
 SQS, WS 13/14

Systeme hoher Qualität und Sicherheit
Universität Bremen, WS 2013/14

Christoph Lüth
Christian Liguda

Lecture 03 (04.11.2013)
Quality of the Software Development

Process

 SQS, WS 13/14

Your Daily Menu

Models of Software Development

 The Software Development Process, and its rôle in safety-
critical software development.

 What kind of development models are there?

 Which ones are useful for safety-critical software
– and why?

 What do the norms and standards say?

Basic Notions of Formal Software Development:

 How to specifiy: properties

 Structuring of the development process

 SQS, WS 13/14

Where are we?

Lecture 01: Concepts of Quality

Lecture 02: Concepts of Safety and Security, Norms and Standards

Lecture 03: Quality of the Software Development Process

Lecture 04: Requirements Analysis

Lecture 05: High-Level Design & Detailed Specification

Lecture 06: Testing

Lecture 07 and 08: Program Analysis

Lecture 09: Model-Checking

Lecture 10 and 11: Software Verification (Hoare-Calculus)

Lecture 12: Concurrency

Lecture 13: Conclusions

 SQS, WS 13/14

Software Development Models

 SQS, WS 13/14

Software Development Process

A software development process is the structure
imposed on the development of a software product.

We classify processes according to models which specify

 the artefacts of the development, such as

► the software product itself, specifications, test documents,
reports, reviews, proofs, plans etc

 the different stages of the development,

 and the artefacts associated to each stage.

Different models have a different focus:

 Correctness, development time, flexibility.

What does quality mean in this context?

 What is the output? Just the sofware product, or more?
(specifications, test runs, documents, proofs…)

 SQS, WS 13/14

Software Development Models

Structure

Fl
e

x
ib

ili
ty

from S. Paulus: Sichere Software

Spiral model

Prototype-based
developments

Agile

Methods

Waterfall

model

V-model

Model-driven

developement

 SQS, WS 13/14

Waterfall Model (Royce 1970)

Classical top-down sequential workflow with strictly
separated phases.

Unpractical as actual workflow (no feedback between
phases), but even early papers did not really suggest
this.

Requirement

Implementation

Design

Maintenance

Verification

 SQS, WS 13/14

Spiral Model (Böhm, 1986)

Incremental development guided by risk factors

Four phases:

 Determine objectives

 Analyse risks

 Development and test

 Review, plan next iteration

See e.g.

 Rational Unified Process (RUP)

Drawbacks:

 Risk identification is the key, and can be quite difficult

 SQS, WS 13/14

Agile Methods

Prototype-driven development

 E.g. Rapid Application Development

 Development as a sequence of prototypes

 Ever-changing safety and security requirements

Agile programming

 E.g. Scrum, extreme programming

 Development guided by functional requirements

 Less support for non-functional requirements

Test-driven development

 Tests as executable specifications: write tests first

 Often used together with the other two

 SQS, WS 13/14

Model-Driven Development (MDD, MDE)

Describe problems on abstract level using a modelling
language (often a domain-specific language), and derive
implementation by model transformation or run-time
interpretation.

Often used with UML (or its DSLs, eg. SysML)

Variety of tools:

 Rational tool chain, Enterprise Architect

 EMF (Eclipse Modelling Framework)

Strictly sequential development

Drawbacks: high initial investment, limited flexibility

 SQS, WS 13/14

V-Model

Evolution of the waterfall model:

 Each phase is supported by a corresponding testing
phase (verification & validation)

 Feedback between next and previous phase

Standard model for public projects in Germany

 … but also a general term for models of this „shape“

 SQS, WS 13/14

Development Models for Critical Systems

Ensuring safety/security needs structure.

 …but too much structure makes developments
bureaucratic, which is in itself a safety risk.

 Cautionary tale: Ariane-5

Standards put emphasis on process.

 Everything needs to be planned and documented.

Best suited development models are variations of the V-
model or spiral model.

 SQS, WS 13/14

The Safety Life Cycle (IEC 61508)

Planning

Realisation

Operation

 SQS, WS 13/14

Development Model in IEC 61508

IEC 61508 prescribes certain activities for each phase of
the life cycle.

Development is one part of the life cycle.

IEC recommends V-model.

 SQS, WS 13/14

Development Model in DO-178B

DO-178B defines different processes in the SW life cycle:

 Planning process

 Development process, structured in turn into

► Requirements process

► Design process

► Coding process

► Integration process

 Integral process

There is no conspicuous diagram, but these are the
phases found in the V-model as well.

 Implicit recommendation.

 SQS, WS 13/14

Artefacts in the Development Process

Planning:
• Document plan
• V&V plan
• QM plan
• Test plan
• Project manual

Specifications:

• Safety requirement spec.
• System specification
• Detail specification
• User document (safety

reference manual)

Implementation:

• Code

Verification & validation:

• Code review protocols
• Tests and test scripts
• Proofs

Possible formats:
• Word documents
• Excel sheets
• Wiki text
• Database (Doors)

• UML diagrams

• Formal languages:

• Z, HOL, etc.
• Statecharts or

similar diagrams
• Source code

Documents must be identified and
reconstructable.
• Revision control and configuration

management obligatory.

 SQS, WS 13/14

Basic Notions of Formal
Software Development

 SQS, WS 13/14

Formal Software Development

In formal development, properties are stated in a rigorous way with
a precise mathematical semantics.

These formal specifications can be proven.

Advantages:

 Errors can be found early in the development process, saving
time and effort and hence costs.

 There is a higher degree of trust in the system.

 Hence, standards recommend use of formal methods for high
SILs/EALs.

Drawback:

 Requires qualified personnel (that would be you).

There are tools which can help us by

 finding (simple) proofs for us, or

 checking our (more complicated proofs).

 SQS, WS 13/14

informal specification

Formal Software Development

abstract

specification

M
a

th
e

m
a

tica
l n

o
tio

n
s

P
ro

g
ra

m
m

in
g

Verification by
• Test
• Program analysis
• Model checking
• Formal proof

Horizontal

Proofs

Implemen-
tation

 SQS, WS 13/14

Properties

A general notion of properties.

Properties as set of infinite
execution traces
(i.e. infinite sequences of states)

Trace t satisfies property P,
written 𝑃 ⊨ 𝑡, iff 𝑡 ∈ 𝑃

b ≤ t iff t‘ . t = b t‘

 i.e. b is a finite prefix of t

…

b:

t:

t‘ :

 SQS, WS 13/14

Safety and Liveness Properties

Safety properties

 Nothing bad happens

 partial correctness, program safety, access control

Liveness properties

 Something good happens

 Termination, guaranteed service, availability

Theorem: P . P = SafeP LiveP

 Each property can be represented as a combination

of safety and liveness properties.

Alpen & Schneider (1985, 1987)

 SQS, WS 13/14

Safety Properties

Safety property S: „Nothing bad happens“

A bad thing is finitely observable and irremediable

S is a safety property iff

 ∀𝑡. 𝑡 ∉ 𝑆 → ∃𝑏. finite 𝑏 ∧ 𝑏 ≤ 𝑡 → ∀𝑢. 𝑏 ≤ 𝑢 → 𝑢 ∉ 𝑆

 a finite prefix b always causes the bad thing

Safety is typically proven by induction

 Safety properties may be enforced by run-time monitors.

b :

t :

 SQS, WS 13/14

Liveness Properties

Liveness property L: „Good things will happen“

A good thing is always possible and possibly infinite:

L is a liveness property iff

 ∀ 𝑡. finite 𝑡 → ∃𝑔. 𝑡 ≤ 𝑔 ∧ 𝑔 ∈ 𝐿

 i.e. all finite traces t can be extended to a trace g in L.

Liveness is typically proven by well-foundedness.

g :

t :

 SQS, WS 13/14

Underspecification and Nondeterminism

A system S is characterised by a set of traces.

A system S satisfies a property P, written

 𝑆 ⊨ 𝑃 iff 𝑆 ⊆ 𝑃

(i.e. ∀𝑡 ∈ 𝑆. 𝑡 ∈ 𝑃, all traces satisfy the property P).

Why more than one trace? Difference between:

 Underspecification or loose specification –
we specify several possible implementations.

 Non-determinism – different program runs might result
in different traces.

Example: a simple can vending machine.

 Insert coin, chose brand, dispense drink.

 Non-determinisim due to internal or external choice.

 SQS, WS 13/14

Structure in the Development

Horizontal structuring

 Modularization into components

 Composition and Decomposition

 Aggregation

Vertical structuring

 Abstraction and refinement
from design specification to implementation

 Declarative vs. imparative specification

 Inheritence

Layers / Views

 Adresses multiple aspects of a system

 Behavioral model, performance model, structural model,
analysis model(e.g. UML, SysML)

 SQS, WS 13/14

Horizontal Structuring (informal)

Composition of components

 Dependent on the individual layer of abstraction

 E.g. modules, procedures, functions,…

Example:

 SQS, WS 13/14

Horizontal Structuring: Composition

Given two systems 𝑆1, 𝑆2, their sequential composition is defined as

𝑆1; 𝑆2 = 𝑠 ∙ 𝑡 𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2}

 All traces from 𝑆_1, followed by all traces from 𝑆_2.

Given two traces 𝑠, 𝑡, their interleaving is defined (recursively) as
<> ∥ 𝑡 = 𝑡
𝑠 ∥ <> = 𝑠
𝑎 ⋅ 𝑠 ∥ 𝑏 ⋅ 𝑡 = 𝑎 ⋅ 𝑢 𝑢 ∈ 𝑠 ∥ 𝑏 ∙ 𝑡 } ∪ { 𝑏 ⋅ 𝑢 | 𝑢 ∈ 𝑎 ⋅ 𝑠 ∥ 𝑡}

Given two systems 𝑆1, 𝑆_2, their parallel composition is defined as

𝑆1 ∥ 𝑆2 = { 𝑠 ∥ 𝑡 |𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2}

 Traces from 𝑆_1 interleaved with traces from 𝑆2.

 SQS, WS 13/14

Vertical Structure - Refinement

Data refinement

 Abstract datatype is „implemented“ in terms of the
more concrete datatype

 Simple example: define stack with lists

Process refinement

 Process is refined by excluding certain runs

 Refinement as a reduction of underspecification by
eliminating possible behaviours

Action refinement

 Action is refined by a sequence of actions

 E.g. a stub for a procedure is refined to an executable
procedure

 SQS, WS 13/14

Refinement and Properties

Refinement typically preserves safety properties.

 This means if we start with an abstract specification
which we can show satisfies the desired properties, and
refine it until we arrive at an implementation, we have a
system for the properties hold by construction:

𝑆𝑃 ⇝ 𝑆𝑃1 ⇝ 𝑆𝑃2 ⇝ … ⇝ 𝐼𝑚𝑝

However, security is typically not preserved by
refinement nor by composition!

 SQS, WS 13/14

Security and Composition

Only complete bicycles are allowed to pass the gate.

Secure ! Secure !

 SQS, WS 13/14

Security and Composition

Insecure !

Only complete bicycles are allowed to pass the gate.

 SQS, WS 13/14

Conclusion & Summary

Software development models: structure vs. flexibility

Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

 Specification and implementation linked by verification
and validation.

 Variety of artefacts produced at each stage, which have to
be subjected to external review.

Properties include safety and liveness properties.

Structuring of the development:

 Horizontal – e.g. composition

 Vertical – refinement (data, process and action ref.)

