Formale Modellierung

Vorlesung 13 vom 14.07.2014: Hybride Systeme

Serge Autexier \& Christoph Lüth

Universität Bremen
Sommersemester 2014

Fahrplan

- Teil I: Formale Logik
- Teil II: Spezifikation und Verifikation
- Formale Modellierung mit der UML und OCL
- Lineare Temporale Logik
- Temporale Logik und Modellprüfung
- Hybride Systeme
- Zusammenfassung, Rückblick, Ausblick

What are Hybrid Systems?

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata Affine Automata

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL
How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL
How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination
Approximations for Affine Automata
*Thanks to Andreas Nonnengart for the slides

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL
How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination
Approximations for Affine Automata

What are Hybrid Systems?

Alur, Henzinger et al

A hybrid system is a digital real-time system that is embedded in an analog environment. It interacts with the physical world through sensors and actuators.

Wikipedia

A hybrid system is a system that exhibits both continuous and discrete dynamic behavior - a system that can both flow (described by differential equations) and jump (described by a difference equation).

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL
How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination
Approximations for Affine Automata

Finite Automata

- There are vertices (states, locations) and edges (transitions)

Finite Automata

- There are vertices (states, locations) and edges (transitions)
- and maybe some input alphabet

Finite Automata

- There are vertices (states, locations) and edges (transitions)
- and maybe some input alphabet
- and maybe some "accepting" state

Discrete Automata

- there are variables involved, and they can be manipulated
- transitions may be guarded

Discrete Automata

- there are variables involved, and they can be manipulated
- transitions may be guarded
- in general not finite state

Timed Automata

- additional clock variables
- they continuously increase their value in locations
- all of them behave identically
- only operation: reset to 0

Timed Automata

- additional clock variables
- they continuously increase their value in locations
- all of them behave identically
- only operation: reset to 0

Multi-Phase Automata

- additional variables with a fixed rate, not only clocks
- they increase their value according to the rate
- thus not all of them behave identically
- arbitrary operations

Rectangular Automata

- additional variables with a bounded rate
- they increase their value according to these bounds
- they represent arbitrary functions wrt/ bounds
- arbitrary operations

Railroad Gate Controller

Controller

Smart Factory

transportation belt, carriage, bottle

Labeling Section with stoppers and sensors

Affine Automata

- additional variables with arbitrary rate
- the rate may be in terms of the (other) variables
- they represent in general non-linear functions
- arbitrary operations

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic ICTL - Integrator CTL

How are safety properties verified?

Forward Reachability
Backward Reachability
Location Elimination

Approximations for Affine Automata

Temporal Logic - operators \square and \diamond

```
Linear Temporal Logic
Interpret }\square\mathrm{ as Always, Henceforth, from now on Interpret \(\diamond\) as Eventually, Unavoidable
```

Branching Temporal Logic
Interpret \square as Always, Henceforth, from now on Interpret \diamond as Eventually in a possible future

Computation Tree Logic Illustrated

$\forall \square$ for each path - always

Computation Tree Logic Illustrated

$\exists \diamond$ for some path - eventually

Computation Tree Logic Illustrated

$\forall \diamond$ for each path - eventually

Computation Tree Logic Illustrated

$\exists \square$ for some path - always

Timed (Integrator) CTL

- add clock variables
- these may be used in formulas
- restrict these clocks to certain locations (stopwatches)

$$
\begin{aligned}
& z . \exists \diamond\{A \wedge z \leq 5\} \\
& c^{\{N, M\}} . \forall \square\{P \rightarrow c \geq 12\}
\end{aligned}
$$

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL
How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination
Approximations for Affine Automata

Safety Properties

A safety property is of the form

$$
\forall \square \Phi
$$

where Φ is a classical logic formula (with arithmetics)
We call a state s safe if $\Phi(s)$ is true

It has to be shown that all reachable states are safe (forward reachability)
or, equivalently,
It has to be shown that no unsafe state is reachable (backward reachability)

Forward Reachability

The Operator post(S)
Given a set S of states

$$
\operatorname{post}(S)=\left\{s \mid \exists s^{\prime} \in S: s^{\prime} \mapsto_{\delta} \mapsto_{t r} s\right\}
$$

Fixpoint Iteration

Start with S a the initial states
repeat until $\operatorname{post}(S) \subseteq S: S:=S \cup \operatorname{post}(S)$

Finally

Check whether $\Phi(S)$ holds

Backward Reachability

The Operator pre(S)
Given a set S of states

$$
\operatorname{pre}(S)=\left\{s \mid \exists s^{\prime} \in S: s \mapsto_{t r} \mapsto_{\delta} s^{\prime}\right\}
$$

Fixpoint Iteration
Start with $S=\{s \mid \neg \Phi(s)\}$
repeat until $\operatorname{pre}(S) \subseteq S: S:=S \cup \operatorname{pre}(S)$

Finally

Check whether the initial state is contained in S

Example: Leaking Gas Burner

Example: Leaking Gas Burner

Safety Property

$$
\forall \square z \geq 60 \rightarrow 20 * y \leq z
$$

Example: Leaking Gas Burner

Safety Property

$$
\forall \square z \geq 60 \rightarrow 20 * y \leq z
$$

$$
\begin{aligned}
& I=\{\operatorname{Leak}(0,0,0)\} \\
& \operatorname{post}(I)=\{\operatorname{Leak}(x, y, z) \mid 0 \leq x \leq 1, y=x, z=x\} \\
& \qquad\{\operatorname{NonLeak}(0, y, z) \mid 0 \leq y \leq 1, z=y\}
\end{aligned}
$$

Problem: Long Loops

Property (many iterations)
$\forall \square(u \geq 154 \rightarrow 5.9 * w \leq u+v)$

Another Problem: Termination

Location Elimination

General Idea

- Compute the responsibility for a location once and for all
- thereby compute a definition for this location
- insert this definition into the automaton
- delete the location (and all the transitions to and fro)

Elimination Example

Elimination Example

Reachability Theory for B
$A(x, y) \rightarrow x \leq y \rightarrow B(x, y)$
$B(x, y) \rightarrow x \leq y$
$B(x, y) \rightarrow x+y \leq 10$
$B(x, y) \rightarrow \forall \delta 0 \leq \delta \wedge x^{\prime}=x+2 \delta \wedge y^{\prime}=y+\delta \wedge x^{\prime} \leq y^{\prime} \rightarrow B\left(x^{\prime}, y^{\prime}\right)$
$B(x, y) \rightarrow x=y \rightarrow C(0,0)$

Elimination Approach

Reachability Theory simplified

$$
\begin{aligned}
& A(x, y) \rightarrow x \leq y \rightarrow B(x, y) \\
& B(x, y) \rightarrow x \leq y \\
& B(x, y) \rightarrow x+y \leq 10 \\
& B(x, y) \rightarrow x \leq x^{\prime} \wedge x+2 * y^{\prime}=x^{\prime}+2 * y \wedge x^{\prime} \leq y^{\prime} \rightarrow B\left(x^{\prime}, y^{\prime}\right) \\
& B(x, y) \rightarrow x=y \rightarrow C(0,0)
\end{aligned}
$$

Elimination Approach

Reachability Theory simplified

$$
\begin{aligned}
& A(x, y) \rightarrow x \leq y \rightarrow B(x, y) \\
& B(x, y) \rightarrow x \leq y \\
& B(x, y) \rightarrow x+y \leq 10 \\
& B(x, y) \rightarrow x \leq x^{\prime} \wedge x+2 * y^{\prime}=x^{\prime}+2 * y \wedge x^{\prime} \leq y^{\prime} \rightarrow B\left(x^{\prime}, y^{\prime}\right) \\
& B(x, y) \rightarrow x=y \rightarrow C(0,0)
\end{aligned}
$$

Fixpoint Computation (Definition for B)

$$
\begin{aligned}
& B(x, y) \rightarrow x \leq y \rightarrow C(0,0) \\
& B(x, y) \rightarrow x \leq y \rightarrow 2 * y \leq x+5
\end{aligned}
$$

Elimination Approach

Reachability Theory simplified

$$
\begin{aligned}
& A(x, y) \rightarrow x \leq y \rightarrow B(x, y) \\
& B(x, y) \rightarrow x \leq y \\
& B(x, y) \rightarrow x+y \leq 10 \\
& B(x, y) \rightarrow x \leq x^{\prime} \wedge x+2 * y^{\prime}=x^{\prime}+2 * y \wedge x^{\prime} \leq y^{\prime} \rightarrow B\left(x^{\prime}, y^{\prime}\right) \\
& B(x, y) \rightarrow x=y \rightarrow C(0,0)
\end{aligned}
$$

Fixpoint Computation (Definition for B)

$$
\begin{aligned}
& B(x, y) \rightarrow x \leq y \rightarrow C(0,0) \\
& B(x, y) \rightarrow x \leq y \rightarrow 2 * y \leq x+5
\end{aligned}
$$

Insertion (in A)

$$
\begin{aligned}
& A(x, y) \rightarrow x \leq y \rightarrow C(0,0) \\
& A(x, y) \rightarrow x \leq y \rightarrow 2 * y \leq x+5
\end{aligned}
$$

Elimination Result

$$
\forall \square x+y \leq 10
$$

Elimination Result

$\forall \square x+y \leq 10$

Elimination Approach

Advantages

- with each elimination the verification problem decreases
- no need for multiple turns through the automaton
- in a sense mixes (and generalizes) standard reachability approaches

What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL
How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination
Approximations for Affine Automata

Approximation of Affine Behavior

Approximation of Affine Behavior

Approximation of Affine Behavior

Location Splitting

Location Splitting

One More Splitting

One More Splitting

Eliminating A

Positive A-clauses

$$
\begin{array}{ll}
x=0 \wedge y=1 \rightarrow A(x, y) & \text { initial state } \\
B(x, y) \rightarrow x=0.5 \wedge y \in[0.5,1] \rightarrow A(x, y) & \text { from } B \text { to } A \\
C(x, y) \rightarrow y=0.5 \wedge x \in[0,0.5] \rightarrow A(x, y) & \text { from } C \text { to } A \\
A(x, y) \rightarrow y^{\prime} \leq y \wedge x^{\prime} \in[0,0.5] \wedge y^{\prime} \in[0.5,1] \wedge x+y \leq x^{\prime}+y^{\prime} \rightarrow A\left(x^{\prime}, y^{\prime}\right) & \text { continuous change }
\end{array}
$$

Fixpoint Computation and Definition of A

```
x\in[0,0.5]^ y \in[0.5,1]^1\leqx+y 
C(x,y)->y=0.5\wedge y' = 0.5\wedgex\in[0,0.5]^x\leq x'^ x' \in[0,0.5] -> A(x', y')
```


Insertion of A^{\prime} s Definition

```
\(x=0.5 \wedge y \in[0.5,1] \rightarrow B(x, y)\)
\(x=0.5 \wedge y=0.5 \rightarrow C(x, y)\)
\(C(x, y) \rightarrow x \in[0,0.5] \wedge y=0.5 \wedge x^{\prime} \in[x, 0.5] \wedge y^{\prime}=y \rightarrow C\left(x^{\prime}, y^{\prime}\right)\)
```


After Eliminating A

Eliminating C

Positive C-clauses

$$
\begin{aligned}
& x=0.5 \wedge y=0.5 \rightarrow C(x, y) \\
& B(x, y) \rightarrow x=0.5 \wedge y \in[0,0.5] \rightarrow C(x, y) \\
& C(x, y) \rightarrow x \leq x^{\prime} \wedge y^{\prime} \leq y \wedge x^{\prime} \in[0,0.5] \wedge y^{\prime} \in[0,0.5] \rightarrow C\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

Fixpoint Computation and Definition of C

$$
\begin{aligned}
& x=0.5 \wedge y \in[0,0.5] \rightarrow C(x, y) \\
& B(x, y) \rightarrow x=0.5 \wedge y \in[0,0.5] \wedge x^{\prime}=0.5 \wedge y^{\prime} \in[0, y] \rightarrow C\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

Insertion of C's Definition

$$
\begin{aligned}
& x=0.5 \wedge y \in[0,0.5] \rightarrow B(x, y) \\
& B(x, y) \rightarrow x=0.5 \wedge y \in[0,0.5] \wedge x^{\prime}=0.5 \wedge y^{\prime} \in[0, y] \rightarrow B\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

After Eliminating C

Eliminating B

Positive B-clauses

$$
\begin{aligned}
& x=0.5 \wedge y \in[0.5,1] \rightarrow B(x, y) \\
& x=0.5 \wedge y \in[0,0.5] \rightarrow B(x, y) \\
& B(x, y) \rightarrow x \leq x^{\prime} \wedge y^{\prime} \leq y \wedge x^{\prime}+2 y^{\prime} \leq x+2 y \wedge x^{\prime} \in[0.5,1] \wedge y^{\prime} \in[0,1] \rightarrow B\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

Fixpoint Computation and Definition of B

$$
x+2 y \leq 2.5 \wedge x \in[0.5,1] \wedge y \in[0,1] \rightarrow B(x, y)
$$

Final Insertion and Result

```
x\in[0,0.5]^y\in[0.5,1]^1\leqx+y->A(x,y)
x+2y\leq2.5\wedgex\in[0.5,1]\wedge y \in [0,1]->B(x,y)
x=0.5\wedge y f[0,0.5]->C(x,y)
```


After Eliminating All

Summary

- Modelling of systems with continuous state changes requires different techniques
- Inspired by state machines, but with continuous behaviour in states expressed by first derivatives
- Different aspects
- Timed Automata
- Multi-Phase Automata
- Rectangular Automata
- Affine Automata
- Properties formulated using CTL;
- Verification approaches beyond forward/bachward reachability analysis

