
Systeme Hoher Qualität und Sicherheit
Vorlesung 9 vom 16.12.2013: Verification with Floyd-Hoare-Logic

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2410 1 [19]

Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

2 [19]

Floyd-Hoare logic in the Development Process

I The Floyd-Hoare calculus proves properties of sequential programs.
I Thus, it is at home in the lower levels of the verification branch,

much like the static analysis from last week.
I It is far more powerful than static analysis — and hence, far more
complex to use (it requires user interaction, and is not automatic).

3 [19]

Idea

I What does this compute?

I How can we prove this?
I Inuitively, we argue about which

value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

P := 1 ;
C := 1 ;
whi le C ≤ N do {

P := P × C ;
C := C + 1

}

4 [19]

Idea

I What does this compute? P = N!

I How can we prove this?

I Inuitively, we argue about which
value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

P := 1 ;
C := 1 ;
whi le C ≤ N do {

P := P × C ;
C := C + 1

}

4 [19]

Idea

I What does this compute? P = N!

I How can we prove this?
I Inuitively, we argue about which

value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le C ≤ N do {

P := P × C ;
C := C + 1

}
{P = N!}

4 [19]

Floyd-Hoare-Logic

I Floyd-Hoare-Logic consists of a set of rules to derive valid assertions
about programs. The assertions are denoted in the form of
Floyd-Hoare-Triples.

I The logical language has both logical variables (which do not change),
and program variables (the value of which changes with program
execution).

I Floyd-Hoare-Logic has one basic principle and one basic trick.

I The principle is to abstract from the program state into the logical
language; in particular, assignment is mapped to substitution.

I The trick is dealing with iteration: iteration corresponds to induction
in the logic, and thus is handled with an inductive proof. The trick
here is that in most cases we need to strengthen our assertion to
obtain an invariant.

5 [19]

Recall Our Small Language

I Arithmetic Expressions (AExp)

a ::= N | Loc | a1 + a2 | a1 − a2 | a1 × a2

with variables Loc, numerals N

I Boolean Expressions (BExp)

b ::= true | false | a1 = a2 | a1 < a2 | ¬b | b1 ∧ b2 | b1 ∨ b2

I Statements (Com)

c ::= skip | Loc := AExp | if b then c1 else c2
| while b do c | c1; c2 | {c}

6 [19]

Semantics of our Small Language
I The semantics of an imperative language is state transition: the

program has an ambient state, and changes it by assigning values to
certain locations

I Concrete example: execution starting with N = 3

P ?

C ?

N 3

P 1
C ?

N 3

P 1
C 1
N 3

P 1
C 1
N 3

 . . .

P 6
C 4
N 3

Semantics in a nutshell
I Expressions evaluate to values Val(in our case, integers)
I A program state maps locations to values: Σ = Loc⇀ Val
I A programs maps an initial state to possibly a final state (if it

terminates)
I Assertions are predicates over program states.

7 [19]

Floyd-Hoare-Triples

Partial Correctness (|= {P} c {Q})
c is partial correct with precondition P and postcondition Q if:
for all states σ which satisfy P
if the execution of c on σ terminates in σ′

then σ′ satisfies Q

Total Correctness (|= [P] c [Q])
c is total correct with precondition P and postcondition Q if:
for all states σ which satisfy P
the execution of c on σ terminates in σ′

and σ′ satisfies Q

I |= {true} while true do skip {false} holds

I |= [true] while true do skip [false] does not hold

8 [19]

Assertion Language

I Extension of AExp and BExp by
I logical variables Var v := n,m, p, q, k, l , u, v , x , y , z
I defined functions and predicates on Aexp n!,

∑n
i=1, . . .

I implication, quantification b1 ⇒ b2,∀v . b,∃v . b

I Aexpv

a ::= N | Loc | a1 + a2 | a1 − a2 | a1 × a2 | Var | f (e1, . . . , en)

I Bexpv

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2 | b1 ∨ b2
| b1 ⇒ b2 | p(e1, . . . , en) | ∀v . b | ∃v . b

9 [19]

Rules of Floyd-Hoare-Logic

I The Floyd-Hoare logic allows us to derive assertions of the form
` {P} c {Q}

I The calculus of Floyd-Hoare logic consists of six rules of the form

` {P1} c1 {Q1} . . . ` {Pn} cn {Qn}
` {P} c {Q}

I This means we can derive ` {P} c {Q} if we can derive ` {Pi} ci {Qi}

I There is one rule for each construction of the language.

10 [19]

Rules of Floyd-Hoare Logic: Assignment

` {B[e/X]}X := e {B}

I An assigment X:=e changes the state such that at location X we now
have the value of expression e. Thus, in the state before the
assignment, instead of X we must refer to e.

I It is quite natural to think that this rule should be the other way
around.

I Examples:

X := 10 ;
{0 < 10←→ (X < 10)[X/0]}
X := 0
{X < 10}

{X < 9←→ X + 1 < 10}
X := X+ 1
{X < 10}

11 [19]

Rules of Floyd-Hoare Logic: Conditional and
Sequencing

` {A ∧ b} c0 {B} ` {A ∧ ¬b} c1 {B}
` {A} if b then c0 else c1 {B}

I In the precondition of the positive branch, the condition b holds,
whereas in the negative branch the negation ¬b holds.

I Both branches must end in the same postcondition.

` {A} c0 {B} ` {B} c1 {C}
` {A} c0; c1 {C}

I We need an intermediate state predicate B.

12 [19]

Rules of Floyd-Hoare Logic: Iteration

` {A ∧ b} c {A}
` {A} while b do c {A ∧ ¬b}

I Iteration corresponds to induction. Recall that in (natural) induction
we have to show the same property P holds for 0, and continues to
hold: if it holds for n, then it also holds for n + 1.

I Analogously, here we need an invariant A which has to hold both
before and after the body (but not necessarily in between).

I In the precondition of the body, we can assume the loop condition
holds.

I The precondition of the iteration is simply the invariant A, and the
postcondition of the iteration is A and the negation of the loop
condition.

13 [19]

Rules of Floyd-Hoare Logic: Weakening
A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

c

All possible program states

A B

c

All possible program states

B'A'

I |= {A} c {B} means that whenever we start in a state where A holds,
c ends1 in state where B holds.

I Further, for two sets of states, P ⊆ Q iff P −→ Q.

I We can restrict the set A to A′ (A′ ⊆ A or A′ −→ A) and we can
enlarge the set B to B′ (B ⊆ B′ or B −→ B′), and obtain
|= {A′} c {B′}.

1If end it does.
14 [19]

Rules of Floyd-Hoare Logic: Weakening
A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

c

All possible program states

A B

c

All possible program states

B'A'

I |= {A} c {B} means that whenever we start in a state where A holds,
c ends1 in state where B holds.

I Further, for two sets of states, P ⊆ Q iff P −→ Q.
I We can restrict the set A to A′ (A′ ⊆ A or A′ −→ A) and we can

enlarge the set B to B′ (B ⊆ B′ or B −→ B′), and obtain
|= {A′} c {B′}.
1If end it does.

14 [19]

Overview: Rules of Floyd-Hoare-Logic

` {A} skip {A} ` {B[e/X]}X := e {B}

` {A ∧ b} c0 {B} ` {A ∧ ¬b} c1 {B}
` {A} if b then c0 else c1 {B}

` {A ∧ b} c {A}
` {A} while b do c {A ∧ ¬b}

` {A} c0 {B} ` {B} c1 {C}
` {A} c0; c1 {C}

A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

15 [19]

Properties of Hoare-Logic

Soundness
If ` {P} c {Q}, then |= {P} c {Q}

I If we derive a correctness assertion, it holds.
I This is shown by defining a formal semantics for the programming

language, and showing that all rules are correct wrt. to that semantics.

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I Failure to derive a correctness assertion is always due to a failure to
prove some logical statements (in the weakening).

I First-order logic itself is incomplete, so this result is as good as we can
get.

16 [19]

The Need for Verification

Consider the following variations of the faculty example.
Which ones are correct?

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le C≤N do {

C := C+1
P := P× C ;

}
{P = N!}

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le C<N do {

C := C+1
P := P×C ;

}
{P = N!}

{1 ≤ N ∧ n = N}
P := 1 ;
whi le 0<N do {

P := P×N ;
N := N−1

}
{P = n!}

17 [19]

A Hatful of Examples

{i = Y }
X := 1 ;
whi le ¬ (Y = 0) do {
Y := Y−1 ;
X := 2 ×X

}
{X = 2i}

{A ≥ 0 ∧ B ≥ 0}
Q := 0 ;
R := A−(B×Q) ;
whi le B ≤ R do {
Q := Q+1 ;
R := A−(B×Q)

}
{A = B ∗ Q + R ∧ R < B}

{0 < A}
T:= 1 ;
S:= 1 ;
I := 0 ;
whi le S ≤ A do {

T := T+ 2 ;
S := S+ T ;
I := I+ 1
}

{I ∗ I <= A ∧ A < (I + 1) ∗ (I + 1)}

18 [19]

A Hatful of Examples

{i = Y ∧ Y ≥ 0}
X := 1 ;
whi le ¬ (Y = 0) do {
Y := Y−1 ;
X := 2 ×X

}
{X = 2i}

{A ≥ 0 ∧ B ≥ 0}
Q := 0 ;
R := A−(B×Q) ;
whi le B ≤ R do {
Q := Q+1 ;
R := A−(B×Q)

}
{A = B ∗ Q + R ∧ R < B}

{0 < A}
T:= 1 ;
S:= 1 ;
I := 0 ;
whi le S ≤ A do {

T := T+ 2 ;
S := S+ T ;
I := I+ 1
}

{I ∗ I <= A ∧ A < (I + 1) ∗ (I + 1)}

18 [19]

Summary

I Floyd-Hoare logic in a nutshell:

I The logic abstracts over the concrete program state by program
assertions

I Program assertions are boolean expressions, enriched by logical variables
(and more)

I We can prove partial correctness assertions of the form |= {P} c {Q} (or
total |= [P] c [Q]).

I Validity (correctness wrt a real programming language) depends very
much on capturing the exact semantics formally.

I Floyd-Hoare logic itself is rarely used directly in practice, verification
condition generation is — see next lecture.

19 [19]

