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Fahrplan

I Teil I: Formale Logik

I Teil II: Spezifikation und Verifikation

I Formale Modellierung mit der UML und OCL

I Lineare Temporale Logik

I Temporale Logik und Modellprüfung

I Hybride Systeme

I Zusammenfassung, Rückblick, Ausblick
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What are Hybrid Systems?

How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata

How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL

How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination

Approximations for Affine Automata
∗Thanks to Andreas Nonnengart for the slides
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What are Hybrid Systems?

Alur, Henzinger et al
A hybrid system is a digital real-time system that is embedded in an
analog environment. It interacts with the physical world through sensors
and actuators.

Wikipedia
A hybrid system is a system that exhibits both continuous and discrete
dynamic behavior – a system that can both flow (described by differential
equations) and jump (described by a difference equation).
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Finite Automata

A B

CD

E F

I There are vertices (states, locations) and edges (transitions)

I and maybe some input alphabet
I and maybe some “accepting” state
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Discrete Automata

A B

CD

x = 0; y = 1

x=
+2;

y++

x=-y

x
:=

x
∗

x

x ≥ 5→ x := x − 5

I there are variables involved, and they can be manipulated
I transitions may be guarded

I in general not finite state
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Timed Automata

I additional clock variables
I they continuously increase their value in locations
I all of them behave identically
I only operation: reset to 0

x ≤ 1

A
x ≤ 2

B
x = 0; y = 0

x = 1→ x := 0

x ≥ 1→ x := 0, y := 0
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ẏ = 1
x ≤ 1

A
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Multi-Phase Automata

I additional variables with a fixed rate, not only clocks
I they increase their value according to the rate
I thus not all of them behave identically
I arbitrary operations

ẋ = 1
ẏ = 0
x ≤ 1

A
ẋ = 1
ẏ = 3
x ≤ 2

B
x = 0; y = 0

x = 1→ x := 0

x ≥ 1→ x := 0, y := 0
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Rectangular Automata

I additional variables with a bounded rate
I they increase their value according to these bounds
I they represent arbitrary functions wrt/ bounds
I arbitrary operations

ẋ = 1
ẏ ∈ [0, 1]

x ≤ 1

A
ẋ ∈ [1, 2]

ẏ = 3
x ≤ 2

B
x = 0; y = 0

x = 1→ x := 0

x ≥ 1→ x := 0, y := 0
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Railroad Gate Controller
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Smart Factory
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Affine Automata

I additional variables with arbitrary rate
I the rate may be in terms of the (other) variables
I they represent in general non-linear functions
I arbitrary operations

ẋ = y
ẏ = −x
x ≤ 1

A
ẋ = y
ẏ = 3y
x ≤ 2

B
x = 0; y = 0

x = 1→ x := 0

x ≥ 1→ x := 0, y := 0

15 [46]



What are Hybrid Systems?
How are they modeled?

Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata

How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL

How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination

Approximations for Affine Automata
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Temporal Logic - operators � and ♦

Linear Temporal Logic
Interpret � as Always, Henceforth, from now on
Interpret ♦ as Eventually, Unavoidable

Branching Temporal Logic
Interpret � as Always, Henceforth, from now on
Interpret ♦ as Eventually in a possible future
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Computation Tree Logic Illustrated

∀� for each path - always
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Timed (Integrator) CTL

I add clock variables
I these may be used in formulas
I restrict these clocks to certain locations (stopwatches)

z .∃♦ {A ∧ z ≤ 5}
c{N,M}.∀� {P → c ≥ 12}

22 [46]



What are Hybrid Systems?
How are they modeled?

Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
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Safety Properties

A safety property is of the form

∀�Φ

where Φ is a classical logic formula (with arithmetics)
We call a state s safe if Φ(s) is true

It has to be shown that all reachable states are safe (forward reachability)

or, equivalently,

It has to be shown that no unsafe state is reachable (backward
reachability)
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Forward Reachability

The Operator post(S)

Given a set S of states

post(S) = {s | ∃s ′ ∈ S : s ′ 7→δ 7→tr s}

Fixpoint Iteration
Start with S a the initial states
repeat until post(S) ⊆ S: S := S ∪ post(S)

Finally
Check whether Φ(S) holds
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Backward Reachability

The Operator pre(S)

Given a set S of states

pre(S) = {s | ∃s ′ ∈ S : s 7→tr 7→δ s ′}

Fixpoint Iteration
Start with S = {s | ¬Φ(s)}
repeat until pre(S) ⊆ S: S := S ∪ pre(S)

Finally
Check whether the initial state is contained in S
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Example: Leaking Gas Burner

ẋ = 1
ẏ = 1
ż = 1
x ≤ 1

Leak

ẋ = 1
ẏ = 0
ż = 1

NonLeak

x = 0; y = 0; z := 0

x ≤ 1→ x := 0

x ≥ 30→ x := 0

Safety Property

∀� z ≥ 60→ 20 ∗ y ≤ z

I = {Leak(0, 0, 0)}
post(I) = {Leak(x , y , z) | 0 ≤ x ≤ 1, y = x , z = x}

∪ {NonLeak(0, y , z) | 0 ≤ y ≤ 1, z = y}
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Problem: Long Loops

ẋ = 1
u̇ = 1
v̇ = 1
ẇ = 1
x ≤ 1

ẋ = 1
u̇ = 1
v̇ = 0
ẇ = 0
x ≤ 2

ẋ = 1
u̇ = 1
v̇ = 1
ẇ = 0
x ≤ 2

x, u, v, w = 0 x := 0

x ≥ 1→ x := 0x ≥ 2→ x := 0

Property (many iterations)
∀� (u ≥ 154→ 5.9 ∗ w ≤ u + v)
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Another Problem: Termination

ẋ = 1
ẏ = 1
x ≤ 1

ẋ = 1
ẏ = 1
x ≤ 1

ẋ = 1
ẏ = 1
x ≤ 1

ẋ = 1
ẏ = 1
x ≤ 1

x, y := 0 x, y := 0

x := 0

y
=

2

x := 0x := 0

x := 0; y := y − 1
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Location Elimination

General Idea
I Compute the responsibility for a location once and for all
I thereby compute a definition for this location
I insert this definition into the automaton
I delete the location (and all the transitions to and fro)
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Elimination Example

A
ẋ = 2
ẏ = 1
x ≤ y

B C
x ≤ y x = y → x, y := 0

∀� x + y ≤ 10

Reachability Theory for B
A(x , y)→ x ≤ y → B(x , y)
B(x , y)→ x ≤ y
B(x , y)→ x + y ≤ 10
B(x , y)→ ∀δ 0 ≤ δ ∧ x ′ = x + 2δ ∧ y ′ = y + δ ∧ x ′ ≤ y ′ → B(x ′, y ′)
B(x , y)→ x = y → C(0, 0)
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Elimination Approach

Reachability Theory simplified
A(x , y)→ x ≤ y → B(x , y)
B(x , y)→ x ≤ y
B(x , y)→ x + y ≤ 10
B(x , y)→ x ≤ x ′ ∧ x + 2 ∗ y ′ = x ′ + 2 ∗ y ∧ x ′ ≤ y ′ → B(x ′, y ′)
B(x , y)→ x = y → C(0, 0)

Fixpoint Computation (Definition for B)
B(x , y)→ x ≤ y → C(0, 0)
B(x , y)→ x ≤ y → 2 ∗ y ≤ x + 5

Insertion (in A)
A(x , y)→ x ≤ y → C(0, 0)
A(x , y)→ x ≤ y → 2 ∗ y ≤ x + 5
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Elimination Result

A
ẋ = 2
ẏ = 1
x ≤ y

B C
x ≤ y x = y → x, y := 0

∀� x + y ≤ 10

A C
x ≤ y → x, y := 0

x ≤ y → 2y ≤ x + 5 ∀� x + y ≤ 10
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Elimination Approach

Advantages
I with each elimination the verification problem decreases
I no need for multiple turns through the automaton
I in a sense mixes (and generalizes) standard reachability approaches
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Approximation of Affine Behavior

ẋ = y
ẏ = −x

x ∈ [0, 1]
y ∈ [0, 1]

x = 0 ∧ y = 1

ẋ ∈ [0, 1]
ẏ ∈ [−1, 0]
x ∈ [0, 1]
y ∈ [0, 1]

x = 0 ∧ y = 1

1 x

1

y
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ẏ ∈ [−1, 0]
x ∈ [0, 1]
y ∈ [0, 1]

x = 0 ∧ y = 1

1 x

1

y

36 [46]



Location Splitting

ẋ = y
ẏ = −x

x ∈ [0, 1]
y ∈ [0, 1]

x = 0 ∧ y = 1

ẋ = y
ẏ = −x

x ∈ [0, 0.5]
y ∈ [0, 1]

ẋ = y
ẏ = −x

x ∈ [0.5, 1]
y ∈ [0, 1]

x = 0 ∧ y = 1 x = 0.5
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One More Splitting

ẋ = y
ẏ = −x

x ∈ [0, 0.5]
y ∈ [0.5, 1]

ẋ = y
ẏ = −x

x ∈ [0.5, 1]
y ∈ [0, 1]

ẋ = y
ẏ = −x

x ∈ [0, 0.5]
y ∈ [0, 0.5]

x = 0 ∧ y = 1 x = 0.5

y
=

0.5 x =
0.5
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One More Splitting

ẋ ∈ [0.5, 1]
ẏ ∈ [−0.5, 0]
x ∈ [0, 0.5]
y ∈ [0.5, 1]

ẋ ∈ [0.5, 1]
ẏ ∈ [−0.5, 0]
x ∈ [0.5, 1]
y ∈ [0, 1]

ẋ ∈ [0.5, 1]
ẏ ∈ [−0.5, 0]
x ∈ [0, 0.5]
y ∈ [0, 0.5]

x = 0 ∧ y = 1 x = 0.5

y
=

0.5 x =
0.5
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Eliminating A

Positive A-clauses
x = 0 ∧ y = 1→ A(x, y) initial state
B(x, y)→ x = 0.5 ∧ y ∈ [0.5, 1]→ A(x, y) from B to A
C(x, y)→ y = 0.5 ∧ x ∈ [0, 0.5]→ A(x, y) from C to A
A(x, y)→ y′ ≤ y ∧ x′ ∈ [0, 0.5] ∧ y′ ∈ [0.5, 1] ∧ x + y ≤ x′ + y′ → A(x′, y′) continuous change

Fixpoint Computation and Definition of A
x ∈ [0, 0.5] ∧ y ∈ [0.5, 1] ∧ 1 ≤ x + y → A(x, y)
C(x, y)→ y = 0.5 ∧ y′ = 0.5 ∧ x ∈ [0, 0.5] ∧ x ≤ x′ ∧ x′ ∈ [0, 0.5]→ A(x′, y′)

Insertion of A’s Definition
x = 0.5 ∧ y ∈ [0.5, 1]→ B(x, y)
x = 0.5 ∧ y = 0.5→ C(x, y)
C(x, y)→ x ∈ [0, 0.5] ∧ y = 0.5 ∧ x′ ∈ [x, 0.5] ∧ y′ = y → C(x′, y′)
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After Eliminating A

ẋ = y
ẏ = −x

x ∈ [0.5, 1]
y ∈ [0, 1]

B
ẋ = y

ẏ = −x
x ∈ [0, 0.5]
y ∈ [0, 0.5]

C

x = 0.5x = 0.5 ∧ y = 0.5 x = 0.5 ∧ y ∈ [0.5, 1]

x ∈ [0, 0.5] ∧ y = 0.5 ∧ x :∈ [x, 0.5]
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Eliminating C

Positive C -clauses
x = 0.5 ∧ y = 0.5→ C(x, y)
B(x, y)→ x = 0.5 ∧ y ∈ [0, 0.5]→ C(x, y)
C(x, y)→ x ≤ x′ ∧ y′ ≤ y ∧ x′ ∈ [0, 0.5] ∧ y′ ∈ [0, 0.5]→ C(x′, y′)

Fixpoint Computation and Definition of C
x = 0.5 ∧ y ∈ [0, 0.5]→ C(x, y)
B(x, y)→ x = 0.5 ∧ y ∈ [0, 0.5] ∧ x′ = 0.5 ∧ y′ ∈ [0, y ]→ C(x′, y′)

Insertion of C ’s Definition
x = 0.5 ∧ y ∈ [0, 0.5]→ B(x, y)
B(x, y)→ x = 0.5 ∧ y ∈ [0, 0.5] ∧ x′ = 0.5 ∧ y′ ∈ [0, y ]→ B(x′, y′)
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After Eliminating C

ẋ = y
ẏ = −x

x ∈ [0.5, 1]
y ∈ [0, 1]

B

x = 0.5 ∧ y ∈ [0.5, 1]

x = 0.5 ∧ y ∈ [0, 0.5]

x = 0.5 ∧ y ∈ [0, 0.5] ∧ y :∈ [0, y ]
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Eliminating B

Positive B-clauses
x = 0.5 ∧ y ∈ [0.5, 1]→ B(x, y)
x = 0.5 ∧ y ∈ [0, 0.5]→ B(x, y)
B(x, y)→ x ≤ x′ ∧ y′ ≤ y ∧ x′ + 2y′ ≤ x + 2y ∧ x′ ∈ [0.5, 1] ∧ y′ ∈ [0, 1]→ B(x′, y′)

Fixpoint Computation and Definition of B
x + 2y ≤ 2.5 ∧ x ∈ [0.5, 1] ∧ y ∈ [0, 1]→ B(x, y)

Final Insertion and Result
x ∈ [0, 0.5] ∧ y ∈ [0.5, 1] ∧ 1 ≤ x + y → A(x, y)
x + 2y ≤ 2.5 ∧ x ∈ [0.5, 1] ∧ y ∈ [0, 1]→ B(x, y)
x = 0.5 ∧ y ∈ [0, 0.5]→ C(x, y)
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After Eliminating All

1 x

1

y

A

B
C
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Summary

I Modelling of systems with continuous state changes requires different
techniques

I Inspired by state machines, but with continuous behaviour in states
expressed by first derivatives

I Different aspects
I Timed Automata
I Multi-Phase Automata
I Rectangular Automata
I Affine Automata

I Properties formulated using CTL;

I Verification approaches beyond forward/bachward reachability analysis
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