

Systeme hoher Qualität und Sicherheit Universität Bremen, WS 2013/14

Lecture 04 (11.11.2013)

Hazard Analysis Techniques

Christoph Lüth Christian Liguda

Where are we?

- Lecture 01: Concepts of Quality
- Lecture 02: Concepts of Safety and Security, Norms and Standards
- Lecture 03: Quality of the Software Development Process
- Lecture 04: Requirements Analysis
- Lecture 05: High-Level Design & Formal Modelling
- Lecture 06: Detailed Specification
- Lecture 07: Testing
- Lecture 08: Program Analysis
- Lecture 09: Model-Checking
- Lecture 10 and 11: Software Verification (Hoare-Calculus)
- Lecture 12: Concurrency
- Lecture 13: Conclusions

Your Daily Menu

- Ariane-5: A cautionary tale
- Hazard Analysis:
 - What's that?
- Different forms of hazard analysis:
 - FMEA, Failure Trees, Event Trees.
- An extended example: OmniProtect

Ariane 5

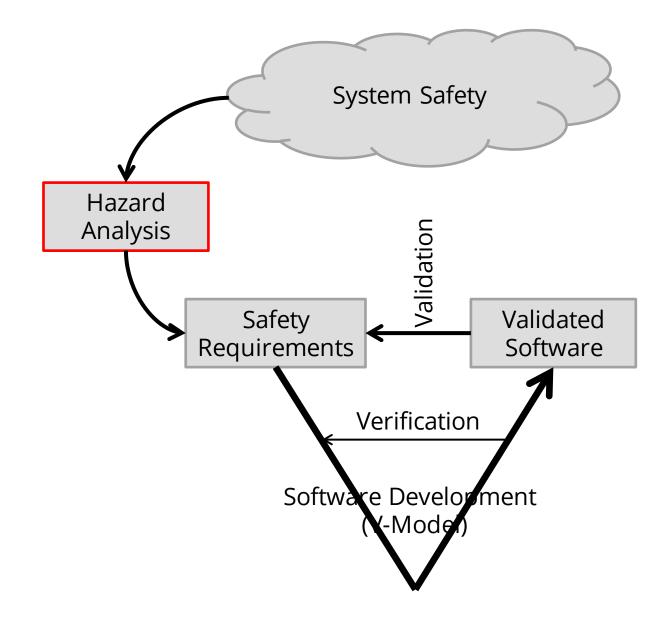
Ariane 5 exploded on its virgin flight (Ariane Flight 501) on 4.6.1996.

► How could that happen?

SQS, WS 13/14

What Went Wrong With Ariane Flight 501?

- Self-destruct triggered after 39 secs. due to inclination over 20 degr.
- OBC sent commands because it had incorrect data from IRS and tried to `adjust' trajectory.
- IRS sent wrong data because it had experienced software failure (overflow when converting 64 bit to 16 bit).
- Overflow occured when converting data to be sent to ground control (for test/monitoring purposes only).
- Overflow occured because
 - IRS was integrated as-is from Ariane 4, and
 - a particular variable (Horizontal Bias) held far higher values for the new model, and
 - the integer conversion was not protected because it was assumed that its values would never become too large.
 - This **assumption** was not **documented**.
- Because of its criticality, IRS had a backup system, but it ran the same software, so it failed as well (actually, 72 ms before the main one).


Hazard Analysis...

- provides the basic foundations for system safety.
- is Performed to identify hazards, hazard effects, and hazard causal factors.
- is used to determine system risk, to determine the signifigance of hazards, and to etablish design measures that will eliminate or mitigate the identified hazards.
- is used to systematically examine systems, subsystems, facilities, components, software, personnel, and their interrelationships.

Clifton Ericson: *Hazard Analysis Techniques for System Safety*. Wiley-Interscience, 2005.

Hazard Analysis i/t Development Process

Hazard Analysis systematically determines a list of safety requirements.

The realisation of the safety requirements by the software product must be **verified**.

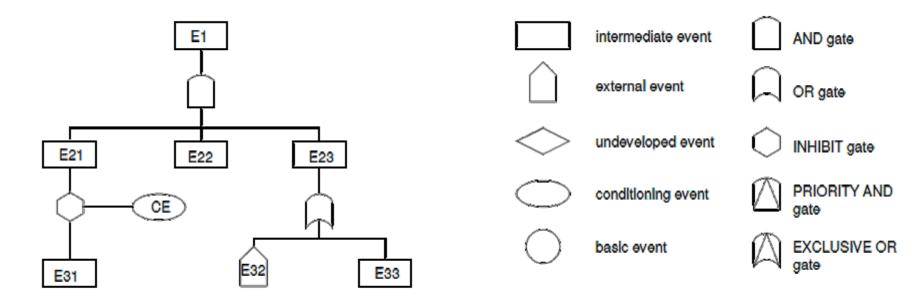
The product must be **validated** wrt the safety requirements.

Classification of Requirements

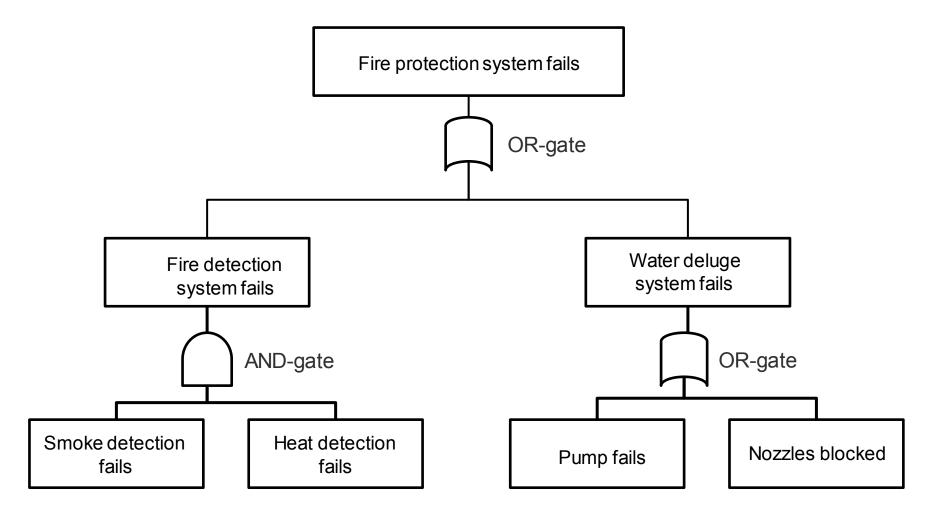
- Requirements to ensure
 - Safety
 - Security
- Requirements for
 - Hardware
 - Software
- Characteristics / classification of requirements
 - according to the type of a property

Classification of Hazard Analysis

- Top-down methods start with an anticipated hazard and work back from the hazard event to potential causes for the hazard
 - Good for finding causes for hazard
 - Good for avoiding the investigation of "non-relevant" errors
 - Bad for detection of missing hazards
- Bottom-up methods consider "arbitrary" faults and resulting errors of the system, and investigate whether they may finally cause a hazard
 - Properties are complementary to FTA properties



Hazard Analysis Methods


- Fault Tree Analysis (FTA) top-down
- Failure Modes and Effects Analysis (FMEA) bottom up
- Event Tree Analysis bottom-up
- Cause Consequence Analysis bottom up
- HAZOP Analysis bottom up

Fault Tree Analysis (FTA)

- Top-down deductive failure analysis (of undesired states)
 - Define undesired top-level event
 - Analyse all causes affecting an event to construct fault (sub)tree
 - Fuelueta fault traa

Fault Tree Analysis: Example

Failure Modes and Effects Analysis (FMEA)

- Analytic approach to review potential failure modes and their causes.
- Three approaches: *functional*, *structural* or *hybrid*.
- Typically performed on hardware, but useful for software as well.
- It analyzes
 - the failure mode,
 - the failure cause,
 - the failure effect,
 - its criticality,
 - and the recommended action.

and presents them in a **standardized table**.

Software Failure Modes

Guide word	Deviation	Example Interpretation
omission	The system produces no output when it should. Applies to a single instance of a service, but may be repeated.	No output in response to change in input; periodic output missing.
commission	The system produces an output, when a perfect system would have produced none. One must consider cases with both, correct and incorrect data.	Same value sent twice in series; spurious output, when inputs have not changed.
early	Output produced before it should be.	Really only applies to periodic events; Output before input is meaningless in most systems.
late	Output produced after it should be.	Excessive latency (end-to-end delay) through the system; late periodic events.
value (detectable)	Value output is incorrect, but in a way, which can be detected by the recipient.	Out of range.
value (undetectable)	Value output is incorrect, but in a way, which cannot be detected.	Correct in range; but wrong value
NC 1/10 12/11	1.4	

Criticality Classes

Risk as given by the risk mishap index (MIL-STD-882):

Severity	Probability		
1. Catastrophic	A. Frequent		
2. Critical	B. Probable		
3. Marginal	C. Occasional		
4. Negligible	D. Remote		
	E. Improbable		

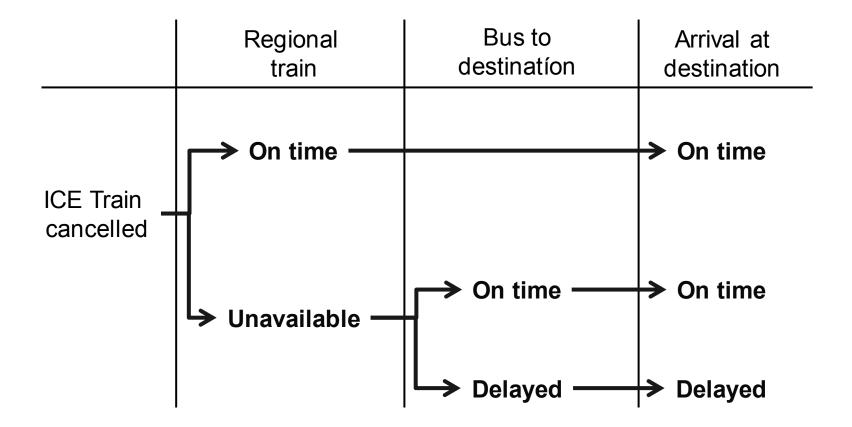
- Names vary, principle remains:
 - Catastrophic single failure
 - Critical two failures
 - Marginal multiple failures/may contribute

SQS, WS 13/14

FMEA Example: Airbag Control (Struct.)

ID	Mode	Cause	Effect	Crit.	Appraisal
1	Omission	Gas cartridge empty	Airbag not released in emergency situation	C1	SR-56.3
2	Omission	Cover does not detach	Airbag not released fully in emergency situation.	C1	SR-57.9
3	Omission	Trigger signal not present in emergency.	Airbag not released in emergency situation	C1	Ref. To SW- FMEA
4	Comm.	Trigger signal present in non- emergency	Airbag released during normal vehicle operation	C2	Ref. To SW- FMEA

FMEA Example: Airbag Control (Funct.)


ID	Mode	Cause	Effect	Crit.	Appraisal
5-1	Omission	Software terminates abnormally	Airbag not released in emergency.	C1	See 1.1, 1.2.
5-1.1	Omission	- Division by 0	See 1	C1	SR-47.3 Static Analysis
5-1.2	Omission	- Memory fault	See 1	C1	SR-47.4 Static Analysis
5-2	Omision	Software does not terminate	Airbag not released in emergency.	C1	SR-47.5 Static Analysis
5-3	Late	Computation takes too long.	Airbag not released in emergency.	C1	SR-47.6
5-4	Comm.	Spurious signal generated	Airbag released in non- emergency	C2	SR-49.3
5-5	Value (u)	Software computes wrong result	Either of 5-1 or 5-4.	C1	SR-12.1 Formal Verification

Event Tree Analysis

- Applies to a chain of cooperating activities
- Investigates the effect of activities failing while the chain is processed
- Depicted as binary tree; each node has two leaving edges:
 - Activity operates correctly
 - Activity fails
- Useful for calculating risks by assigning probabilities to edges
- O(2ⁿ) complexity

Event Tree Analysis

Hazard Analysis as a Reachability Problem

The analysis whether "finally something bad happens" is well-known from **property checking** methods

- Create a model describing everything (desired or undesired) which might happen in the system under consideration
- Specify a logical property P describing the undesired situations
- Check the model whether a path that is, a sequence of state transitions – exists such that P is fulfilled on this path
- Specify as safety requirement that mechanisms shall exist preventing paths leading to P from being taken

The Seven Principles of Hazard Analysis

Ericson (2005)

- 1) Hazards, mishaps and risk are not chance events.
- 2) Hazards are created during design.
- 3) Hazards are comprised of three components.
- 4) Hazards and mishap risk is the core safety process.
- 5) Hazard analysis is the key element of hazard and mishap risk management.
- 6) Hazard management involves seven key hazard analysis types.
- 7) Hazard analysis primarily encompasses seven hazard analysis techniques.

Verifying Requirements

Testing

- Executable specification (i.e. sort of implementation)
- Covering individual cases
- Functional requirements
- Decidable

(Static / Dynamic) Program Analysis

- Executable specification
- Covering all cases
- Selected functional and non-functional requirements
- Decidable (but typically not complete)

Verifying Requirements II

Model Checking

- Formal specification
- Covering all cases
- Functional and non-functional properties (in finite domains)
- Decidable (in finite domains)

Formal Verification

- Formal specification
- Covering all cases
- All types of requirements
- (Usually) undecidable

Our Running Example: OmniProtect

- OmniProtect is a safety module for an omnidirectional AGV such as the Kuka OmniMove.
 - Demonstration project only.
- It calculates a safety zone (the area needed for breaking until standstill).
- Documents produced:
 - Document plan
 - Concept paper
 - Fault Tree Analysis
 - Safety Requirements
 - more to come.

Summary

- ► Hazard Analysis is the **start** of the formal development.
- It produces safety requirements.
- Adherence to safety requirements has to be verified during development, and validated at the end.
- We distinguish different types of analysis:
 - Top-Down analysis (Fault Trees)
 - Bottom-up (FMEAs, Event Trees)
- Hazard Analysis is a creative process, as it takes an informal input ("system safety") and produces a formal outout (safety requirements). Its results cannot be formally proven, merely checked and reviewed.
- Next week: High-Level Specification.