
Systeme Hoher Qualität und Sicherheit
Vorlesung 6 vom 25.11.2013: Detailed Specification, Refinement &

Implementation

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2360 1 [24]

Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation

I Lecture 7: Testing
I Lecture 8: Static Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Concluding Remarks

2 [24]

Your Daily Menu

I Refinement: from abstract to concrete specification

I Implementation: from concrete specification to code

I Running examples: the safe autonomous robot, the birthday book

3 [24]

Design Specification

I At this point, we want to be relate implementation to the more
abstract specifications in the higher lever, and have a systematic way
to go from higher to lower levels (refinement).

4 [24]

Refinment in the Development Process

I Recall that we have horizontal and vertical structuring.

I Refinement is a vertical structure in the development process.

I The simplest form of refinement is implicational, where an
implementation I implies the abstract requirement A

I ⇒ A

I Recall that refinement typically preserves safety requirements, but not
security — thus, there is a systematic way to construct safe systems,
but not so for secure ones.

5 [24]

The Autonomous Robot: Basic Types
I We first declare a datatype for the time:

[Time]

I We then declare the robot parameters, and the state of the world —
these are the things which do not change.

RobotParam
cont : POLY

I Obstacles are just a set of points (instead of polygons)

World
RobotParam
obs : PVEC

6 [24]

The Autonomous Robot: Safety Requirements

I The robot’s state depends on the
time, so we do not have pre/post
conditions. It has a position
vector, o, which determines the
current contour polygon c.

Robot
RobotParam
c : Time → POLY
o : Time → VEC

c(t) = move(cont, o(t))

I Here is the main safety
requirement: the robot is safe if
its current contour never contains
any obstacles.

RobotSafe
Robot

∀ t.c(t) ∩ obs = ∅

7 [24]

The Autonomous Robot: Implementation

I When implementing the autonomous robot, we assume a control loop
architecture, where a control function is called each T ms. It can
read thecurrent system state, and sets control variables which
determine the system’s behaviour over the next clock cycle.

I The cycle time (“tick”) T is part of the robot parameters. We also add
the braking accelaration abrk .

RobotParam
cont : POLY
abrk : Z
T : Z

World
RobotParam
obs : PVEC

8 [24]



The Autonomous Robot: Implementation
I This specifies the control
behaviour of the robot.

I Velocity is given by the linear
velocity vel , and steering angle
ω. This describes the velocity
vector v in polar form.

I This does not yet describe how
the velocity is controlled.

Robot
RobotParam
vel , ω : Z
v , o : VEC
c : POLY

c = move (cont, o)
v = cart (vel , ω)

I The function cart converts a vector in polar form to the cartesian
form. A simple specification in Z might be this:

cart : Z× R → VEC

∀ r : Z; ω : R; p : VEC • cart(r , ω) = p ⇒ r ∗ r = p.x ∗ p.x + p.y ∗ p.y

I Unfortunately, the Mathematical Toolkit does not support trigonmetric
functions (or real numbers).

9 [24]

The Autonomous Robot: Control
I The velocity is controlled by two input variables a? and dω?, which

set the acceleration and change of steering angle for the next cycle.
This determines vel and ω, and hence v .

RobotMoves
∆Robot
ΞWorld
a? : Z
dω? : Z

vel ′ = vel + a? ∗ T
ω′ = ω + dω? ∗ T
o′ = add (o, v ′)

I This now describes the control loop behaviour of the robot.
I But when is it safe?

10 [24]

Moving and Driving Safely
I It is easy to say what it means for the robot to move safely: it will

not run into any obstacles.

RobotMovesSafely
RobotMoves

cov (c, v ′) ∩ obs = ∅

I Is that enough?
I No, this will give us a false sense of safety — it only fails when it is
far too late to initiate braking.

I To ensure safety here we would need:

RobotMovesSafely ⇒ RobotMovesSafely ′

11 [24]

Braking and Safe Braking

I Our safety strategy: we must always be able to brake safely
I We first need to specify braking and safe braking. Braking is safe if

the braking area is clear of obstacles.

RobotBrakes
∆Robot
ΞWorld

vel ′ = vel − abrk ∗ T
ω′ = ω
o′ = add (o, v ′)

RobotBrakesSafely
RobotBrakes

cov (c, brk (v , ω, abrk)) ∩ obs = ∅

I Implementing the overall strategy: if we can move safely, we do,
otherwise we brake.

I Invariant: we can always brake safely.

12 [24]

The Safe Robot: Implementation

I We drive safe if we will be able to brake safely.

RobotDrivesSafely
∆Robot
ΞWorld

(cov (c, v ′) ∪ cov (move (c, v ′), brk (v ′, ω′, abrk))) ∩ obs = ∅
vel ′ = vel + a? ∗ T
ω′ = ω + dω? ∗ T
o′ = add (o, v ′)

I The safe robot implements the safety strategy:

RobotSafeImpl = RobotDrivesSafely ∨ RobotBrakes

13 [24]

Showing Safety

I We need to show:

RobotSafeImpl ⇒ RobotMovesSafely
RobotSafeImpl ⇒ RobotMovesSafely ′

I The first holds directly.

I The second holds because of the following:

RobotSafeImpl ⇒ RobotBrakesSafely ′

RobotBrakesSafely ⇒ RobotMovesSafely
RobotBrakesSafely ′ ⇒ RobotMovesSafely ′

14 [24]

Missing Pieces

I We start off at the origin (or anywhere else), and with velocity 0.

I We need to specify that initially we are clear of obstacles.

InitRobot
Robot

o = (0, 0)
vel = 0
ω = 0
cont ∩ obs = ∅

15 [24]

Summing Up

I The first, abstract, safety specification was RobotSafe.

I We implemented this via a second, more concrete specification
RobotSafeImpl.

I Showing refinement required several lemmas.

I The general safety argument:

I Safety holds for the initial position: InitRobot ⇒ RobotMovesSafely

I Safety is preserved:
RobotSafeImpl ⇒ RobotMovesSafely ∧ RobotMovesSafely ′

I Thus, safety holds always (proof by induction).

16 [24]



From Specification to Implementation

I How would we implement the birthday book?

I We need a data structure to keep track of names and dates.

I And we need to link this data structure with the specification.

I There are two ways out of this:

I Either, the specification language also models datatypes (wide-spectrum
language).

I Or there is fixed mapping from the specification language to a
programming language.

17 [24]

Implementing Arrays

I In Z, arrays can be represented as functions from N1. Thus, if we want
to keep names and dates in arrays (linked by the index), we take

names : N1 → NAME
dates : N1 → DATE

I To look up names[i ], we just apply the function: names(i).

I To assignment names[i ] := v , we change the function with the
pointwise update operator ⊕:

names ′ = names ⊕ {i 7→ v}.

18 [24]

Implementing the Birthday Book

I We need a variable hwm which indicates how many date/name pairs
are known.

I The axiom makes sure that each name is associated to exactly one
birthday.

BirthdayBookImpl
names : N1 → NAME
dates : N1 → DATE
hwm : N

∀ i , j : 1 . . hwm •
i 6= j ⇒ names(i) 6= names(j)

19 [24]

Linking Specification and Implementation

I We need to link specification and implementation.

I This is done in an abstraction or linking schema:

Abs
BirthdayBook
BirthdayBookImpl

known = { i : 1 . . hwm • names(i) }

∀ i : 1 . . hwm •
birthday(names(i)) = dates(i)

I This specificies how known and birthday are reflected by the
implementing arrays.

20 [24]

Operation: Adding a birthday

I Adding a birthday changes the concrete state:

AddBirthdayImpl
∆BirthdayBookImpl
name? : NAME
date? : DATE

∀ i : 1 . . hwm • name? 6= names(i)

hwm′ = hwm + 1
names ′ = names ⊕ {hwm′ 7→ name?}
dates ′ = dates ⊕ {hwm′ 7→ date?}

I We need to show that the pre- and post-states of AddBirthday and
AddBirthdayImpl are related via Abs.

21 [24]

Showing Correctness of the Implementation

I Assume a state where the precondition of the specification holds, find
the corresponding state of the implementation via Abs, and show that
this state satisfies the precondition.

I Similarly, assume a pair of states where the invariant of
AddBirthdayBook holds, find the corresponding states of the
implementation via Abs, and show that they satisfy the invariant.

22 [24]

Operation: Finding a birthday
I We specify that the found day corresponds to the name via an index i .

FindBirthdayImp
ΞBirthdayBookImpl
name? : NAME
date! : DATE

∃ i : 1 . . hwm •
name? = names(i) ∧ date! = dates(i)

I Note that we are still some way off a concrete implementation — we
do not say how we find the index i .

I To formally show that an iterative loop from 1 to hdw always returns
the right i , we need the Hoare calculus (later in these lectures);
presently, we argue informally.

23 [24]

Summary

I We have seen how we refine abstract specifications to more concrete
ones.

I To implement specifications, we need to relate the specification
language to a programming language

I In Z, there are some types which correspond to well-known datatypes, such
as finite maps N1 → T and arrays of T .

I We have now reached the bottom of the V-model. Next week, we will
climb our way up on the right-hand side, starting with testing.

24 [24]


