
Systeme Hoher Qualität und Sicherheit
Vorlesung 7 vom 02.12.2013: Testing

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2403 1 [26]

Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

2 [26]

Your Daily Menu

I What is testing?

I Different kinds of tests.

I Different test methods: black-box vs. white-box.

I Problem: cannot test all possible inputs.

I Hence, coverage criteria: how to test enough.

3 [26]

Testing in the Development Process

I Tests are one way of verifying that the system is built according to
the specifications.

I Note we can test on all levels of the ‘verification arm’.
4 [26]

What is testing?
Myers, 1979
Testing is the process of executing a program or system with the intent
of finding errors.

I In our sense, testing is selected, controlled program execution.
I The aim of testing is to detect bugs, such as

I derivation of occurring characteristics of qualitiy properties compared to
the specified ones;

I inconsistency between specification and implementation;
I or structural feature of a program that causes a faulty behavior of a

program.

E. W. Dijkstra, 1972
Program testing can be used to show the presence of bugs, but never to
show their absence.

5 [26]

Testing Process

I Test cases, test plan etc.

I system-under-test (s.u.t.)

I Warning: test literature is quite expansive:

Hetzel, 1983
Testing is any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its required results.

6 [26]

Test Levels

I Component tests and unit tests: test at the interface level of single
components (modules, classes);

I Integration test: testing interfaces of components fit together;

I System test: functional and non-functional test of the complete system
from the user’s perspective;

I Acceptance test: testing if system implements contract details.

7 [26]

Basic Kinds of Test

I Functional test

I Non-functional test

I Structural test

I Regression test

8 [26]

Test Methods

I Static vs. dynamic:

I With static tests, the code is analyzed without being run. We cover these
methods separately later.

I With dynamic tests, we run the code under controlled conditions, and
check the results against a given specification.

I The central question: where do the test cases come from?

I Black-box: the inner structure of the s.u.t. is opaque, test cases are
derived from specification only;

I Grey-box: some inner structure of the s.u.t. is known, eg. module
architecture;

I White-box: the inner structure of the s.u.t. is known, and tests cases are
derived from the source code;

9 [26]

Black-Box Tests

I Limit analysis:

I If the specification limits input parameters, then values close to these
limits should be chosen.

I Idea is that programs behave continously, and errors occur at these limits.

I Equivalence classes:

I If the input parameter values can be decomposed into classes which are
treated equivalently, test cases have to cover all classes.

I Smoke test:

I “Run it, and check it does not go up in smoke.”

10 [26]

Example: Black-Box Testing

Example: A Company Bonus System
The loyalty bonus shall be computed depending on the time of
employment. For employess of more than three years, it shall be 50% of
the monthly salary, for employees of more than five years, 75%, and for
employees of more than eight years, it shall be 100%.

I Equivalence classes or limits?

Example: Air Bag
The air bag shall be released if the vertical acceleration av equals or
exceeds 15m/s2. The vertical acceleration will never be less than zero, or
more than 40m/s2.

I Equivalence classes or limits?

11 [26]

Black-Box Tests

I Quite typical for GUI tests.

I Testing invalid input: depends on programming language, the stronger
the typing, the less testing for invalid input is required.

I Example: consider lists in C, Java, Haskell.

I Example: consider ORM in Python, Java.

12 [26]

Other approaches: Monte-Carlo Testing

I In Monte-Carlo testing (or random testing), we generate random
input values, and check the results against a given spec.

I This requires executable specifications.

I Attention needs to be paid to the distribution values.

I Works better with high-level languages (Java, Scala, Haskell) where
the datatypes represent more information on an abstract level.

I Example: consider lists in C, Java, Haskell, and list reversal.
I Executable spec:

I Reversal is idempotent.
I Reversal distributes over concatenation.

I Question: how to generate random lists?

13 [26]

White-Box Tests

I In white-box tests, we derive test cases based on the structure of the
program.

I To abstract from the source code (which is a purely syntactic
artefact), we consider the control flow graph of the program.

Control Flow Graph (cfg)
I Nodes are elementary statements (e.g. assignments, return, break, . . .), and

control expressions (eg. in conditionals and loops), and
I there is a vertex from n to m if the control flow can reach node m coming

from n.

I Hence, paths in the cfg correspond to runs of the program.

14 [26]

Example: Control Flow Graph

i f (x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le (x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I A path through the
program is a path through
the cfg.

I Possible paths include:

[1, 3, 4, 7, E]
[1, 2, 3, 4, 7, E]
[1, 2, 3, 4, 5, 6, 4, 7, E]
[1, 3, 4, 5, 6, 4, 5, 6, 4, 7, E]
. . .

15 [26]

Coverage

I Statement coverage: Each node in the cfg is visited at least once.

I Branch coverage: Each vertex in the cfg is traversed at least once.

I Decision coverage: Like branch coverage, but specifies how often
conditions (branching points) must be evaluated.

I Path coverage: Each path in the cfg is executed at least once.

16 [26]

Example: Statement Coverage

i f (x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le (x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I Which (minimal) path p
covers all statements?

p = [1, 2, 3, 4, 5, 6, 4, 7, E]

I Which state generates p?

x = −1
y any
z any

17 [26]

Example: Branch Coverage

i f (x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le (x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I Which (minimal) paths
cover all vertices?

p1 = [1, 2, 3, 4, 5, 6, 4, 7, E],
p2 = [1, 3, 4, 7, E]

I Which states generate
p1, p2?

p1 p2
x = −1 x = 0
y any y any
y any z any

I Note p3 (corresponding to
x = 1) does not add to
coverage.

18 [26]

Example: Path Coverage

i f (x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le (x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I How many paths are
there?

I Let q1
def
=[1, 2, 3]

q2
def
=[1, 3]

p def
=[4, 5, 6]

r def
=[4, 7, E]

then all paths are given by

P = (q1 | q2) p∗ r

I Number of possible paths:

|P| = 2nMaxInt − 1

19 [26]

Statement, Branch and Path Coverage

I Statement Coverage:
I Necessary but not sufficient, not suitable as only test approach.
I Detects dead code (code which is never executed).
I About 18% of all defects are identified.

I Branch coverage:
I Least possible single approach.
I Detects dead code, but also frequently executed program parts.
I About 34% of all defects are identified.

I Path Coverage:
I Most powerful structural approach;
I Highest defect identification rate (100%);
I But no practical relevance because of restricted practicability.

20 [26]

Decision Coverage

I Decision coverage is more then branch coverage, but less then full
path coverage.

I Decision coverage requires that for all decisions in the program, each
possible outcome is considered once.

I Problem: cannot sufficiently distinguish boolean expressions.

I For A || B, the following are sufficient: A B Result
false false false
true false true

I But this does not distinguish A || B from A; B is effectively not tested.

21 [26]

Decomposing Boolean Expressions

I The binary boolean operators include conjunction x ∧ y , disjunction
x ∨ y , or anything expressible by these (e.g. exclusive disjunction,
implication).

Elementary Boolean Terms
An elementary boolean term does not contain binary boolean
operators, and cannot be further decomposed.

I An elementary term is a variable, a boolean-valued function, a relation
(equality =, orders <, ≤, ≥ etc), or a negation of these.

I This is a fairly operational view, e.g. x ≤ y is elementary, but
x < y ∨ x = y is not, even though they are equivalent.

I In logic, these are called literals.

22 [26]

Simple Condition Coverage

I In simple condition coverage, for each condition in the program, each
elementary boolean term evaluates to True and False at least once.

I Note that this does not say much about the possible value of the
condition.

I Examples and possible solutions:

i f (t empe ra tu r e > 90 && p r e s s u r e > 120) { . . .
T1 T2

T1 T2 Result
true false false
false true false

T1 T2 Result
true true true
false false false

23 [26]

Modified Condition Coverage

I It is not always possible to generate all possible combinations of
elementary terms, e.g: 3 <= x && x < 5.

I In modified (or minimal) condition coverage, all possible
combinations of those elementary terms the value of which determines
the value of the whole condition need to be considered.

I Example: 3 <= x x < 5 Result
false false false ←− not needed
false true false
true false false
true true true

I Another example: (x > 1 && ! p) || q

24 [26]

Modified Condition/Decision Coverage

I Modified Condition/Decision Coverage (MC/DC) is required by
DO-178B for Level A software.

I It is a combination of the previous coverage criteria defined as
follows:

I Every point of entry and exit in the program has been invoked at least
once;

I Every decision in the program has taken all possible outcomes at least
once;

I Every condition in a decision in the program has taken all possible
outcomes at least once;

I Every condition in a decision has been shown to independently affect that
decision’s outcome.

25 [26]

Summary

I (Dynamic) Testing is the controlled execution of code, and comparing
the result against an expected outcome.

I Testing is (traditionally) the main way for verification

I Depending on how the test cases are derived, we distinguish
white-box and black-box tests.

I In black-box tests, we can consider limits and equivalence classes for
input values to obtain test cases.

I In white-box tests, we have different notions of coverage: statement
coverage, path coverage, condition coverage, etc.

I Next week: Static testing aka. static program analysis.

26 [26]

