editor, and in short excels in the areas where GenGUI is
lacking. However, we can combine both designs into the next generation of
prover interfaces, making GenGUI to a truly generic system and overcoming
the deficiencies of the first implementation while keeping its strengths.

4.4.1 Proof General

Proof General is a generic interface for interactive provers built on the Emacs
text editor. It has proved rather successful in recent years, and is popular
with users of several theorem proving systems. Its success is due to its
genericity, allowing particularly easy adaption to a variety of provers (such as

3An old insight: ‘Denn was man schwarz auf weiß besitzt, kann man getrost nach Hause
tragen.’ [56]

70

Isabelle, Coq, LEGO, and many more), and its design strategy, which targets
experts as well as novice users. Its central feature is an advanced version
of script management [23], closely integrated with the file handling of the
proof assistant. This provides a good work model for dealing with large-scale
proof developments, by treating them similarly to large-scale programming
developments. Proof General also provides support for high-level operations
such as proof-by-pointing, although these are less emphasised.

Although successful, there are drawbacks to the present Proof General.
From the users’ point of view, it requires learning Emacs and putting up with
its idiosyncratic and at times unintuitive UI. From the developers’ point of
view, it is rather too closely tied with the Emacs Lisp API which is restricted,
somewhat unreliable, often changing, and differs between different flavours of
Emacs. Another engineering disadvantage of the present Proof General arose
from its construction following a product-line architecture, by successively
generalising a generic basis to handle more provers. This strategy meant that
little or no specific adjustment of the provers was required, but it resulted
in an overcomplicated instantiation mechanism.

4.4.2 The PG Kit Project

To address the limits of the existing Proof General model, and particularly
of the Emacs Lisp implementation, the Proof General Kit (PG Kit) has
been conceived [8].The central idea is to use the experience of connecting
to diverse provers to prescribe a uniform protocol for interaction. Instead
of tediously adapting Proof General to each prover, Proof General calls the
shots, by mandating a uniform protocol for interactive proof, dubbed PGIP,
which each prover must support. Although initially designed for a textual
interface, we soon found that the PGIP protocol could easily be extended
to cover graphical interaction as well.

Text Editor

Graphical User
Interface

File System Theory Store

PGIP

PGIP

PGIP

PGIP

PGIP

Broker

Prover

Prover

Eclipse

Figure 4.3: PG Kit Framework architecture

PG Kit is a software framework, a way of connecting together interact-

71

ing components customized to the domain of interactive theorem proving.
The framework has three main component types: interactive prover en-
gines, front-end display components, and a central broker component which
orchestrates proofs-in-progress. The architecture is pictured in Fig. 4.3.

The components communicate using messages in the PGIP protocol.
The general control flow is that a user’s action causes a command to be sent
from the display to the broker, the broker sends commands to the prover,
which sends responses back to the broker which relays them to the displays.
The format of the messages is XML, defined by a Relax NG schema. Mes-
sages are sent over channels, which are sockets or Unix pipes.

The PGIP protocol specifies both the interaction between provers and
the broker, and between the broker and displays. We distinguish between
several kinds of messages, such as:

• Display commands are sent from the display to the broker, and cor-
respond to user interaction, such as start a prover, load a file or edit
text.

• Prover commands are sent to the prover, and may affect the internal
(proof-relevant) state of the prover.

• Output messages are sent from the prover or broker, and contain out-
put directed to the user. A display model gives hints where and how
the messages are displayed: in a status line, a window of their own, or
a modal dialog box.

• Configuration messages, used for setting up components.

Other message kinds include system inspection and control commands, and
meta data sent from the prover, for example dependency information be-
tween loaded files and proven theorems.

On the prover side, the broker has an abstract view of the internal state
of the prover. The prover occupies one of four fundamental states, namely
the top level state where nothing is open yet, the file-open state where a file
is currently being processed, the theory-open state where a theory is being
built, or the proof-open state where a proof is currently in progress. The
reason for distinguishing the states is that different commands are available
in each state, and that the prover’s undo behaviour in each state can be
different. This model is based on abstracting the common behaviour of
many interactive proof systems, but it is not intended to capture precisely
the way every proof system works. Rather it acts as a clearly specified
‘virtual layer’ that must be emulated in each prover to cooperate properly
with the broker. With the help of the Isabelle development team, a PGIP-
enabled version of Isabelle has been implemented.

On the display side, we have refined the simple linear script management
model [23] to handle non-linear dependencies as well. The broker has to

72

translate this non-linear model into a sequence of linear operations for the
prover. We assume that the source text is split into several spans of text,
each of which can have one of five different states: unparsed, parsed, being
processed, processed, or outdated. The transitions between these states
corresponds to sending messages to the prover. A span of text always starts
out as unparsed, then becomes parsed, then if the command is sent to the
prover it becomes being processed and if the evaluation finishes successfully,
it becomes processed. This the edit-parse-proof cycle [L-32].

The basic principle for representing proof scripts in PGIP is to use the
prover’s native language and mark up the content with PGIP prover com-
mands which expose some structure of the proof script which is needed for
the interface. This also means that the broker has to leave parsing to the
prover (or a separate tool specific to the prover in question).

Thus, the central artefact under construction are textual proof scripts, as
per our document-centered paradigm. But we can also accomodate graph-
ical user interaction into this, we only need to translate user gestures into
operations producing text. To this end, PGIP allows the prover to define
types and operations, where types define icons and possible operations, and
operations are triggered by gestures. This is in the same vein as GenGUI,
but here operations are translated into actual proof text, which is sent back
to the prover and executed. Thus, for Isabelle dropping a theorem named
th1 onto a theorem named th2 results in the text th1 RS th2 to be produced
and sent to Isabelle, whereas dropping a theorem named th onto the current
proof results in by (rule th) to be inserted in the proof text. Because
the text produced by operations is specific to the prover in question, each
prover has to configure a graphic display; it does so with the configuration
messages mentioned above.

By reimplementing IsaWin as the PGWin display in the PG Kit frame-
work [L-25], we have an interface which combines textual and graphical
interaction. It allows the user to enter text both via the keyboard or via
mouse gestures. Presently, finishing touches are put on the implementation
of this display. Two other displays are currently implemented, one based on
Emacs and one as a plug-in for the Eclipse IDE [L-33], enabling both Emacs
and Eclipse as displays for PG Kit.

4.5 Conclusions

This chapter has dealt with the engineering side of tool development, with
an emphasis on tool integration and the design of user interfaces.

Tool integration has many aspects. We covered platform integration,
where we compared tight and loose coupling, i.e. linking together into one
executable vs. processes running separately, connected via pipes or sockets.
The former, although faster, requires more effort both in development and

73

maintenance, and in our experience is only appropriate with libraries or
toolkits with which a very tight interaction is required, and which are stable
(not subject to changes in the interface). In general, loose coupling is our
preferred option, as it is more versatile, easier to set up and more stable to
run, because there is no single point of failure. The overhead of passing data
over channels is neglectible for most cases.

Loose coupling becomes particularly viable when combined with XML
as the data description language. XML is easy to parse and produce, and
parsers are available for nearly all programming languages. In particular,
for Haskell there is the typed embedding HaXml [159], which produces a
set of Haskell datatype declarations from an XML document type defini-
tion (DTD), along with functions to parse and produce them. The typing
makes it impossible for the program to produce or accept ill-formed XML,
so there is a seamless integration of the XML type discipline with that of
the programming language. This has proven very valuable in the implemen-
tation of XML-based middleware (such as the PG Kit broker) which are not
straightforward to test.

Finally, interfaces need to be well-designed in order to be productive.
Just adding buttons, menues and fancy icons may leave the user more con-
fused than a well-designed command language. However, in general graph-
ical user interfaces adhering to well-kent design principles such as direct
manipulation will be better received, as they allow users to read and write
mathematics in well-known, typeset form, and thus to concentrate on the
content of the proof, not the syntax of the prover.

The grapical user interface for TAS, and the graphical user interface for
Isabelle called IsaWin, were based on these principles. It visualised trans-
formations, theories and other objects of interest by icons, and translated
gestures such as drag&drop into development steps. This is intuitive to use,
but had some technical drawbacks, as the interface was too tightly connected
to the actual prover. This shows another benificial aspect of loose coupling:
to be able to run tools as separate processes, their interaction must be clearly
specified. In TAS (and IsaWin), developments were produced by gestures
and held in internal datastructures rather then being explicitly represented
as text, which meant they were hard to extract and import. Another draw-
back was that TAS was rather too closesly tied to the specific version of
Isabelle used, which made it hard to update with later versions and thus
unable to benefit from the continuing development of Isabelle.

In order to overcome the deficiencies of the graphical user interface while
keeping its strenghts, we joined forces with the Proof General development
team and created PG Kit, the next generation of prover interfaces. PG Kit
stipulates a protocol called PGIP between prover and interface, which was
designed as a generalisation of the way Proof General can be configured to
work with over ten different provers. We have extended the PGIP protocol to
cover non-textual interaction as well, and developed PG Kit as a framework

74

for interactive proof and development. This framework knows three types of
components, namely the actual provers, a central broker, and displays which
handle user interaction. Currently, there are three displays, one based on
the popular Emacs editor, one based on the TAS and IsaWin design, and
one as a plug-in for the Eclipse IDE.

4.5.1 Bibliographical Remarks

The work on tool integration as described here started with the UniForM
project [93]. Einar Karlsen designed the UniForM workbench [82], a tool
integration framework in Haskell, but unfortunately at that point the design
of XML was just finished and tool support for it was just emerging. Together
with other project partners, various tools were integrated into the UniForM
workbench [L-18,L-19].

After the UniForM project, the author together with George Russel
adapted the UniForM workbench to become the central repository and tool
integration framework for the MMiSS project. Central to this effort was
a new event model by George Russel [130], and the use of XML for data
integration [L-12].

The work on interface design started with TAS (see Chapter 3). The
graphical user interface was always very much part of TAS and IsaWin, and
designed and developed together with Burkhart Wolff [L-7]. The design of
sml tk was based on the design of GoferTk [158], and a first version of HTk
was part of Karlsen’s thesis [82].

The PG Kit project was originally conceived by David Aspinall, but soon
developed into a joint project. The extension to graphical interaction was
based on the author’s contribution. The current development is a distributed
effort, with the broker and graphical display being developed mainly in
Bremen, and the Eclipse and Emacs displays in Edinburgh.

The User Interfaces for Theorem Provers (UITP) workshop series, which
had been a podium for discussing issues of user interface design and tech-
nology, and disemminating new results, unfortunately went into hibernation
after its meeting in 1998. Together with Aspinall, the author revived it for
the UITP’03 meeting co-located with TPHOLs’03 in Rome (2003). The
meeting was a success, with eleven talks, about thirty participants and pro-
ceedings published in an ENTCS volume [L-31]. The next meeting UITP’05
is scheduled as a satellite workshop for ETAPS’05 in Edinburgh (2005).

75

Chapter 5

Conclusions

The previous chapters have given an exposition of the author’s contributions
in the areas of formal software development. We will briefly summarise the
work again, and give an outlook to future research.

5.1 Concluding Summary

The work presented here has three main strands: categorical models of
rewriting, formal proof and software development, and tool development.

Categorical Models of Rewriting. We propose a new model for rewrit-
ing based on the concept of a monad, known from category theory. It is the
natural generalisation of the modelling of universal algebra. It can model
various guises of rewriting, such as (normal) first-order rewriting, higher-
order rewriting with variable bindings, term graphs and infinitary terms.

The key properties of this semantics are compositionality and modular-
ity, which allow us to reason about large systems. We have shown various
applications of this model, such as modularity and compositionality results
and combinations of monads in functional programming.

Formal Proof and Software Development. We have shown how to
model transformational software development in Isabelle, by using window
inferencing, a calculus for transformational reasoning, for development in-
the-small, and by adding a notion of theory morphisms to Isabelle for devel-
opment in-the-large. But the main focus and contribution here is abstrac-
tion, the systematic generalisation of proofs and theorems, which allows us
to reuse given developments in a wider setting.

The work on the systematic generalisation of theorems and proofs is
based on proof term transformation. We have given a general procedure
which works in any logical frameworks supporting proof terms, and imple-
mented our work in the generic theorem prover Isabelle. Using this work,

76

we can further extend Isabelle by signature and theory morphisms. These
extensions to Isabelle are light-weight extensions which do not modify Is-
abelle’s logical kernel, and hence do not jeopardise its logical integrity.

Tool Development. In general, we found that for implementing tool sup-
port for formal methods, functional programming languages should be the
tool of choice, as they allow rapid prototyping by programming at an ab-
stract level, are good at symbolic manipulation, and can provide reliability
by strict typing.

When it comes to tool integration, the approach we found useful in most
cases was loosely coupled components talking over sockets or pipes in XML.
This is particularly useful in connection with typed functional languages, as
tools such as HaXml allow seamless integration of the typing given by XML
document type definitions or schemas with the typing of the programming
language. Thus, once we look past the inevitable hype surrounding it, XML
is a useful tool for data integration.

We also used this architecture in the implementation of user interfaces.
After discussing the advantages and drawbacks of an earlier implementation
of a graphical user interface for our transformation system TAS, we have
shown how to combine the design of this interface with Proof General, a
generic interface based on the Emacs text editor. The combinations gives
an interface which supports both text-based and graphical user interaction.
This is the PG Kit project, the next generation of prover interfaces.

5.2 Outlook

In this final section, we give an outlook on what might constitute further
work and research. In particular, we want to sketch how the different strands
of research detailed in this exposé can converge.

Categorical Rewriting. In the are of categorical rewriting, research into
abstract modularity should be continued, with results about non-ideal mon-
ads and combinations other than the disjoint union the next questions. An-
other obvious question to be resolved here is to find a suitable formulation
of completion procedures (such as Knuth-Bendix completion [90]) at the
abstract level.

Further, we have considered coproducts of monads as structuring oper-
ations. The extension to other structuring operations is the most relevant
question here. Two immediately spring to mind: the tensor product [74, 75],
and the non-disjoint union. For the first, we need to find a suitable formu-
lation at the level of monads. The second can of course be modelled as a
push-out, but just as with the monads the trick here is to restrict oneself to

77

cases which are still tractable yet widely applicable, so for example consider
constructor-sharing systems.

Applications of Monads. With the extension to these structuring oper-
ations, applications to formal methods and functional programming abound.
For example, due to the lack of a practical methodology to combine mon-
ads, Haskell lumps together all possible computational feature (such as file
I/O, stateful computations, exceptions, concurrency and non-determinism)
in the IO monad. With appropriate structuring operations, we could de-
construct the IO monad into its constituting monads. This would make
reasoning about IO feasible; presently, most approaches to reasoning about
Haskell do not consider IO actions [65, 45]. However, this has applications
beyond functional programming: we can do very much the same for a sim-
ple imperative programming language like C. The aim is to reason about
imperative programs in a modular way, i.e. considering each computational
feature separately, and then reason about their interaction. (For example,
reading from a file does not interfere at all with reading from a reference.)
Even more speculative, monads have been used to model security issues
like non-interference [66]; can we use the combination of monads to model
compositional security?

Literate Specification. For formal development, we have proposed the
document-centred approach where the document itself is the central artefact.
The document can either be run through the prover, and formally verified, or
it can be typeset into a proper documentation. Isabelle already implements
an aspect of this with Isar, in that the document can be run though Isabelle,
which generates LATEX code which can be typeset (see Fig. 5.1). However,
this approach is not optimal, as having Isabelle generate LATEX is error-
prone, restricts to particular LATEX commands known to Isabelle, and is
obviously specific to LATEX — we cannot use another typesetting or word
processing program to format our specification.

A better document flown is shown in Fig. 5.1 on the right: from a com-
prehensive document, we would extract a proof script, which can be run
through Isabelle, and on the other hand, we would extract a document to
be typeset in LATEX, or any other document preparation systems (in partic-
ular, WYSIWYG systems which do seem enjoy more acceptance then LATEX
outside academia). Of course, we have to be sure that the part which we
run through the prover is still the one appearing in the documentation, so
the way to split the document should be simple and tractable.

An important aspect in Fig. 5.1 is that the theorem prover can feed back
text into the document. During development, for example, when the user
applies a transformation rule, the prover will calculate a new specification
and communicate that back to the interface, which will insert it here in the

78

PDF/PS

Other Editor

LaTeX
text

Isar
proof

text

Proof
text

PDF/PS

text

LaTeX Document

Literate

Spec.

Figure 5.1: Document flow in Isar (left); document flow for literate specifi-
cation (right).

document. When checking the document, the prover only needs to make
sure it is actually correct. The PGIP protocol already supports this kind of
prover feedback.

Abstraction. Abstraction and reuse easily fit into the literate specifica-
tion paradigm, as the prover can suggest changes to the document via the
prover feedback. This opens the way for evolutionary formal program de-
velopment, where we combine formal specification with the evolutionary
software development methodologies such as the spiral model. Abstraction
is the big unused potential of formal program development, as it allows a
community of users to gradually build up a library of trusted, used and
guaranteed correct development tools.

Applications. One problem we encountered during the AWE project was
that there are not many substantial case studies in formal program devel-
opment available. For most encodings of specification formalisms and logics
into a theorem prover, only smaller examples are considered. Larger case
studies are either not publicly available, or run on old versions of the partic-
ular prover which is not supported or available anymore. There are two ways
to solve this: either we import case studies from those provers where they
exist (for example, the VSE system [73] has a rich fundus of developments),
or we build new case studies in application areas where this is interesting
in its own right, such as the area of robotics, where formal methods until
now were not able to make an impact. We have already started work in this
direction with the SafeRobotics project, which uses the Bremen autonomous
wheelchair Rolland as the target platform. This is also a test case for the
abstraction process — will be able to get useful transformation rules in the
robotics domain by abstracting from our case studies?

79

Appendix A

Publications

Journal Articles

[L-1] Einar Broch Johnsen and Christoph Lüth: Abstracting Refine-
ments for Transformation. Nordic Journal of Computing, 10:
316– 336, 2003.

[L-2] Neil Ghani and Christoph Lüth. Rewriting via Coinserters.
Nordic Journal of Computing, 10: 290– 312, 2003.

[L-3] Christoph Lüth. Haskell in Space — An Interactive Game as a
Functional Programming Exercise. Educational Pearl, Journal
of Functional Programming 14(6): 1077– 1085, November 2003.

[L-4] Neil Ghani, Christoph Lüth and Federico de Marchi: Monads
of Coalgebras: Rational Terms and Term Graphs. To appear in
Mathematical Structures in Computer Science.

[L-5] Federico de Marchi, Neil Ghani and Christoph Lüth. Solving
Algebraic Equations using Coalgebra. Theoretical Informatics
and Applications, 37: 301– 314, 2003.

[L-6] Neil Ghani, Christoph Lüth, Federico de Marchi and John Power.
Dualizing initial algebras. Mathematical Structures in Computer
Science, 13(2):349– 370, 2003.

[L-7] Christoph Lüth and Burkhart Wolff. Functional design and
implementation of graphical user interfaces for theorem provers.
Journal of Functional Programming, 9(2):167– 189, March 1999.

80

Refereed Conferences

[L-8] Micheal Abbott, Neil Ghani and Christoph Lüth: Abstract Mod-
ularity. Accepted for Rewriting Techniques and Applications,
RTA’05. To appear in Lecture Notes in Computer Science.

[L-9] Einar Broch Johnsen and Christoph Lüth. Theorem Reuse
by Proof Term Transformation. In K. Slind, A. Bunker and
G. Gopalakrishnan (eds), International Conference on Theorem
Proving in Higher-Order Logic TPHOLs 2004, Lecture Notes in
Computer Science 3223, p. 152– 167. Springer, 2004.

[L-10] Christoph Lüth, Markus Roggenbach and Lutz Schröder. CCC
— The Casl Consistency Checker. In José Fiadeiro (ed.), Re-
cent Trends in Algebraic Development Techniques WADT 2004,
Lecture Notes in Computer Science 3423, p. 94–105. Springer,
2004.

[L-11] Lutz Schröder, Till Mossakowski and Christoph Lüth. Type
class polymorphism in an institutional framework. In José Fi-
adeiro (ed.), Recent Trends in Algebraic Development Techniques
WADT 2004, Lecture Notes in Computer Science 3423, p. 234–
248. Springer, 2004.

[L-12] Bernd Krieg-Brückner, Dieter Hutter, Arne Lindow, Christoph
Lüth, Achim Mahnke, Erica Melis, Philipp Meier, Arnd Poetzsch-
Heffter, Markus Roggenbach, George Russell, Jan-Georg Smaus
and Martin Wirsing. MultiMedia Instruction in Safe and Se-
cure Systems. Recent Trends in Algebraic Development Tech-
niques, 16th International Workshop WADT 2002, Frauenchiem-
see, Germany, Sep 2002. Lecture Notes in Computer Science
2755, p. 82 – 117. Springer, 2002.

[L-13] Christoph Lüth and Neil Ghani. Composing Monads Using
Coproducts. In Proc. Seventh ACM SIGPLAN International
Conference on Functional Programming ICFP’02, p. 133– 144.
ACM Press, 2002.

[L-14] Christoph Lüth and Neil Ghani. Monads and modularity. In
A. Armando (ed.), Frontiers of Combining Systems FroCos 2002,
4th International Workshop, Lecture Notes in Artificial Intelli-
gence 2309, p. 18–32. Springer, 2002.

[L-15] Christoph Lüth and Burkhart Wolff. More about TAS and
IsaWin: Tools for formal program development. In T. Maibaum
(ed.), Fundamental Approaches to Software Engineering FASE
2000. Joint European Conferences on Theory and Practice of

81

Software ETAPS 2000, Lecture Notes in Computer Science 1783,
p. 367– 370. Springer, 2000.

[L-16] Christoph Lüth and Burkhart Wolff. TAS — a generic window
inference system. In J. Harrison and M. Aagaard (ed.), Theorem
Proving in Higher Order Logics: 13th International Conference
TPHOLs 2000, Lecture Notes in Computer Science 1869, p. 406–
423. Springer, 2000.

[L-17] Christoph Lüth, Haykal Tej, Kolyang, and Bernd Krieg-Brückner.
TAS and IsaWin: Tools for transformational program develop-
ment and theorem proving. In J.-P. Finance (ed.), Fundamental
Approaches to Software Engineering FASE’99. Joint European
Conferences on Theory and Practice of Software ETAPS’99, Lec-
ture Notes in Computer Science 1577, p. 239– 243. Springer,
1999.

[L-18] Christoph Lüth, Einar W. Karlsen, Kolyang, Stefan Westmeier,
and Burkhart Wolff. Tool integration in the UniForM work-
bench. In Tool Support for System Specification, Development,
and Verification, Advances in Computing Science, p. 160–173.
Springer-Verlag Wien New York, 1999.

[L-19] Christoph Lüth, Einar W. Karlsen, Kolyang, Stefan Westmeier,
and Burkhart Wolff. Hol-Z in the UniForM-workbench – a case
study in tool integration for Z. In J. P. Bowen, A. Fett, and
M. G. Hinchey (ed.),ZUM’98 : The Z Formal Specification No-
tation, 11th International Conference of Z Users, Lecture Notes
in Computer Science 1493, p. 116–134. Springer, 1998.

[L-20] Christoph Lüth and Neil Ghani. Monads and modular term
rewriting. In E. Moggi and G. Rosolini (ed.), Category Theory
and Computer Science CTCS 97, Lecture Notes in Computer
Science 1290, p. 69– 86. Springer, 1997.

[L-21] Kolyang, Christoph Lüth, Thomas Meier, and Burkhart Wolff.
TAS and IsaWin: Generic interfaces for transformational pro-
gram development and theorem proving. In M. Bidoit and
M. Dauchet (ed.), TAPSOFT ’97: Theory and Practice of Soft-
ware Development, Lecture Notes in Computer Science 1214, p.
855– 859. Springer, 1997.

[L-22] Christoph Lüth. Compositional term rewriting: An algebraic
proof of Toyama’s theorem. In H. Ganzinger (ed.), Rewriting
Techniques and Applications RTA’96, Lecture Notes in Com-
puter Science 1103, p. 261– 275. Springer, 1996.

82

Refereed Workshops

[L-23] Bernd Krieg-Brückner, Arne Lindow, Christoph Lüth, Achim
Mahnke and George Russell. Semantic Interrelation of Docu-
ments via an Ontology. In G. Engels and S. Seehusen (eds.),
DeLFI 2004, Tagungsband der 2. Deutschen e-Learning Fach-
tagung Informatik. Lecture Notes in Informatics P-52, p. 271–
282. Springer, 2004.

[L-24] Einar Broch Johnsen, Christoph Lüth and Maksym Bortin. An
Approach to Transformational Development in Logical Frame-
works. In Proc. International Symposium on Logic-based Pro-
gram Synthesis and Transformation, LOPSTR 2004, Verona,
Italy, August 2004.

[L-25] David Aspinall and Christoph Lüth. Proof General meets
IsaWin: Combining Text-Based And Graphical User Interfaces.
In David Aspinall and Christoph Lüth (ed.), User Interfaces
for Theorem Provers, International Workshop UITP’03, Rome,
Italy, September 2003. Electronic Notes in Theoretical Com-
puter Science 103, p. 3–26.

[L-26] Neil Ghani, Christoph Lüth, and Federico de Marchi. Coalge-
braic monads. In L. Moss (ed.), Coalgebraic Methods in Com-
puter Science CMCS’02, Electronic Notes in Theoretical Com-
puter Science 65.1, 2002.

[L-27] Neil Ghani, Christoph Lüth, Federico de Marchi, and John Power.
Algebras, coalgebras, monads and comonads. In U. Montanari
(ed.), Coalgebraic Methods in Computer Science CMCS’01, Elec-
tronic Notes in Theoretical Computer Science 44.1, 2001.

[L-28] Christoph Lüth. Transformational program development in
the UniForM workbench. In M. Haveraan and O. Owe (ed.),
Selected papers from the 8th Nordic Workshop on Programming
Theory. Oslo University, 1996.

[L-29] Kolyang, Christoph Lüth, Thomas Meier, and Burkhart Wolff.
Generating graphical user-interfaces in a functional setting. In
N. Merriam (ed.), User Interfaces for Theorem Provers UITP
’96, Technical Report, p. 59– 66. University of York, 1996.

[L-30] Kolyang, Christoph Lüth, Thomas Meier, and Burkhart Wolff.
Generic interfaces for transformation systems and interactive
theorem provers. In R. Berghammer, B. Buth, and J. Peleska
(ed.), International Workshop on Tool Support for Validation
and Verification, BISS Monograph 1. Shaker Verlag, 1998.

83

Edited

[L-31] David Aspinall and Christoph Lüth (eds.), Proc. User Inter-
faces for Theorem Provers, International Workshop UITP’03,
Rome 2003. Electronic Notes in Theoretical Computer Sciences
103.

Miscellenea

[L-32] David Aspinall, Christoph Lüth and Daniel Winterstein. Pars-
ing, Editing, Proving: The PGIP Display Protocol. Submitted
to User Interfaces for Theorem Provers, International Workshop
UITP’05, Edinburgh, April 2005.

[L-33] Daniel Winterstein, David Aspinall, and Christoph Lüth. Proof
General/Eclipse: A Generic Interface for Interactive Proof. Sub-
mitted to User Interfaces for Theorem Provers, International
Workshop UITP’05, Edinburgh, April 2005.

[L-34] Neil Ghani, Christoph Lüth and Stefan Kahrs. Rewriting the
conditions in conditional rewriting. Technical Report 2000/20,
Dept. Mathematics and Computer Science, University of Leices-
ter, 2000.

[L-35] Christoph Lüth, Stefan Westmeier and Burkhart Wolff. sml tk:
Functional programming for graphical user interfaces. Technis-
cher Bericht 8/96, FB 3, Universität Bremen, 1996.

84

Bibliography

[1] J. C. Aczel, P. Fung, R. Bornat, M. Oliver, T. OShea, and B. Sufrin.
Using computers to learn logic: undergraduates experiences. In
G. Cumming, T. Okamoto, and L. Gomez, editors, Advanced Research
in Computers and Communications in Education: Porceedings of the
7th International Conference on Computers in Education, Amster-
dam, 1999. IOS Press.

[2] P. Aczel, J. Adámek, and J. Velebil. A coalgebraic view of infinite
trees and iteration. In U. Montanari, editor, CMCS 2001, Coalge-
braic Methods in Computer Science, volume 44 of Electronic Notes in
Theoretical Computer Science, pages 1– 26, 2001.

[3] J. Adámek. On final coalgebras of continuous functors. Theoretical
Computer Science, To appear.

[4] J. Adámek and H.-E. Porst. On varieties and covarieties in a category.
Mathematical Structures in Computer Science, 13(2):201–232, 2003.

[5] J. Adámek and J. Rosický. Locally Presentable and Accessible Cat-
egories. Number 189 in London Mathematical Society Lecture Note
Series. Cambridge University Press, 1994.

[6] J. Armstrong. The development of Erlang. In Proc. ACMSIGPLAN
International Conference on Functional Programming, pages 196– 203.
ACM Press, 1997.

[7] D. Aspinall. Proof General: A generic tool for proof development. In
Graf and Schwartzbach [60], pages 38–42.

[8] D. Aspinall. Proof General Kit. White paper, 2002. Available from
http://proofgeneral.inf.ed.ac.uk/kit/.

[9] D. Aspinall, H. Goguen, T. Kleymann, and D. Sequeira. Proof Gen-
eral, 2003. System documentation.

[10] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. inka 5.0 — a
logic voyager. In Proc. Conference on Automated Deduction CADE-

85

16, volume 1632 of Lecture Notes in Computer Science, pages 207–
211. Springer, 1999.

[11] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The develop-
ment graph manager Maya. In H. Kirchner and C. Ringeissen, editors,
Proc. 9th Int. Conf. Algebraic Methodology and Software Technology
(AMAST’02), volume 2422 of Lecture Notes in Computer Science,
pages 495– 501. Springer, 2002.

[12] S. Awodey and J. Hughes. The coalgebraic dual of
Birkhoffs variety theorem, 2000. Preprint available at
http://www.andrew.cmu.edu/user/awodey/.

[13] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[14] R. Back, J. Grundy, and J. von Wright. Structured calculational proof.
Formal Aspects of Computing, 9:467–483, 1997.

[15] R.-J. Back and J. von Wright. Refinement Calculus: a Systematic
Introduction. Springer, 1998.

[16] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal
system development with KIV. In T. Maibaum, editor, Fundamental
Approaches to Software Engineering, volume 1783 of Lecture Notes in
Computer Science, pages 363–366. Springer, 2000.

[17] M. Barr. Terminal algebras in well-founded set theory. Theoretical
Computer Science, 114:299– 315, 1993.

[18] M. Barr and C. Wells. Toposes, Triples and Theories. Number 278
in Grundlehren der mathematischen Wissenschaften. Springer Verlag,
1985.

[19] F. L. Bauer et al. The Munich Project CIP. The Wide Spectrum
Language CIP-L, volume 183 of Lecture Notes in Computer Science.
Springer, 1985.

[20] S. Berghofer and T. Nipkow. Proof terms for simply typed higher order
logic. In J. Harrison and M. Aagaard, editors, 13th International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs’00),
volume 1869 of Lecture Notes in Computer Science, pages 38–52.
Springer, 2000.

[21] Y. Bertot, editor. User Interfaces for Theorem Provers
UITP’97. INRIA Sophia Antipolis. Electronic proceedings at
http://www.inria.fr/croap/events/ uitp97-papers.html, 1997.

86

[22] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Con-
struction. Texts in Theoretical Computer Science. Springer, 2004.

[23] Y. Bertot and L. Théry. A generic approach to building user interfaces
for theorem provers. Journal of Symbolic Computation, 25(7):161–194,
Feb. 1998.

[24] M. Bidoit and P. D. Mosses. Casl User Manual, volume 2900 of
LNCS. Springer, 2004.

[25] L. Blaine, L. Gilham, J. Liu, D. Smith, and S. Westfold. Planware —
domain-specific synthesis of high-performance schedulers. In Proceed-
ings of the Thirteenth Automated Software Engineering Conference,
pages 270– 280. IEEE Computer Society Press, 1998.

[26] R. Bornat and B. Sufrin. Using gestures to disambiguate unification.
In User Interfaces for Theorem Provers UITP’98, 1998.

[27] R. Bornat and B. Sufrin. Animating formal proof at the surface: the
Jape proof calculator. The Computer Journal, 42(3):177– 192, 1999.

[28] R. Bornat and B. Sufrin. A minimal graphical user interface for the
Jape proof calculator. Formal Aspects of Computing, 11(3):244– 271,
1999.

[29] M. Broy. Compositional refinement of interactive systems. Journal of
the ACM, 44(6):850–891, Nov. 1997.

[30] M. Broy and K. Stølen. Specification and Development of Interactive
Systems. Springer Verlag, 2001.

[31] B. Buchberger and F. Winkler. Gröbner bases and applications: 33
years of gröbner bases. In Proc. London Math. Soc., volume 251.
Cambridge University Press, 1998.

[32] R. M. Burstall and J. Darlington. A transformational system for de-
veloping recursive programs. Journal of the ACM, 24(1):44–67, Jan.
1977.

[33] B. Buth, M. Kouvaras, J. Peleska, and H. Shi. Deadlock analysis for
a fault-tolerant system. In M. Johnson, editor, Algebraic Methodology
and Software Technology. Proceedings of the AMAST’97, number 1349
in Lecture Notes in Computer Science, pages 60– 75. Springer Verlag,
Dec. 1997.

[34] B. Buth, J. Peleska, and H. Shi. Combining methods for the livelock
analysis of a fault-tolerant system. In A. M. Haeberer, editor, Algebraic
Methodology and Software Technology. Proceedings of the AMAST’98,

87

number 1548 in Lecture Notes in Computer Science, pages 124–139.
Springer Verlag, 1998.

[35] M. Butler, J. Grundy, T. L̊angbacka, R. Rukšėnas, and J. von Wright.
The refinement calculator: Proof support for program refinement. In
L. Groves and S. Reeves, editors, Formal Methods Pacific’97: Pro-
ceedings of FMP’97, Discrete Mathematics & Theoretical Computer
Science, pages 40–61, Wellington, New Zealand, July 1997. Springer.

[36] D. Carrington, I. Hayes, R. Nickson, G. Watson, and J. Welsh. A
program refinement tool. Formal Aspects of Computing, 10:97–124,
1998.

[37] The Haskell 98 foreign function interface 1.0: An addendum to
the Haskell 98 report. Available at http://www.haskell.org/

definition/, 2003.

[38] F. De Marchi. Monads in Coalgebra. PhD thesis, University of Leices-
ter, 2003.

[39] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison, volume 47 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, New York, NY, 1998.

[40] L. A. Dennis et al. The PROSPER toolkit. In Graf and Schwartzbach
[60].

[41] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18:453– 457, 1975.

[42] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[43] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program
Semantics. Texts and Monographs in Computer Science. Springer
Verlag, 1990.

[44] A. Dix, J. Finley, G. Abowd, and R. Beale. Human-Computer Inter-
action. Prentice-Hall, 1998.

[45] P. Djyber, Q. Hayian, and M. Takeyama. Verifiying Haskell programs
by combining testing and proving. In Proc. 3rd International Con-
ference on Quality Software, pages 272– 279. IEEE Computer Society
Press, Nov 2003.

[46] Reference model for frameworks of software engineering environments.
Technical Report ECMA TR/55, European Computer Manufactur-
ers Association, 1990.

88

[47] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics, volume 6 of EATCS Monographs on
Theoretical Computer Science. Springer Verlag, 1985.

[48] Europäische Norm EN ISO 9241-10: Ergonomische Anforderungen für
Bürotätigkeiten mit Bildschirmgeräten, Teil 10: Grundsätze der Di-
aloggestaltung, Sept. 1995. Deutsche Fassung.

[49] D. Epstein. Word processing in groups. Jones and Bartlett, 1992.

[50] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable bind-
ing. In G. Longo, editor, Proc. 14th Annual Symposium on Logic in
Computer Science (LICS’99), pages 193–202. IEEE Computer Society
Press, 1999.

[51] Formal Systems (Europe) Ltd. Failures-Divergence Refinement:
FDR2 User Manual. Formal Systems (Europe) Ltd, Oct. 1997.

[52] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[53] N. Ghani. βη-equality for coproducts. In Second Conference on Typed
Lambda Calculus and its Applications, Edinburgh, Apr. 1995.

[54] N. Ghani and A. Heyworth. Computing over k-modules. In J. Harland,
editor, Electronic Notes in Theoretical Computer Science, volume 61.
Elsevier Science Publishers, 2002.

[55] N. Ghani and A. Heyworth. A rewriting alternative to reidermeister
schrier. In R. Nieuwenhuis, editor, Procedings of Rewriting Techniques
and Applications, RTA 2003, number 2706 in Lecture Notes in Com-
puter Science, pages 452–466. Springer Verlag, 2003.

[56] J. W. Goethe. Faust: der Tragödie erster Teil, 1808.

[57] H. H. Goldstine and J. von Neumann. Planning and coding of problems
for an electronic computing instrument. 1947. Part II, Vol. 1 of Report
prepared for U.S. Army Ord. Dept. Reprinted in [150].

[58] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: a Mecha-
nised Logic of Computation, volume 78 of Lecture Notes in Computer
Science. Springer, 1979.

[59] M. J. C. Gordon and T. M. Melham. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logics. Cambridge University
Press, 1993.

89

[60] S. Graf and M. Schwartzbach, editors. Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer
Science 1785. Springer, 2000.

[61] D. Gries. A Science of Programming. Springer Verlag, 1981.

[62] J. Grundy. Transformational hierarchical reasoning. Computer Jour-
nal, 39:291–302, 1996.

[63] M. Hamana. Term rewriting with variable binding: an initial alge-
bra approach. In PPDP ’03: Proceedings of the 5th ACM SIGPLAN
international conference on Principles and practice of declaritive pro-
gramming, pages 148–159. ACM Press, 2003.

[64] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, Jan. 1993. Preliminary version in
LICS’87.

[65] W. Harrison and R. Kieburtz. The logic of demand in Haskell. Journal
for Functional Programming, to appear.

[66] W. Harrison, M. Tullsen, and J. Hook. Domain separation by con-
struction. Electronic Notes in Theoretical Computer Science, 90(1),
2003.

[67] D. Hemer, I. Hayes, and P. Strooper. Refinement calculus for logic
programming in Isabelle/HOL. In R. J. Boulton and P. B. Jackson,
editors, 14th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’01), volume 2152 of Lecture Notes in Com-
puter Science, pages 249–264. Springer, 2001.

[68] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-
Calculus. Number 1 in London Mathematical Society Student Texts.
Cambridge University Press, 1986.

[69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576– 585, Oct. 1969.

[70] C. A. R. Hoare. Proofs of correctness of data representations. Acta
Informatica, 1:271–281, 1972.

[71] B. Hoffmann and B. Krieg-Brückner, editors. PROSPECTRA: Pro-
gram Development by Specification and Transformation, volume 690
of Lecture Notes in Computer Science. Springer, 1993.

[72] G. P. Huet and B. Lang. Proving and applying program trans-
formations expressed with second-order patterns. Acta Informatica,
11(1):31–55, Dec. 1978.

90

[73] D. Hutter, B. Langenstein, C. Sengler, J. H. Siekmann, W. Stephan,
and A. Wolpers. Verification Support Environment (VSE). Journal
of High Integrity. Forthcoming.

[74] M. Hyland, G. Plotkin, and J. Power. Combining computational ef-
fects: Commutativity and sum. In TCS 2002, 2nd IFIP International
Conference on Computer Science, Montreal, 2002.

[75] M. Hyland, G. Plotkin, and J. Power. Combining effects: Sum and
tensor. Submitted, 2003.

[76] M. Jackson. A pilot study of an automated theorem prover. In Bertot
[21].

[77] C. B. Jay. Modelling reductions in confluent categories. In Proceedings
of the Durham Symposium on Applications of Categories in Computer
Science, 1990.

[78] C. B. Jay and N. Ghani. The virtues of η-expansion. Journal for
Functional Programming, 5(2):135– 154, Apr. 1995.

[79] C. B. Jones. The early search for tractable ways of reasoning about
programs. IEEE Annals of the History of Computing, 25(2):26– 49,
2003.

[80] M. Jones and L. Duponcheel. Composing monads. Technical Report
YALEU/DCS/RR-1004, Yale University, Dept. Comp. Sci, Dec 1993.

[81] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended
ML: A gentle introduction. Theoretical Computer Science, 173:445–
484, 1997.

[82] E. W. Karlsen. Tool Integration in a Functional Programming Lan-
guage. PhD thesis, Universität Bremen, 1998.

[83] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Rea-
soning: An Approach. Kluwer Academic Publishers, 2000.

[84] G. M. Kelly. A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves and so on. Bul-
letins of the Australian Mathematical Society, 22:1– 83, 1980.

[85] G. M. Kelly. Basic Concepts of Enriched Category Theory, volume 64
of London Mathematical Society Lecture Note Series. Cambridge Uni-
versity Press, 1982.

[86] G. M. Kelly. Elementary observations on 2-categorical limits. Bulletins
of the Australian Mathematical Society, 39:301–317, 1989.

91

[87] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequal-
izers, and presentations of finitary monads. Journal for Pure and
Applied Algebra, 89:163– 179, 1993.

[88] D. King and P. Wadler. Combining monads. In J. Launchbury and
P. Samson, editors, Glasgow Workshop on Functional Programming,
Workshops in Computing Series, Ayr, July 1992. Springer Verlag.

[89] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2 (Background: Computational Structures), pages
1–116. Oxford University Press, 1992.

[90] D. Knuth and P. Bendix. Simple word problems in universal algebra.
In J. Leech, editor, Computational Problems in Universal Algebras,
pages 263–297. Pergamon Press, 1970.

[91] Kolyang, T. Santen, and B. Wolff. Correct and user-friendly imple-
mentations of transformation systems. In M. C. Gaudel and J. Wood-
cock, editors, Formal Methods Europe FME’96, volume 1051 of Lecture
Notes in Computer Science, pages 629– 648. Springer, 1996.

[92] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of
Z in Isabelle. In J. von. Wright, J. Grundy, and J. Harrison, editors,
Theorem Proving in Higher Order Logics, number 1125 in Lecture
Notes in Computer Science, pages 283 – 298. Springer Verlag, 1996.

[93] B. Krieg-Brückner, J. Peleska, E.-R. Olderog, and A. Baer. The
UniForM workbench, a universal development environment for for-
mal methods. In J. M. Wing, J. Woodcock, and J. Davies, editors,
FM’99 — Formal Methods. Proceedings, Vol. II, number 1709 in Lec-
ture Notes in Computer Science, pages 1186–1205. Springer, 1999.

[94] A. Kurz. Logics for Coalgebra and Applications to Computer Science.
Dissertation, Ludwig-Maximilans-Universtität München, 2000.

[95] T. L̊angbacka, R. Rukšėnas, and J. von Wright. TkWinHOL: A tool for
window interference in HOL. In E. T. Schubert, P. J. Windley, and
J. Alves-Foss, editors, 8th International Workshop on Higher Order
Logic Theorem Proving and its Applications, volume 971 of Lecture
Notes in Computer Science, pages 245–260, Aspen Grove, Utah, USA,
Sept. 1995. Springer.

[96] R. Lazić. A semantic study of data-indepedence with applications to
the mechanical verification of concurrent systems. PhD thesis, Oxford
University, 1997.

92

[97] S. MacLane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer Verlag, 1971.

[98] N. Magaud. Changing data representation within the Coq system.
In 16th International Conference on Theorem Proving in Higher Or-
der Logics (TPHOLs’03), volume 2758 of Lecture Notes in Computer
Science, pages 87–102. Springer, 2003.

[99] N. Magaud and Y. Bertot. Changing data structures in type theory:
A study of natural numbers. In P. Callaghan, Z. Luo, J. McKinna,
and R. Pollack, editors, Types for Proofs and Programs, International
Workshop, TYPES 2000, volume 2277 of Lecture Notes in Computer
Science, pages 181– 196. Springer, 2002.

[100] E. G. Manes. Algebraic Theories, volume 26 of Graduate Texts in
Mathematics. Springer Verlag, 1976.

[101] E. Melis, E. Andrès, J. Büderbender, A. Frischauf, G. Goguadze,
P. Libbrecht, M. Pollet, and C. Ullrich. ActiveMath: a generic and
adaptive web-based learning environment. Artificial Intellligence in
Education, 12(4), 2001.

[102] N. Merriam and M. Harrison. What is wrong with GUIs for theorem
provers? In Bertot [21].

[103] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied
Logic, 51:125–157, 1991.

[104] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML — Revised. The MIT Press, 1997.

[105] E. Moggi. Computational lambda-calculus and monads. In Fourth
Annual Symposium on Logic in Computer Science. IEEE, Computer
Society Press, June 1989.

[106] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–
317, 1999.

[107] T. Mossakowski, D. Sannella, and A. Tarlecki. A simple refinement
language for CASL. In Recent Trends in Algebraic Development Tech-
niques WADT 2004, volume 3423 of Lecture Notes in Computer Sci-
ence, pages 162–185. Springer, 2004.

[108] O. Müller, T. Nipkow, D. von Oheimb, and O. Slotosch. HOLCF =
HOL + LCF. Journal for Functional Programming, 9:191–223, 1999.

[109] R. B. Neil Ghani, Anne Heyworth and C. Wensley. Computing with
double cosets. Journal of Symbolic Computation, 2004. Submitted.

93

[110] A. Neumann and A. Berlea. fxp — the functional XML parser. Home
page at http://atseidl2.informatik.tu-muenchen.de/~berlea/

Fxp/.

[111] T. Nipkow. Structured proofs in Isar/HOL. In H. Geuvers and
F. Wiedijk, editors, Types for Proofs and Programs (TYPES 2002),
volume 2646 of Lecture Notes in Computer Science, pages 279–302.
Springer, 2003.

[112] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. LNCS 2283. Springer, 2002.

[113] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[114] E. Ohlebusch. On the modularity of termination of term rewriting
systems. Theoretical Computer Science, 136:333– 360, 1994.

[115] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.

[116] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype veri-
fication system. In D. Kapur, editor, 11th International Conference
on Automated Deduction (CADE), volume 607 of Lecture Notes in
Computer Science, pages 748–752. Springer, jun 1992.

[117] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361–386. Academic Press,
1990.

[118] S. Peyton Jones, editor. Haskell 98 language and libraries: the Revised
Report. Cambridge University Press, 2003.

[119] F. Pfenning. Logic programming in the LF logical framework. In
G. Huet and G. Plotkin, editors, Logical Frameworks, pages 149–181.
Cambridge University Press, 1991.

[120] F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, pages 1063–1147. Elsevier
Science Publishers, 2001.

[121] J. Power. Enriched Lawvere theories. Theories and Applications of
Categories, 6:83–93, 2000.

[122] J. Power. A unified category theoretic approach to variable binding.
In MERLIN ’03: Proceedings of the 2003 workshop on Mechanized
reasoning about languages with variable binding. ACM Press, 2003.

94

[123] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured spec-
ifications and interactive proofs with KIV. In W. Bibel and P. H.
Schmidt, editors, Automated Deduction: A Basis for Applications.
Volume II, Systems and Implementation Techniques. Kluwer Aca-
demic Publishers, Dordrecht, 1998.

[124] W. Reif and K. Stenzel. Reuse of proofs in software verification. In
R. K. Shyamasundar, editor, Proceedings of Foundations of Software
Technology and Theoretical Computer Science, volume 761 of Lecture
Notes in Computer Science, pages 284–293, Berlin, Germany, Dec.
1993. Springer.

[125] RELAX NG XML schema language, 2003. Home page at http://

www.relaxng.org/.

[126] E. Robinson. Variations on algebra: monadicity and generalisations of
equational theories. Technical Report 6/94, Sussex Computer Science
Technical Report, 1994.

[127] P. J. Robinson and J. Staples. Formalizing a hierarchical structure of
practical mathematical reasoning. Journal for Logic and Computation,
14(1):43–52, 1993.

[128] M. Roggenbach and L. Schröder. Towards trustworthy specifications I:
Consistency checks. In Recent Trends in Algebraic Development Tech-
niques (WADT 201), volume 2267 of LNCS, pages 305–327. Springer,
2002.

[129] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1998.

[130] G. Russell. Events in haskell and how to implement them. In Interna-
tional Conference on Functional Programming ICFP’01. ACM Press,
2001.

[131] D. E. Rydeheard and J. G. Stell. Foundations of equational deduc-
tion: A categorical treatment of equational proofs and unification al-
gorithms. In Category Theory and Computer Science, number 283 in
Lecture Notes in Computer Science, pages 114– 139. Springer Verlag,
1987.

[132] D. Sannella. Formal program development in Extended ML for the
working programmer. In Proc. 3rd BCS/FACS Workshop on Refine-
ment, Workshops in Computing, pages 99–130. Springer, 1991.

[133] D. Sannella. Algebraic specification and program development by step-
wise refinement. In Proc. 9th Intl. Workshop on Logic-based Program

95

Synthesis and Transformation (LOPSTR’99), volume 1817 of Lecture
Notes in Computer Science, pages 1–9. Springer, 2000.

[134] D. T. Sannella and A. Tarlecki. Toward formal development of pro-
grams from algebraic specifications: Implementation revisited. Acta
Informatica, 25:233–281, 1988.

[135] R. A. G. Seely. Modelling computations: A 2-categorical framework.
In Proceedings of the Second Annual Symposium on Logic in Computer
Science, pages 65–71, 1987.

[136] B. Shneiderman. The future of interactive systems and the emer-
gence of direct manipulation. Behaviour and Information Technology,
1(3):237– 256, 1982.

[137] B. Shneiderman. Designing the User Interface. Addison-Wesley, 3rd
edition, 1998.

[138] Sleepycat Software. Berkeley DB. http://www.sleepycat.com/.

[139] D. Smith. Constructing specification morphisms. Journal of Symbolic
Computation, 15:571– 606, 1993.

[140] D. R. Smith. The design of divide and conquer algorithms. Science of
Computer Programming, 5(1):37–58, Feb. 1985.

[141] D. R. Smith. KIDS: a semiautomatic program development system.
IEEE Transactions on Software Engineering, 16(9):1024–1043, Sept.
1990.

[142] D. R. Smith. Mechanizing the development of software. In M. Broy and
R. Steinbrüggen, editors, Calculational System Design, Proceedings of
the Marktoberdorf International Summer School, NATO ASI Series,
pages 251–292. IOS Press, Amsterdam, 1999.

[143] D. R. Smith and M. R. Lowry. Algorithm theories and design tactics.
Science of Computer Programming, 14:305– 321, 1990.

[144] M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.
2nd edition.

[145] Y. V. Srinivas and R. Jullig. Specware: Formal support for composing
software. In Proc. Conf. Mathematics of Program Construction, vol-
ume 947 of Lecture Notes in Computer Science. Springer, 1995. Also
appeared as Kestrel Institute Technical Report KES.U.94.5.

[146] M. Staples. Window inference in Isabelle. In Proc. Isabelle Users
Workshop. University of Cambridge Computer Laboratory, 1995.

96

[147] M. Staples. A Mechanised Theory of Refinement. PhD thesis, Univer-
sity of Cambridge, 1998.

[148] M. Staples. Representing WP semantics in Isabelle/ZF. In G. Dowek,
C. Paulin, and Y. Bertot, editors, TPHOLs: The 12th International
Conference on Theorem Proving in Higher-Order Logics, number 1690
in lncs. springer, 1999.

[149] J. G. Stell. Modelling term rewriting systems by Sesqui-categories.
Technical Report TR94-02, Keele Unversity, Jan. 1994.

[150] A. H. Taub. John von Neumann: Collected Works, volume V: Design
of Computers, Theory of Automata and Numerical Analysis. Perga-
mon Press, 1963.

[151] H. Tej. HOL-CSP: Mechanised Formal Development of Concurrent
Processes. Dissertation, FB 3 — Mathematik und Informatik, Univer-
sität Bremen, 2002.

[152] H. Tej and B. Wolff. A corrected failure-divergence model for CSP in
Isabelle/HOL. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
Formal Methods Europe FME ’97, number 1313 in Lecture Notes in
Computer Science, pages 318–337. Springer Verlag, 1997.

[153] The W3C Consortium. Extensible markup language (XML). Technical
report, W3C Recommendation, 2004.

[154] H. Thimbleby. User Interface Design. ACM Press Frontier Series.
Addison-Wesley, 1990.

[155] Y. Toyama. On the Church-Rosser property for the direct sum of term
rewriting systems. Journal of the ACM, 34(1):128–143, 1987.

[156] A. M. Turing. Checking a large routine. In Report of a Conference
on High Speed Automatic Calculating Machines, pages 67– 69, Cam-
bridge, June 1949. University Mathematical Laboratory. Quoted from
[79].

[157] J. von Wright. Extending window inference. In Proc. TPHOLs ’98,
number 1497 in Lecture Notes in Computer Science, pages 17–32.
Springer Verlag, 1998.

[158] T. Vullinghs, D. Tuijnman, and W. Schulte. Lightweight GUIs for
Functional Programming. In 7th International Symposium on Pro-
gramming Languages: Implementations, Logics and Programs, pages
341–356, 1995.

97

[159] M. Wallace and C. Runciman. Haskell and XML: Generic combinators
or type-based translation? In International Conference on Functional
Programming ICFP’99, pages 148– 159. ACM Press, 1999.

98

