
 

Systeme 
hoher Sicherheit 
und Qualität

Wintersemester 2013-14

Christoph Lüth 
MZH 3100, christoph.lueth@dfki.de, cxl@informatik.uni-bremen.de

Christian Liguda 
MZH 3180, christian.liguda@dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz

mailto:christoph.lueth@dfki.de


SQS, WS 13/14 2

Inhalt der Vorlesung

• Organisatorisches

• Überblick über die Veranstaltung

• Was ist Qualität?



   

ORGANISATORISCHES



SQS, WS 13/14 4

Generelles

• Einführungsvorlesung zum Masterprofil Sicherheit und Qualität

• 6 ETCS-Punkte

• Vorlesung
 Montag  12 c.t – 14 Uhr (MZH 1110)

• Übungen: 
 Dienstag 12 c.t. – 14 Uhr (MZH 1450)

• Webseite:

http://www.informatik.uni-bremen.de/~cxl/lehre/sqs.ws13/ 



SQS, WS 13/14

Folien, Übungsblätter, etc.

Folien

• Folien sind auf Englisch (Notationen!)

• Folien der Vorlesung gibt es auf der Homepage

• Folien sind (üblicherweise) nach der Vorlesung verfügbar

Übungen

• Übungsblätter gibt es auf dem Web

• Ausgabe Montag abend/Dienstag morgen

 Erstes Übungsblatt heute

• Abgabe vor der Vorlesung

– Persönlich hier, oder per Mail bis Montag 12:00



SQS, WS 13/14 6

Literatur

• Foliensätze als Kernmaterial

• Ausgewählte Fachartikel als Zusatzmaterial

• Es gibt (noch) keine Bücher, die den Vorlesungsinhalt komplett erfassen
    (Wer hat Lust, bei einem Skript mitzuhelfen?)

• Zum weiteren Stöbern
 Wird im Verlauf der Vorlesung bekannt gegeben



SQS, WS 13/14 7

Prüfungen

• Fachgespräch oder Modulprüfung
 Anmeldefristen beachten!
 Individuelle Termine nach Absprache Februar / März

• Fachgespräch
 Notenspiegel:

• Modulprüfung
 Keine Abgabe der Übungsblätter nötig 

(aber Bearbeitung dringend angeraten !!!)

Prozent Note Prozent Note Prozent Note Prozent Note

89.5-85 1.7 74.5-70 2.7 59.5-55 3.7

100-95 1.0 84.5-80 2.0 69.5-64 3.0 54.5-50 4.0

94.5-90 1.3 79.5-75 2.3 64.5-60 3.3 49.5-0 N/b



 

OVERVIEW



SQS, WS 13/14 9

Objectives

• This is an introductory lecture for the topics
Quality     –      Safety    –    Security

• The lecture reflects the fundamentals of the research focus quality, safety & 
security at the department of Mathematics and Computer Science FB3 at the 
University of Bremen

• Recall: the three focal points of computer science research at the FB3 are
 Digital Media
 Artificial Intelligence and Cognition
 Quality, Safety & Security

•  Disclaimer
 “Lecture Eintopf”
 Choice of material reflects personal preferences



SQS, WS 13/14 10

Why Bother with S & Q?

Ariane 5

StuxnetStuxnet

Chip & PINChip & PIN

Flight  AF 447Flight  AF 447

Our carOur car

Friday October 7,2011 Friday October 7,2011 
By Daily Express Reporter By Daily Express Reporter 

AN accounting error yesterday forced outsourcing AN accounting error yesterday forced outsourcing 
specialist Mouchel into a major profits warning and specialist Mouchel into a major profits warning and 
sparked the resignation of its chief executive. sparked the resignation of its chief executive. 



SQS, WS 13/14 11

Why did Ariane-5 crash?

• Self-destruction due to instability;
• Instability due to wrong steering movements (rudder);
• On-board computer tried to compensate for (assumed) wrong trajectory;
• Trajectory was calculated wrongly because own position was wrong;
• Own position was wrong because positioning system had crashed;
• Positioning system had crashed because transmission of sensor data to ground 

control failed with integer overflow;
• Integer overflow occurred because values were too high;
• Values were too high because positioning system was integrated unchanged 

from predecessor model, Ariane-4;
• This assumption was not documented because it was satisfied tacitly with 

Ariane-4. 

• Positioning system was redundant, but both systems failed (systematic error).
• Transmission of data to ground control also not necessary.



SQS, WS 13/14 12

Engineering Sciences

• Mathematical theories
 Statics
 Computational models



SQS, WS 13/14 13

What is Safety and Security

• Safety
 product achieves acceptable levels of risk or harm to people, business, 

software, property or the environment in a specified context of use
 Threats from “inside”

► Avoid malfunction of a system 
(e.g. planes, cars, railways…)

• Security
 Product is protected against potential attacks from people, environment 

etc. 
 Threats from “outside” 

► Analyze and counteract the abilities of an attacker



SQS, WS 13/14 14

Software Development

Definition of software engineering processes and 
documents

• V-model

• Model Driven
      Architectures

• Agile Development



SQS, WS 13/14 15

Formal Software Development

mathematicalmathematical  notionsnotions

informal definitioninformal definition

programprogram

refinem
ent

refinem
ent

abstractabstract  
specificationspecification requirementsrequirements

proofsproofs



SQS, WS 13/14 16

Verification & Validation

• Verification: have we built the system right (i.e. correct)?
• Validation: have we built the right system (i.e. adequate)?
• Testing

 Test case generation, black- vs. white box
• Symbolic evaluation

 Program runs using symbolic values
• Static/dynamic program analysis

 Dependency graphs, flow analysis
• Model checking

 Formal verification of finite state problem
• Formal Verification

 Formal verification of requirements, program properties…



SQS, WS 13/14 17

Overview of Lecture Series

• Lecture 01: Concepts of Quality
• Lecture 02: Concepts of Safety, Legal Requirements, Certification
• Lecture 03: A Safety-critical Software Development Process
• Lecture 04: Requirements Analysis
• Lecture 05: High-Level Design & Detailed Specification

• Lecture 06: Testing
• Lecture 07 and 08: Program Analysis
• Lecture 09: Model-Checking 
• Lecture 10 and 11: Software Verification (Hoare-Calculus)

• Lecture 12: Concurrency
• Lecture 13: Conclusions



 18

Concepts of  Quality



SQS, WS 13/14 19

What is Quality

• The quality is the collection of its characteristic properties

• Quality model: decomposes the high-level definition by 
associating attributes (also called characteristics, factors, or 
criteria) to the quality conception

• Quality indicators associate metric values with quality criteria, 
expressing “how well” the criteria have been fulfilled by the 
process or product 



SQS, WS 13/14 20

Quality Criteria

• For the development of artifacts quality criteria can be measured 
with respect to the
 development process (process quality) (later in this lecture)
 final product (product quality)

• Another dimension for structuring quality conceptions is 
 Correctness: the consistency with the product and its associated 

requirements specifications
 Effectiveness: the suitability of the product for its intended purpose



SQS, WS 13/14 21

Quality Criteria (cont.)

• A third dimension structures quality according to product 
properties:
 Functional properties: the specified services to be delivered to the 

users
 Structural properties: architecture, interfaces, deployment, control 

structures
 Non-functional properties: usability, safety, reliability, availability, 

security, maintainability, guaranteed worst-case execution time 
(WCET), costs, absence of run-time errors, …



SQS, WS 13/14 22

Quality (ISO/IEC 25010/12)

Quality model framework

• Product quality model
 Categorizes system/software product quality properties

• Quality in use model
 Defines characteristics related to outcomes of interaction with a 

system

• Quality of data model
 Categorizes data quality attributes



SQS, WS 13/14 23

Product 
Quality

Functional

suitability

Completeness
Correctness

Appropriateness

Performance
efficiency

Time behavior
Resource 
utilization
Capacity

Compatibility

Co-existence
Interoperability

Usability

Appropriateness 
recognizability

Learnability
Operability
User error 
protection

User interface 
asthetics

Accessibility

Reliability

Maturity
Availability

Fault tolerance
Recoverability

Security

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability

Analysability
Modifiability
Testability

Portability

Adaptability
Installability

Replaceability

Product Quality Model

Source:  ISO/IEC FDIS 25010



SQS, WS 13/14 24

Functional Suitability

• The capability of the software product to provide functions which 
meet stated and implied needs when the software is used under 
specified conditions

• Characteristics
 Completeness: degree to which the set of functions cover the 

specified tasks and objectives
 Correctness: degree to which a system / product provides the 

correct results within  the needed degree of precision
 Appropriateness: degree to which the functions facilitate the 

accomplishment of specified tasks and objectives



SQS, WS 13/14 25

Performance Efficiency

• The capability of the software product to provide appropriate 
performance, relative to the amount of resources used, when 
used under specified conditions

• Characteristics
 Time behavior: degree to which the response and processing 

times and throughput rates of a product meet requirement, when 
performing its functions

 Resource utilization: degree to which the amounts and types of 
resources used by a product meet requirements when performing 
its functions

 Capacity: degree to which the maximum limits of a product 
parameter meet requirements



SQS, WS 13/14 26

Compatibility

• The capability of the software product to exchange information 
with other products, systems or components, and/or perform its 
required functions, while sharing the same hardware or software 
environment

• Characteristics 
 Co-Existence: degree to which a product can perform its required 

functions efficiently while sharing a common environment and 
resources with other products, without detrimental impact on any 
other product

 Interoperability: degree to which two or more systems, products or 
components can exchange information and use the information that 
has been exchanged



SQS, WS 13/14 27

Usability

• The capability of the software product to be used by specified users to achieve 
specified goals with effectiveness, efficiency and satisfaction in a specified context 
of use

• Characteristics
 Appropriateness Recognizability: degree to which users can recognize whether a 

product is appropriate for their needs
 Learnability: degree to which a product or system can be used by specified users to 

achieve specified goals of learning to use the product with effectiveness, efficiency, 
freedom from risk and satisfaction in a specified context of use

 Operability: degree to which a product or system has attributes that make it easy to 
operate and control 

 User Error Protection: degree to which a system protects users against making errors
 User Interface Aesthetics: degree to which a user interface enables pleasing and 

satisfying interaction for the user
 Accessibility: degree to which a product or system can be used by people with the 

widest range of characteristics and capabilities to achieve a specified goal in a specified 
context of use



SQS, WS 13/14 28

Reliability

• The capability of the software product to perform specified 
functions under specified conditions for a specified period of 
times

• Characteristics
 Maturity: degree to which a system meets needs for reliability under 

normal operation
 Availability: degree to which a system, product or component is 

operational and accessible when required for use
 Fault tolerance: degree to which a system, product or component 

operates as intended despite the presence of hardware or software 
faults

 Recoverability: degree to which, in the event of an interruption or a 
failure, a product or system can recover the data directly affected and 
re-establish the desired state of the system



SQS, WS 13/14 29

Security

• The capability of the software product to protect information and data so that 
persons or other products or systems have the degree of data access 
appropriate to their types and levels of authorization

• Characteristics
 Confidentiality: degree to which a product or system ensures that data are 

accessible only to those authorized to have access
 Integrity: degree to which a system, product or component prevents unauthorized 

access to, or modification of, computer programs or data
 Non-Repudiation: degree to which actions or events can be proven to have taken 

place, so that the events or actions cannot be repudiated later
 Accountability: degree to which the actions of an entity can be traced uniquely to 

the entity
 Authenticity: degree to which the identity of a subject or resource can be proved 

to be the one claimed

 



SQS, WS 13/14 30

Maintainability

• The degree of effectiveness and efficiency with which a product or system can 
be modified by the intended maintainers

• Characteristics
 Modularity: degree to which a system or computer program is composed of discrete 

components such that a change to one component has minimal impact on other 
components

 Reusability: degree to which an asset can be used in more than one system, or in 
building other assets 

 Analysability: degree of effectiveness and efficiency with which it is possible to 
assess the impact on a product or system of an intended change to one or more of its 
parts, or to diagnose a product for deficiencies or causes of failures, or to identify 
parts to be modified

 Modifiability: degree to which a product or system can be effectively and efficiently 
modified without introducing defects or degrading existing product quality

 Testability: degree of effectiveness and efficiency with which test criteria can be 
established for a system, product or component and tests can be performed to 
determine whether those criteria have been met



SQS, WS 13/14 31

Portability

• The capability of the software product to be from one 
hardware, software or other operational or usage 
environment to another 

• Characteristics
 Adaptability: degree to which a product or system can effectively 

and efficiently be adapted for different or evolving hardware, 
software or other operational or usage environments

 Installability: degree of effectiveness and efficiency with which a 
product or system can be successfully installed and/or uninstalled in 
a specified environment

 Replaceability: degree to which a product can be replaced by 
another specified software product for the same purpose in the 
same environment



SQS, WS 13/14 32

System Quality Life Cycle Model

 

System
Quality in Use

Computer System
Quality

Software Product
Quality

System
Quality in Use
Requirements

Computer System
Quality 

Requirements

Software Product
Quality

Requirements

Implementation

Quality in Use Needs

ProductsRequirements

Validation

Verification
Validation

Verification
Validation

System 
Quality in 
Use Model

System
and 

Software 
Product 
Quality 
Model

Source:  ISO/IEC FDIS 25010



SQS, WS 13/14 33

Quality in Use Model



SQS, WS 13/14 34

Effectiveness

• The accuracy and completeness with which users 
achieve specified goals

• No further characteristics



SQS, WS 13/14 35

Efficiency

• The resources expended in relation to the accuracy and 
completeness with which users achieve goals

• No further characteristics



SQS, WS 13/14 36

Satisfaction

• The degree to which user needs are satisfied when a product or 
system is used in a specified context of use

• Characteristics
 Usefulness: degree to which a user is satisfied with their perceived 

achievement of pragmatic goals, including the results of use and 
the consequences of use

 Trust: degree to which a user or other stakeholder has confidence 
that a product or system will behave as intended

 Pleasure: degree to which a user obtains pleasure from fulfilling 
their personal needs

 Comfort: degree to which the user is satisfied with physical comfort



SQS, WS 13/14 37

Freedom From Risk (Safety)

• The capability of the software product to mitigate the potential 
risk to economic status, human life, health, or the environment 

• Characteristics
 Economic risk mitigation: degree to which a product or system 

mitigates the potential risk to financial status, efficient operation, 
commercial property, reputation or other resources in the intended 
contexts of use

 Health and safety risk mitigation: degree to which a product or 
system mitigates the potential risk to people in the intended contexts 
of use

 Environmental risk mitigation: degree to which a product or system 
mitigates the potential risk to property or the environment in the 
intended contexts of use



SQS, WS 13/14 38

Context Coverage

• The capability of the software product to be used with 
effectiveness, efficiency, freedom from risk and satisfaction 
in both specified contexts of use and in contexts beyond 
those initially explicitly identified 

• Characteristics
 Context completeness: degree to which a product or system can 

be used with effectiveness, efficiency, freedom from risk and 
satisfaction in all the specified contexts of use

 Flexibility: degree to which a product or system can be used with 
effectiveness, efficiency, freedom from risk and satisfaction in 
contexts beyond those initially specified in the requirements



SQS, WS 13/14 39

Product 
Quality

Functional

suitability

Completeness
Correctness

Appropriateness

Performance
efficiency

Time behavior
Resource 
utilization
Capacity

Compatibility

Co-existence
Interoperability

Usability

Appropriateness 
recognizability

Learnability
Operability
User error 
protection

User interface 
asthetics

Accessibility

Reliability

Maturity
Availability

Fault tolerance
Recoverability

Security

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability

Analysability
Modifiability
Testability

Portability

Adaptability
Installability

Replaceability

Focus of Interest

Source:  ISO/IEC FDIS 25010

How can we „guarantee“ safety and security ?



SQS, WS 13/14 40

Other Norms and Standards

• ISO 9001 (DIN ISO 9000-4):
– Standardizes definition and supporting principles necessary 

for a quality system to ensure products meet 
requirements

– “Meta-Standard”

• CMM (Capability Maturity Model), Spice
– Standardises maturity of development process

● Level 1 (initial): Ad-hoc
● Level 2 (repeatable): process dependent on individuals
● Level 3 (Defined): process defined & institionalized
● Level 4 (Managed): measured process
● Level 5 (optimizing): improvement fed back into process



SQS, WS 13/14 41

Summary

• Quality:
– collection of characteristic properties
– quality indicators measuring quality criteria

• Relevant aspects of quality here:
– Functional suitability
– Reliability
– Security 



  SQS, WS 13/14   SQS, WS 13/14 

Systeme hoher Qualität und Sicherheit 
Universität Bremen, WS 2013/14 

Christoph Lüth 
Christian Liguda 

Lecture 02 (28.10.2013) 
 

Concepts of Safety and Security 



  SQS, WS 13/14   SQS, WS 13/14 

Where are we? 

Lecture 01: Concepts of Quality 

Lecture 02: Concepts of Safety and Security, Norms and Standards 

Lecture 03: A Safety-critical Software Development Process 

Lecture 04: Requirements Analysis 

Lecture 05: High-Level Design & Detailed Specification 
 

Lecture 06: Testing 

Lecture 07 and 08: Program Analysis 

Lecture 09: Model-Checking 

Lecture 10 and 11: Software Verification (Hoare-Calculus) 
 

Lecture 12: Concurrency 

Lecture 13: Conclusions 

 



  SQS, WS 13/14   SQS, WS 13/14 

Synopsis 
  

If you want to write safety-criticial software, 

then you need to adhere to state-of-the-art practise 

as encoded by the relevant norms & standards. 

Today: 

 What is safety and security? 

 Why do we need it?  Legal background. 

 How is it ensured? Norms and standards 

► IEC 61508 – Functional safety 

► IEC 15408 – Common criteria (security) 

 

 

 

 

 



  SQS, WS 13/14   SQS, WS 13/14 

The Relevant Question 

If something goes wrong: 

 Whose fault is it? 

 Who pays for it? 

That is why most (if not all) of these standards put a lot 
of emphasis on process and traceability. Who decided to 
do what, why, and how?  

The bad news: 

 As a qualified professional, you may become personally 
liable if you deliberately and intentionally (grob 
vorsätzlich) disregard the state of the art. 

The good news: 

 Pay attention here and you will be sorted. 

 

 



  SQS, WS 13/14   SQS, WS 13/14 

Safety: 
IEC 61508  

and other norms & standards 



  SQS, WS 13/14   SQS, WS 13/14 

What is Safety? 
 

Absolute definition: 

 „Safety is freedom from accidents or losses.“  

► Nancy Leveson, „Safeware: System safety and computers“ 

But is there such a thing as absolute safety?  

Technical definition: 

 „Sicherheit: Freiheit von unvertretbaren Risiken“ 

► IEC 61508-4:2001, §3.1.8 

Next week: a safety-critical development process 



  SQS, WS 13/14   SQS, WS 13/14 

Some Terminology 

Fail-safe vs. Fail operational 

 

Safety-critical, safety-relevant (sicherheitskritisch) 

 General term --  failure may lead to risk  

 Safety function (Sicherheitsfunktion) 

 Techncal term, that functionality which ensures safety 

Safety-related (sicherheitsgerichtet, sicherheitsbezogen) 

 Technical term, directly related to the safety function 

 



  SQS, WS 13/14   SQS, WS 13/14 

Legal Grounds 

The machinery directive: 

The Directive 2006/42/EC of the European Parliament and of the 
Council of 17 May 2006 on machinery, and amending Directive 
95/16/EC (recast) 

Scope: 

 Machineries (with a drive system and movable parts). 

Structure: 

 Sequence of whereas clauses (explanatory) 

 followed by 29 articles (main body) 

 and 12 subsequent annexes (detailed information about 
particular fields, e.g. health & safety) 

Some application areas have their own regulations: 

 Cars and motorcycles, railways, planes, nuclear plants … 

http://ec.europa.eu/enterprise/sectors/mechanical/documents/legislation/machinery/
http://ec.europa.eu/enterprise/sectors/mechanical/documents/legislation/machinery/
http://ec.europa.eu/enterprise/sectors/mechanical/documents/legislation/machinery/


  SQS, WS 13/14   SQS, WS 13/14 

What does that mean? 

Relevant for all machinery (from tin-opener to AGV) 

Annex IV lists machinery where safety is a concern 

Standards encode current best practice. 

 Harmonised standard available? 

External certification or self-certification 

 Certification ensures and documents conformity to 
standard. 

Result: 

 

 

Note that the scope of the directive is market 
harmonisation, not safety – that is more or less a 
byproduct. 



  SQS, WS 13/14   SQS, WS 13/14 

The Norms and Standards Landscape 

• First-tier standards (A-Normen): 

• General, widely applicable, no specific area of application 

• Example: IEC 61508 

• Second-tier standards (B-Normen): 

• Restriction to a particular area of application 

• Example: ISO 26262 (IEC 61508 for automotive) 

• Third-tier standards (C-Normen): 

• Specific pieces of equipment 

• Example: IEC 61496-3 (“Berührungslos wirkende 
Schutzeinrichtungen”) 

• Always use most specific norm. 



  SQS, WS 13/14   SQS, WS 13/14 

Norms for the Working Programmer 

IEC 61508: 

 “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES)” 

 Widely applicable, general, considered hard to understand  

ISO 26262 

 Specialisation of 61508 to cars (automotive industry) 

DIN EN 50128  

 Specialisation of 61508 to software for railway industry 

RTCA DO 178-B: 

 “Software Considerations in Airborne Systems and Equipment Certification“ 

 Airplanes, NASA/ESA 

ISO 15408:  

 “Common Criteria for Information Technology Security Evaluation” 

 Security, evolved from TCSEC (US), ITSEC (EU), CTCPEC (Canada)  

 

 



  SQS, WS 13/14   SQS, WS 13/14 

Introducing IEC 61508 

Part 1: Functional safety management, competence, 
 establishing SIL targets  

Part 2: Organising and managing the life cycle 

Part 3: Software requirements 

Part 4: Definitions and abbreviations 

Part 5: Examples of methods for the determination of 
safety-integrity levels 

Part 6: Guidelines for the application 

Part 7: Overview of techniques and measures 

 

  



  SQS, WS 13/14   SQS, WS 13/14 

How does this work? 

1. Risk analysis determines the safety integrity level (SIL) 

2. A hazard analysis leads to safety requirement 
specification. 

3. Safety requirements must be satisfied 

 Need to verify this is achieved. 

 SIL determines amount of testing/proving etc. 

4. Life-cycle needs to be managed and organised 

 Planning: verification & validation plan 

 Note: personnel needs to be qualified. 

5. All of this needs to be independently assessed. 

 SIL determines independence of assessment body. 

 



  SQS, WS 13/14   SQS, WS 13/14 

Safety Integrity Levels 

SIL High Demand 
(more than once a year) 

Low Demand 
(once a year or less)  

4 10-9 < P/hr < 10-8 10-5 < P/yr < 10-4 

3 10-8 < P/hr < 10-7 10-4 < P/yr < 10-3 

2 10-7 < P/hr < 10-6 10-3 < P/yr < 10-2 

1 10-6 < P/hr < 10-5 10-2 < P/yr < 10-1 

• P: Probabilty of dangerous failure (per hour/year) 

• Examples: 

 High demand: car brakes 

 Low demand: airbag control 

• Which SIL to choose?  Risk analysis 

• Note: SIL only meaningful for specific safety functions. 

 



  SQS, WS 13/14   SQS, WS 13/14 

Establishing target SIL I  

IEC 61508 does not describe standard procedure to 
establish a SIL target, it allows for alternatives: 

Quantitative approach 

 Start with target risk level 

 Factor in fatality and  
frequency 

 

Example: 

 Safety system for a chemical plant  

 Max. tolerable risk exposure A=10-6 

 B= 10-2 hazardous events lead to fatality 

 Unprotected process fails C= 1/5 years 

 Then Failure on Demand E = A/(B*C) = 5*10-3, so SIL 2 

 

Maximum tolerable 

risk of fatality 

Individual risk  

(per annum) 

Employee 10-4 

Public 10-5 

Broadly acceptable 

(„Neglibile“) 

10-6 



  SQS, WS 13/14   SQS, WS 13/14 

Establishing target SIL II 

Risk graph approach 

 

 

 

 

 

 

 

 

 

 

 

Example: safety braking system for an AGV 

 



  SQS, WS 13/14   SQS, WS 13/14 

What does the SIL mean for the 
development process? 

In general:  

 „Competent“ personnel 

 Independent assessment („four eyes“) 

SIL 1: 

 Basic quality assurance (e.g ISO 9001) 

SIL 2: 

 Safety-directed quality assurance, more tests 

SIL 3: 

 Exhaustive testing, possibly formal methods 

 Assessment by separate department 

SIL 4: 

 State-of-the-art practices, formal methods 

 Assessment by separate organisation 

 



  SQS, WS 13/14   SQS, WS 13/14 

Increasing SIL by redudancy 

One can achieve a higher SIL by combining 
independent systems with lower SIL 
(„Mehrkanalsysteme“). 

 Given two systems A,  B with failure probabilities 𝑃𝐴, 𝑃𝐵, 
the chance for failure of both is (with 𝑃𝐶𝐶 probablity of 
common-cause failures): 

𝑃𝐴𝐵 = 𝑃𝐶𝐶 + 𝑃𝐴𝑃𝐵 

Hence, combining two SIL 3 systems may give you a SIL 4 
system. 

However, be aware of systematic errors (and note  that 
IEC 61508 considers all software errors to be 
systematic).  

Note also that for fail-operational systems you need 
three (not two) systems. 



  SQS, WS 13/14   SQS, WS 13/14 

The Safety Life Cycle 



  SQS, WS 13/14   SQS, WS 13/14 

The Software Development Process   

61508 mandates a V-model software development 
process 

 More next lecture 

Appx A, B give normative guidance on measures to 
apply: 

 Error detection needs to be taken into account (e.g 
runtime assertions, error detection codes, dynamic 
supervision of data/control flow) 

 Use of strongly typed programming languages (see table) 

 Discouraged use of certain features: recursion(!), dynamic 
memory, unrestricted pointers, unconditional jumps 

 Certified tools and compilers must be used. 

► Or `proven in use´ 

 



  SQS, WS 13/14   SQS, WS 13/14 

Proven in Use  
  
 As an alternative to systematic development, statistics 

about usage may be employed. This is particularly 
relevant 

 for development tools (compilers, verification tools etc), 

 and for re-used software (in particular, modules). 

 Note that the previous use needs to be to the same 
specification as intended use (eg. compiler: same target 
platform). 

SIL Zero Failure  One Failure 

1 12 ops 12 yrs 24 ops 24 yrs 

2 120 ops 120 yrs 240 ops 240 yrs 

3 1200 ops 1200 yrs 2400 ops 2400 yrs 

4 12000 ops 12000 yrs 24000 ops 24000 yrs 



  SQS, WS 13/14   SQS, WS 13/14 

Table A.2, Software Architecture 



  SQS, WS 13/14   SQS, WS 13/14 

Table A.4- Software Design & 
Development 



  SQS, WS 13/14   SQS, WS 13/14 

Table A.9 – Software Verification 



  SQS, WS 13/14   SQS, WS 13/14 

Table B.1 – Coding Guidelines 

Table C.1, 
programming 
languages, mentions: 

 ADA, Modula-2, 
Pascal, FORTRAN 
77, C, PL/M, 
Assembler, … 

Example for a 
guideline: 

 MISRA-C: 2004, 
Guidelines for the 
use of the C 
language in critical 
systems. 



  SQS, WS 13/14   SQS, WS 13/14 

Table B.5 - Modelling 



  SQS, WS 13/14   SQS, WS 13/14 

Certification 

Certiciation is the process of showing conformance to a standard. 

Conformance to IEC 61508 can be shown in two ways: 

 Either that an organisation (company) has in principle the ability to 
produce a product conforming to the standard, 

 Or that a specific product (or system design) conforms to the standard. 

Certification can be done by the developing company (self-
certification), but is typically done by an accredited body. 

 In Germany, e.g. the TÜVs or the Berufsgenossenschaften (BGs) 

Also sometimes (eg. DO-178B) called ̀ qualification‘.  



  SQS, WS 13/14   SQS, WS 13/14 

Security: 
The Common Criteria 



  SQS, WS 13/14   SQS, WS 13/14 

Common Criteria (IEC 15408 ) 

 
• This multipart standard, the Common Criteria (CC), is meant to be 

used as the basis for evaluation of security properties of IT 
products and systems. By establishing such a common criteria base, 
the results of an IT security evaluation will be meaningful to a wider 
audience. 

 

The CC is useful as a guide for the development of products or 
systems with IT security functions and for the procurement of 
commercial products and systems with such functions.  

 

During evaluation, such an IT product or system is known as a 
Target of Evaluation (TOE) .  

 Such TOEs include, for example, operating systems, computer 
networks, distributed systems, and applications. 



  SQS, WS 13/14   SQS, WS 13/14 

General Model 

Security is concerned with the 
protection of assets. Assets are 
entities that someone places 
value upon.  

 

Threats give rise to risks to the 
assets, based on the likelihood 
of a threat being realized and its 
impact on the assets  

 

(IT and non-IT) Counter-
measures are imposed to 
reduce the risks to assets. 



  SQS, WS 13/14   SQS, WS 13/14 

Common Criteria (CC) 

• The CC addresses protection of information from unauthorized 
disclosure, modification, or loss of use. The categories of protection 
relating to these three types of failure of security are commonly 
called confidentiality, integrity, and availability, respectively. 

 

• The CC may also be applicable to aspects of IT security outside of 
these three.  

 

The CC concentrates on threats to that information arising from 
human activities, whether malicious or otherwise, but may be 
applicable to some non-human threats as well.  

 

In addition, the CC may be applied in other areas of IT, but makes 
no claim of competence outside the strict domain of IT security.  

 

 



  SQS, WS 13/14   SQS, WS 13/14 

Concept of Evaluation 



  SQS, WS 13/14   SQS, WS 13/14 

 

Requirements Analysis 

• The security environment includes all the laws, organizational 
security policies, customs, expertise and knowledge that are 
determined to be relevant.  

• It thus defines the context in which the TOE is intended to be 
used.  

• The security environment also includes the threats to security 
that are, or are held to be, present in the environment. 

 

A statement of applicable organizational security policies would 
identify relevant policies and rules.  

 For an IT system, such policies may be explicitly referenced, 
whereas for a general purpose IT product or product class, 
working assumptions about organizational security policy may 
need to be made. 

 



  SQS, WS 13/14   SQS, WS 13/14 

Requirements Analysis 

• A statement of assumptions which are to be met by the 
environment of the TOE in order for the TOE to be considered 
secure.  

• This statement can be accepted as axiomatic for the TOE 
evaluation. 

 
A statement of threats to security of the assets would identify all 
the threats perceived by the security analysis as relevant to the TOE.  
 The CC characterizes a threat in terms of a threat agent, a 

presumed attack method, any vulnerabilities that are the 
foundation for the attack, and identification of the asset under 
attack. 
 

An assessment of risks to security would qualify each threat with an 
assessment of the likelihood of such a threat developing into an 
actual attack, the likelihood of such an attack proving successful, 
and the consequences of any damage that may result. 
 



  SQS, WS 13/14   SQS, WS 13/14 

 

Requirements Analysis 

• The intent of determining security objectives is to address all of 
the security concerns and to declare which security aspects are 
either addressed directly by the TOE or by its environment.  

• This categorization is based on a process incorporating 
engineering judgment, security policy, economic factors and 
risk acceptance decisions. 

• Corresponds to (part of) requirements definition ! 

 

The results of the analysis of the security environment could then 
be used to state the security objectives that counter the identified 
threats and address identified organizational security policies and 
assumptions.  

 

The security objectives should be consistent with the stated 
operational aim or product purpose of the TOE, and any knowledge 
about its physical environment. 



  SQS, WS 13/14   SQS, WS 13/14 

Requirements Analysis 

 

• The security objectives for the environment would be 
implemented within the IT domain, and by non-technical 
or procedural means. 

 

• Only the security objectives for the TOE and its IT 
environment are addressed by IT security requirements. 

 



  SQS, WS 13/14   SQS, WS 13/14 

 

Requirements Analysis 

• The IT security requirements are the refinement of the security 
objectives into a set of security requirements for the TOE and 
security requirements for the environment which, if met, will ensure 
that the TOE can meet its security objectives. 

• The CC presents security requirements under the distinct categories 
of functional requirements and assurance requirements. 

 

Functional requirements 

 Security behavior of IT-system 

 E.g. identification & authentication, cryptography,… 

Assurrance Requirements 

 Establishing confidence in security functions 

 Correctness of implementation 

 E.g. Developement, life cycle support, testing, … 



  SQS, WS 13/14   SQS, WS 13/14 

 

Functional Requirement 

• The functional requirements are levied on those 
functions of the TOE that are specifically in support of IT 
security, and define the desired security behavior.  

 

• Part 2 defines the CC functional requirements. Examples 
of functional requirements include requirements for 
identification, authentication, security audit and non-
repudiation of origin. 



  SQS, WS 13/14   SQS, WS 13/14 

Security Functional Components 

Class FAU: Security audit 

Class FCO: Communication  

Class FCS: Cryptographic support  

Class FDP: User data protection  

Class FIA: Identification and authentication  

Class FMT: Security management  

Class FPR: Privacy 

Class FPT: Protection of the TSF  

Class FRU: Resource utilisation  

Class FTA: TOE access  

Class FTP: Trusted path/channels  

 

 

  

 

 



  SQS, WS 13/14   SQS, WS 13/14 

Security Functional Components  

Content and presentation of the functional 
requirements 

 



  SQS, WS 13/14   SQS, WS 13/14 

Decomposition of FDP 

FDP : User Data Protection 

 



  SQS, WS 13/14   SQS, WS 13/14 

FDP – Information Flow Control 

FDP_IFC.1 Subset information flow control  

Hierarchical to: No other components.  

Dependencies: FDP_IFF.1 Simple security attributes  

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on 
[assignment: list of subjects, information, and operations that cause controlled 
information to flow to and from controlled subjects covered by the SFP].  

 

FDP_IFC.2 Complete information flow control  

Hierarchical to: FDP_IFC.1 Subset information flow control  

Dependencies: FDP_IFF.1 Simple security attributes  

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on 
[assignment: list of subjects and information] and all operations that cause that 
information to flow to and from subjects covered by the SFP.  

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in 
the TOE to flow to and from any subject in the TOE are covered by an information 
flow control SFP.  



  SQS, WS 13/14   SQS, WS 13/14 

Assurance Requirements 

 

Assurance Approach 

 

“The CC philosophy is to provide assurance based upon an 
evaluation (active investigation) of the IT product that is to 
be trusted. Evaluation has been the traditional means of 
providing assurance and is the basis for prior evaluation 
criteria documents. “ 

 

     

CC, Part 3, p.15 



  SQS, WS 13/14   SQS, WS 13/14 

Assurance Requirements 

• The assurance requirements are levied on 
actions of the developer, on evidence 
produced and on the actions of the evaluator.  

• Examples of assurance requirements include 
constraints on the rigor of the development 
process and requirements to search for and 
analyze the impact of potential security 
vulnerabilities. 

The degree of assurance can be varied for a 
given set of functional requirements; therefore 
it is typically expressed in terms of increasing 
levels of rigor built with assurance 
components. 

Part 3 defines the CC assurance requirements 
and a scale of evaluation assurance levels 
(EALs) constructed using these components.  

 



  SQS, WS 13/14   SQS, WS 13/14 

Assurance Components 

Class APE: Protection Profile evaluation  

Class ASE: Security Target evaluation  

Class ADV: Development  

Class AGD: Guidance documents   

Class ALC: Life-cycle support  

Class ATE: Tests  

Class AVA: Vulnerability assessment  

Class ACO: Composition  

 



  SQS, WS 13/14   SQS, WS 13/14 

Assurance Components: Example 

ADV_FSP.1 Basic functional specification 
 

EAL-1:   … The functional specification shall describe the purpose and method of use for each SFR-               
enforcing and SFR-supporting TSFI.  

 

EAL-2:   … The functional specification shall completely represent the TSF.  

 

EAL-3:    + … The functional specification shall summarize the SFR-supporting and SFR-non-
interfering          actions associated with each TSFI. 

 

EAL-4:   + … The functional specification shall describe all direct error messages that may          
result from an invocation of each TSFI. 

 

EAL-5:  … The functional specification shall describe the TSFI using a semi-formal style.  

 

EAL-6:  … The developer shall provide a formal presentation of the functional specification of  
       the TSF. The formal presentation of the functional specification of the TSF shall  
       describe the TSFI using a formal style, supported by informal, explanatory text 
       where appropriate. 
 

(TSFI : Interface of the TOE Security Functionality (TSF),  SFR : Security Functional Requirement ) 

D
e
g

re
e
 o

f A
s
s
u

rra
n

c
e
 



  SQS, WS 13/14   SQS, WS 13/14 

Evaluation Assurance Level  

EALs define levels of 
assurance (no guarantees) 

 
1. functionally tested 

2. structurally tested  

3. methodically tested and checked  

4. methodically designed, tested, and 
reviewed  

5. semiformally designed and tested  

6. semiformally verified design and 
tested  

7. formally verified design and tested  



  SQS, WS 13/14   SQS, WS 13/14 

Assurance Requirements 

• EAL5 – EAL7 require formal methods. 
 

• according to CC Glossary:  
 
Formal:  Expressed in a restricted syntax language with 
defined semantics based on well-established 
mathematical concepts. 

 



  SQS, WS 13/14   SQS, WS 13/14 

 

 

Security Functions 

• The statement of TOE security functions shall cover 
the IT security functions and shall specify how these 
functions satisfy the TOE security functional 
requirements. This statement shall include a bi-
directional mapping between functions and 
requirements that clearly shows which functions satisfy 
which requirements and that all requirements are met. 

 

• Starting point for design process. 



  SQS, WS 13/14   SQS, WS 13/14 

Summary 

Norms and standards enforce the application of the 
state-of-the-art when developing software which is 

 safety-critical or security-critical. 

Wanton disregard of these norms may lead to personal 
liability. 

Norms typically place a lot of emphasis on process.  

Key question are traceability of decisions and design, 
and verification and validation. 

Different application fields have different norms: 

 IEC 61508 and its specialisations, DO-178B. 

 



  SQS, WS 13/14 

Systeme hoher Qualität und Sicherheit 
Universität Bremen, WS 2013/14 

Christoph Lüth 
Christian Liguda 

Lecture 03 (04.11.2013) 
Quality of the Software Development 

Process 



  SQS, WS 13/14 

Your Daily Menu 

Models of Software Development 

 The Software Development Process, and its rôle in safety-
critical software development. 

 What kind of development models are there? 

 Which ones are useful for safety-critical software  
– and why? 

 What do the norms and standards say? 

 

Basic Notions of Formal Software Development: 

 How to specifiy: properties 

 Structuring of the development process 

 



  SQS, WS 13/14 

Where are we? 

Lecture 01: Concepts of Quality 

Lecture 02: Concepts of Safety and Security, Norms and Standards 

Lecture 03: Quality of the Software Development Process 

Lecture 04: Requirements Analysis 

Lecture 05: High-Level Design & Detailed Specification 
 

Lecture 06: Testing 

Lecture 07 and 08: Program Analysis 

Lecture 09: Model-Checking 

Lecture 10 and 11: Software Verification (Hoare-Calculus) 
 

Lecture 12: Concurrency 

Lecture 13: Conclusions 

 



  SQS, WS 13/14 

Software Development Models 



  SQS, WS 13/14 

Software Development Process 

A software development process is the structure 
imposed on the development of a software product. 

We classify processes according to models which specify 

  the artefacts of the development, such as  

► the software product itself, specifications, test documents, 
reports, reviews, proofs, plans etc 

 the different stages of the development, 

 and the artefacts associated to each stage.  

Different models have a different focus: 

 Correctness, development time, flexibility. 

What does quality mean in this context? 

 What is the output? Just the sofware product, or more? 
(specifications, test runs, documents, proofs…) 

 



  SQS, WS 13/14 

Software Development Models 

Structure 

Fl
e

x
ib

ili
ty

 

from S. Paulus: Sichere Software 

Spiral model 

Prototype-based 
developments 

Agile 

Methods 

Waterfall 

model 

V-model 

Model-driven 

developement 



  SQS, WS 13/14 

Waterfall Model (Royce 1970) 

Classical top-down sequential workflow with strictly 
separated phases. 

 

 

 

 

 

 

Unpractical as actual workflow (no feedback between 
phases), but even early papers did not really suggest 
this.  

 

 

 

 

 

 

Requirement 

Implementation 

Design 

Maintenance 

Verification 



  SQS, WS 13/14 

Spiral Model (Böhm, 1986) 

Incremental development guided by risk factors 

Four phases: 

 Determine objectives 

 Analyse risks 

 Development and test 

 Review, plan next iteration 

See e.g.  

 Rational Unified Process (RUP) 

 

Drawbacks: 

 Risk identification is the key, and can be quite difficult 

 

 

 

 

 

 

 

 

 

 

  



  SQS, WS 13/14 

Agile Methods 

Prototype-driven development  

 E.g. Rapid Application Development 

 Development as a sequence of prototypes 

 Ever-changing safety and security requirements 

Agile programming 

 E.g. Scrum, extreme programming 

 Development guided by functional requirements  

 Less support for non-functional requirements 

Test-driven development 

 Tests as executable specifications: write tests first 

 Often used together with the other two 



  SQS, WS 13/14 

Model-Driven Development (MDD, MDE) 

Describe problems on abstract level using a modelling 
language (often a domain-specific language), and derive 
implementation by model transformation or run-time 
interpretation.  

Often used with UML (or its DSLs, eg. SysML) 

 

 

Variety of tools: 

 Rational tool chain, Enterprise Architect 

 EMF (Eclipse Modelling Framework) 

Strictly sequential development 

Drawbacks: high initial investment, limited flexibility 



  SQS, WS 13/14 

V-Model 

Evolution of the waterfall model: 

 Each phase is supported by a corresponding testing 
phase (verification & validation) 

 Feedback between next and previous phase 

Standard model for public projects in Germany 

 … but also a general term  for models of this „shape“ 



  SQS, WS 13/14 

Development Models for Critical Systems 

Ensuring safety/security needs structure. 

 …but too much structure makes developments 
bureaucratic, which is in itself a safety risk. 

 Cautionary tale: Ariane-5 

 

Standards put emphasis on process. 

 Everything needs to be planned and documented. 

 

Best suited development models are variations of the V-
model or spiral model. 



  SQS, WS 13/14 

The Safety Life Cycle (IEC 61508) 

Planning 

Realisation 

Operation 



  SQS, WS 13/14 

Development Model in IEC 61508 

IEC 61508 prescribes certain activities for each phase of 
the life cycle. 

Development is one part of the life cycle.  

IEC recommends V-model. 



  SQS, WS 13/14 

Development Model in DO-178B 
 

DO-178B defines different processes in the SW life cycle: 

 Planning process 

 Development process, structured in turn into 

► Requirements process 

► Design process 

► Coding process 

► Integration process 

 Integral process 

 

There is no conspicuous diagram, but these are the 
phases found in the V-model as well. 

 Implicit recommendation. 



  SQS, WS 13/14 

Artefacts in the Development Process 

Planning: 
• Document plan 
• V&V plan 
• QM plan 
• Test plan 
• Project manual 

Specifications: 

• Safety requirement spec. 
• System specification 
• Detail specification 
• User document (safety 

reference manual) 

Implementation: 

• Code 

Verification & validation: 

• Code review protocols 
• Tests and test scripts 
• Proofs 

 
 

 
 

Possible formats: 
• Word documents 
• Excel sheets 
• Wiki text 
• Database (Doors) 

 
• UML diagrams 

 
• Formal languages: 

• Z, HOL, etc. 
• Statecharts or 

similar diagrams 
• Source code 

 

Documents must be identified and 
reconstructable. 
• Revision control and configuration 

management obligatory. 



  SQS, WS 13/14 

Basic Notions of Formal 
Software Development 



  SQS, WS 13/14 

Formal Software Development 

In formal development, properties are stated in a rigorous way with 
a precise mathematical semantics. 

These formal specifications can be proven. 

Advantages: 

 Errors can be found early in the development process, saving 
time and effort and hence costs. 

 There is a higher degree of trust in the system. 

 Hence, standards recommend use of formal methods for high 
SILs/EALs. 

Drawback:  

 Requires qualified personnel (that would be you). 

There are tools which can help us by 

 finding (simple) proofs for us, or 

 checking our (more complicated proofs). 



  SQS, WS 13/14 

 
 

informal specification 

Formal Software Development 

abstract  

specification 

M
a

th
e

m
a

tica
l n

o
tio

n
s 

P
ro

g
ra

m
m

in
g

 

Verification by 
• Test 
• Program analysis 
• Model checking 
• Formal proof 

Horizontal 

Proofs 

Implemen- 
tation 



  SQS, WS 13/14 

Properties 

A general notion of properties. 

Properties as set of infinite 
execution traces  
(i.e. infinite sequences of states) 

 

Trace t satisfies property P, 
written 𝑃 ⊨ 𝑡, iff 𝑡 ∈ 𝑃 

 

b ≤ t  iff   t‘ .  t = b  t‘   

 i.e. b is a finite prefix of t  

 

 

… 

b: 

t: 

t‘ : 



  SQS, WS 13/14 

Safety and Liveness Properties 

Safety properties 

 Nothing bad happens 

 partial correctness, program safety,  access control 

Liveness properties 

 Something good happens 

 Termination, guaranteed service, availability 

 

Theorem:   P .  P = SafeP  LiveP 

 Each property can be represented as a combination 

of safety and liveness properties. 

 

Alpen & Schneider (1985, 1987) 



  SQS, WS 13/14 

Safety Properties 

Safety property S:   „Nothing bad happens“ 

A bad thing is finitely observable and irremediable 

S is a safety property iff 

  ∀𝑡. 𝑡 ∉ 𝑆 → ∃𝑏. finite 𝑏 ∧ 𝑏 ≤ 𝑡 → ∀𝑢. 𝑏 ≤ 𝑢 → 𝑢 ∉ 𝑆  

 

 

 

 a finite prefix b always causes the bad thing  

 

Safety is typically proven by induction 

 Safety properties may be enforced by run-time monitors. 

  

b : 

t : 



  SQS, WS 13/14 

Liveness Properties 

Liveness property L:  „Good things will happen“ 

 

A good thing is always possible and possibly infinite: 
 

L is a liveness property iff 

 ∀ 𝑡.  finite 𝑡 → ∃𝑔. 𝑡 ≤ 𝑔 ∧ 𝑔 ∈ 𝐿 
 

 i.e. all finite traces t can be extended to a trace g in L. 

 

Liveness is typically proven by well-foundedness. 

  

g : 

t : 



  SQS, WS 13/14 

Underspecification and Nondeterminism 

A system S is characterised by a set of traces.  

A system S satisfies a property P, written  

   𝑆 ⊨ 𝑃 iff 𝑆 ⊆ 𝑃  

(i.e. ∀𝑡 ∈ 𝑆. 𝑡 ∈ 𝑃, all traces satisfy the property P).                 

Why more than one trace? Difference between:  

 Underspecification or loose specification –  
we specify several possible implementations. 

 Non-determinism – different program runs might result 
in different traces. 

Example: a simple can vending machine. 

 Insert coin, chose brand, dispense drink. 

 Non-determinisim due to internal or external choice. 



  SQS, WS 13/14 

Structure in the Development 

Horizontal structuring 

 Modularization into components 

 Composition and Decomposition 

 Aggregation 
 

Vertical structuring 

 Abstraction and refinement 
from design specification to implementation 

 Declarative vs. imparative specification 

 Inheritence 
 

Layers / Views 

 Adresses multiple aspects of a system 

 Behavioral model, performance model, structural model, 
analysis model(e.g. UML, SysML) 

 
  



  SQS, WS 13/14 

Horizontal Structuring (informal) 

Composition of components  

 Dependent on the individual layer of abstraction 

 E.g. modules, procedures, functions,… 

Example: 

 

 

 

 

  



  SQS, WS 13/14 

Horizontal Structuring: Composition 

Given two systems 𝑆1, 𝑆2, their sequential composition is defined as 

  
𝑆1; 𝑆2 = 𝑠 ∙  𝑡  𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2} 

 

 All traces from 𝑆_1, followed by all traces from 𝑆_2. 

 

Given two traces 𝑠, 𝑡, their interleaving is defined (recursively) as  
<> ∥ 𝑡 = 𝑡 
𝑠 ∥ <> = 𝑠 
𝑎 ⋅ 𝑠 ∥ 𝑏 ⋅  𝑡 =  𝑎 ⋅ 𝑢  𝑢 ∈ 𝑠 ∥ 𝑏 ∙ 𝑡 } ∪ { 𝑏 ⋅ 𝑢 |  𝑢 ∈ 𝑎 ⋅ 𝑠 ∥ 𝑡} 

 

Given two systems 𝑆1, 𝑆_2, their parallel composition is defined as 

 
𝑆1 ∥ 𝑆2 = { 𝑠 ∥ 𝑡  |𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2} 

 

 Traces from 𝑆_1 interleaved  with traces from  𝑆2. 

 

 

 

  



  SQS, WS 13/14 

Vertical Structure - Refinement 

Data refinement 

 Abstract datatype is „implemented“ in terms of the 
more concrete datatype 

 Simple example: define stack with lists 

Process refinement 

 Process is refined by excluding certain runs 

 Refinement as a reduction of underspecification by 
eliminating possible behaviours 

Action refinement 

 Action is refined by a sequence of actions 

 E.g.  a stub for a procedure is refined to an executable 
procedure 

 

 

 

  



  SQS, WS 13/14 

Refinement and Properties 

Refinement typically preserves safety properties. 

 This means if we start with an abstract specification 
which we can show satisfies the desired properties, and 
refine it until we arrive at an implementation, we have a 
system for the properties hold by construction: 
 

𝑆𝑃 ⇝ 𝑆𝑃1 ⇝ 𝑆𝑃2 ⇝  … ⇝ 𝐼𝑚𝑝 

 

However, security is typically not preserved by 
refinement nor by composition! 

 

  



  SQS, WS 13/14 

Security and Composition 

Only complete bicycles are allowed to pass the  gate.   

Secure ! Secure ! 



  SQS, WS 13/14 

Security and Composition 

Insecure ! 

Only complete bicycles are allowed to pass the  gate.   



  SQS, WS 13/14 

Conclusion & Summary 

Software development models: structure vs. flexibility 

Safety standards such as IEC 61508, DO-178B suggest 
development according to V-model. 

 Specification and implementation linked by verification 
and validation. 

 Variety of artefacts produced at each stage, which have to 
be subjected to external review. 

 

Properties include safety and liveness properties. 

Structuring of the development: 

 Horizontal – e.g. composition 

 Vertical – refinement (data, process and action ref.) 
 
 



  SQS, WS 13/14 

Systeme hoher Qualität und Sicherheit 
Universität Bremen, WS 2013/14 

Christoph Lüth 
Christian Liguda 

Lecture 04 (11.11.2013) 
 

Hazard Analysis Techniques 



  SQS, WS 13/14 

Where are we? 

Lecture 01: Concepts of Quality 

Lecture 02: Concepts of Safety and Security, Norms and Standards 

Lecture 03: Quality of the Software Development Process 

Lecture 04: Requirements Analysis 

Lecture 05: High-Level Design & Formal Modelling 

Lecture 06: Detailed Specification 

Lecture 07: Testing 

Lecture 08: Program Analysis 

Lecture 09: Model-Checking 

Lecture 10 and 11: Software Verification (Hoare-Calculus) 

Lecture 12: Concurrency 

Lecture 13: Conclusions 

 

2 



  SQS, WS 13/14 

Your Daily Menu 

Ariane-5: A cautionary tale 

Hazard Analysis: 

 What‘s that? 

Different forms of hazard analysis:  

 FMEA, Failure Trees, Event Trees. 

An extended example: OmniProtect 

 

 

 

 3 



  SQS, WS 13/14 

Ariane 5 

4 

Ariane 5 exploded on its virgin flight (Ariane Flight 501) 
on 4.6.1996. 

 

 

 

 

 

 

 

 

 

How could that happen? 



  SQS, WS 13/14 

What Went Wrong With Ariane Flight 501? 

Self-destruct triggered after 39 secs. due to  inclination over 20 degr.  

OBC sent commands because it had incorrect data from IRS and tried to 
`adjust‘  trajectory. 

IRS sent wrong data because it had experienced software failure (overflow 
when converting 64 bit to 16 bit). 

Overflow occured when converting data to be sent to ground control (for 
test/monitoring purposes only). 

Overflow occured because  

 IRS was integrated as-is from Ariane 4, and 

 a particular variable (Horizontal Bias) held far higher values for the 
new model, and 

 the integer conversion was not protected because it was assumed that 
its values would never become too large. 

 This assumption was not documented. 

Because of its criticality, IRS had a backup system, but it ran the same 
software, so it failed as well (actually,  72 ms before the main one). 

 

 
5 



  SQS, WS 13/14 

Hazard Analysis…  

provides the basic foundations for system safety. 

is Performed to identify hazards, hazard effects, and 
hazard causal factors. 

is used to determine system risk, to determine the 
signifigance of hazards, and to etablish design measures 
that will eliminate or mitigate the identified hazards. 

is used to systematically examine systems, 
subsystems, facilities, components, software, personnel, 
and their interrelationships. 

 
Clifton Ericson: Hazard Analysis Techniques for System Safety. 

 Wiley-Interscience, 2005. 

6 



  SQS, WS 13/14 

Hazard Analysis i/t Development Process 

7 

System Safety 

Hazard 
Analysis 

Safety 
Requirements 

Validated 
Software 

Hazard Analysis  
systematically 
determines a list of 
safety 
requirements. 
 
The realisation of 
the safety 
requirements by 
the software 
product must be 
verified. 
 
The product must 
be validated wrt 
the safety 
requirements. 

Software Development  
(V-Model) 

V
a

lid
a

ti
o

n
 

Verification 



  SQS, WS 13/14 

Classification of Requirements 

Requirements to ensure  

 Safety 

 Security 

 

Requirements for 

 Hardware 

 Software 

 

Characteristics / classification of requirements  

 according to the type of a property 

 

8 



  SQS, WS 13/14 

Classification of Hazard Analysis 

Top-down methods start with an anticipated hazard 
and work back from the hazard event to potential 
causes for the hazard  

 Good for finding causes for hazard  

 Good for avoiding the investigation of “non-relevant” 
errors  

 Bad for detection of missing hazards  

 

Bottom-up methods consider “arbitrary” faults and 
resulting errors of the system, and investigate whether 
they may finally cause a hazard  

 Properties are complementary to FTA properties  

 

9 



  SQS, WS 13/14 

Hazard Analysis Methods 

Fault Tree Analysis (FTA) – top-down  

Failure Modes and Effects Analysis (FMEA) – bottom up  

Event Tree Analysis – bottom-up  

Cause Consequence Analysis – bottom up  

HAZOP Analysis – bottom up  

 

10 



  SQS, WS 13/14 

Fault Tree Analysis (FTA) 

Top-down deductive failure analysis (of undesired 
states) 

 Define undesired top-level event 

 Analyse all causes affecting an event to construct fault 
(sub)tree 

 Evaluate fault tree 

 

 

11 



  SQS, WS 13/14 

Fault Tree Analysis: Example 

Smoke detection  

fails 

Heat detection  

fails 

Fire detection  

system fails 

Pump fails Nozzles blocked 

Water deluge 

system fails 

Fire protection system fails 

OR-gate 

AND-gate OR-gate 

12 



  SQS, WS 13/14 

Failure Modes and Effects Analysis (FMEA) 

Analytic approach to review potential failure modes and 
their causes. 

Three approaches: functional, structural or hybrid. 

Typically performed on hardware, but useful for 
software as well.  

It analyzes  

 the failure mode, 

 the failure cause, 

 the failure effect, 

 its criticality, 

 and the recommended action. 

  and presents them in a standardized table. 

  

 

 

13 



  SQS, WS 13/14 

Software Failure Modes 

Guide word Deviation Example Interpretation 

omission The system produces no output 
when it should. Applies to a 
single instance of a service, but 
may be repeated. 

No output in response to change 
in input; periodic output 
missing. 

commission The system produces an output, 
when a perfect system would 
have produced none. One must 
consider cases with both, correct 
and incorrect data. 

Same value sent twice in series; 
spurious output, when inputs 
have not changed. 

early Output produced before it 
should be. 

Really only applies to periodic 
events; Output before input is 
meaningless in most systems. 

late Output produced after it should 
be. 

Excessive latency (end-to-end 
delay) through the system; late 
periodic events. 

value 
(detectable) 

Value output is incorrect, but in 
a way, which can be detected by 
the recipient. 

Out of range. 

value 
(undetectable) 

Value output is incorrect, but in 
a way, which cannot be 
detected. 

Correct in range; but wrong 
value 

14 



  SQS, WS 13/14 

Criticality Classes 

 Risk as given by the risk mishap index (MIL-STD-882): 

 

 

 

 

 

 

 

 

Names vary, principle remains: 

 Catastrophic – single failure 

 Critical – two failures 

 Marginal – multiple failures/may contribute  

  

 

 

 

 

 

 

 

 

 

 

15 

Severity Probability 

1. Catastrophic A. Frequent 

2. Critical B. Probable 

3. Marginal  C. Occasional 

4. Negligible D. Remote 

E. Improbable 



  SQS, WS 13/14 

FMEA Example: Airbag Control (Struct.) 

16 

ID  Mode Cause Effect Crit. Appraisal 

1 Omission Gas cartridge 
empty 

Airbag not released in 
emergency situation 

C1 SR-56.3 

2 Omission Cover does not 
detach 

Airbag not released fully in 
emergency situation. 

C1 SR-57.9 

3 Omission Trigger signal 
not present in 
emergency. 

Airbag not released in 
emergency situation 
 

C1 Ref. To SW-
FMEA 

4 Comm. Trigger signal 
present in non-
emergency 

Airbag released during 
normal vehicle operation 

C2 Ref. To SW-
FMEA 



  SQS, WS 13/14 

FMEA Example: Airbag Control (Funct.) 

17 

ID Mode Cause Effect Crit. Appraisal 

5-1 Omission Software 
terminates 
abnormally 

Airbag not 
released in 
emergency. 

C1 See 1.1, 1.2. 

5-1.1 Omission - Division by 0 See 1 C1 SR-47.3 
Static Analysis 

5-1.2 Omission - Memory fault See 1 C1 SR-47.4 
Static Analysis 

5-2 Omision Software does not 
terminate 

Airbag not 
released in 
emergency. 

C1 SR-47.5 
Static Analysis 

5-3 Late Computation takes 
too long. 

Airbag not 
released in 
emergency. 

C1 SR-47.6 

5-4 Comm. Spurious signal 
generated 

Airbag released 
in non-
emergency 

C2 SR-49.3 
 

5-5 Value (u) Software computes 
wrong result 

Either of 5-1 or 
5-4. 

C1 SR-12.1 
Formal Verification 



  SQS, WS 13/14 

Event Tree Analysis 

Applies to a chain of cooperating activities 

Investigates the effect of activities failing while the chain 
is processed 

Depicted as binary tree; each node has two leaving 
edges: 

 Activity operates correctly 

 Activity fails 

Useful for calculating risks by assigning probabilities to 
edges 

O(2^n) complexity 

 

18 



  SQS, WS 13/14 

Event Tree Analysis 

ICE Train  

cancelled 

On time 

Unavailable 
On time 

Delayed 

On time On time 

Delayed 

Regional  

train 

Bus to 

destinatíon 
Arrival at 

destination 

19 



  SQS, WS 13/14 

Hazard Analysis as a Reachability Problem  

The analysis whether “finally something bad happens” is 
well-known from property checking methods  

Create a model describing everything (desired or 
undesired) which might happen in the system under 
consideration  

Specify a logical property P describing the undesired 
situations  

Check the model whether a path – that is, a sequence of 
state transitions – exists such that P is fulfilled on this 
path  

Specify as safety requirement that mechanisms shall 
exist preventing paths leading to P from being taken  

20 



  SQS, WS 13/14 

The Seven Principles of Hazard Analysis 
 

Ericson (2005) 

1) Hazards, mishaps and risk are not chance events. 

2) Hazards are created during design. 

3) Hazards are comprised of three components. 

4) Hazards and mishap risk is the core safety process. 

5) Hazard analysis is the key element of hazard and 
mishap risk management. 

6) Hazard management involves seven key hazard 
analysis types. 

7) Hazard analysis primarily encompasses seven hazard 
analysis techniques.  

21 



  SQS, WS 13/14 

Verifying Requirements 

Testing 

 Executable specification (i.e. sort of implementation) 

 Covering individual cases 

 Functional requirements 

 Decidable 

 

(Static / Dynamic) Program Analysis 

 Executable specification 

 Covering all cases  

 Selected functional and non-functional requirements  

 Decidable (but typically not complete) 

22 



  SQS, WS 13/14 

Verifying Requirements II 

Model Checking 

 Formal specification 

 Covering all cases 

 Functional and non-functional properties (in finite 
domains) 

 Decidable (in finite domains) 

 

Formal Verification 

 Formal specification  

 Covering all cases 

 All types of requirements 

 (Usually) undecidable 

23 



  SQS, WS 13/14 

OmniProtect is a safety module for an omnidirectional 
AGV such as the Kuka OmniMove. 

 Demonstration project only. 

It calculates a safety zone (the  
area needed for breaking until  
standstill). 

Documents produced: 

 Document plan 

 Concept paper 

 Fault Tree Analysis 

 Safety Requirements 

 …. more to come. 

Our Running Example: OmniProtect 

24 



  SQS, WS 13/14 

Summary 

Hazard Analysis is the start of the formal development. 

It produces safety requirements. 

Adherence to safety requirements has to be verified 
during development, and validated at the end. 

We distinguish different types of analysis: 

 Top-Down analysis (Fault Trees) 

 Bottom-up (FMEAs, Event Trees) 

Hazard Analysis is a creative process, as it takes an 
informal input („system safety“) and produces a formal 
outout (safety requirements). Its results cannot be 
formally proven, merely checked and reviewed. 

Next week: High-Level Specification. 

25 



Systeme Hoher Qualität und Sicherheit
Vorlesung 5 vom 18.11.2013: High-Level Specification and

Modelling

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2351 1 [21]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

2 [21]



Your Daily Menu

I High-Level Specification and Modelling

I The Z Notation as an example of a modelling language

I Basics, Schema Calculusm, Mathematical Library

I Canonical Example: the Birthday Book

I Running Example OmniProtect

I Modelling the safe robot

3 [21]



High-Level Specification and Modelling

I Here, we want to be able to express high-level requirements
abstractly, precisely and without regards for the implementation.

4 [21]



Why look at Z?

I Z is a good example of a modelling language.

I It allows us to model high-level specifications in a mathematically
precise fashion, unambigious and exact.

I Z is easy to grasp, as opposed to other mechanisms — we quickly get
off the ground.

I Alternatives would be UML (in particular, class diagrams plus OCL),
but that is on the one hand already geared towards implementation,
and on the other hand there is less tool support for OCL. UML support
is more geared towards code generation, not so much abstract
modelling as appropriate in this phase of the design process.

5 [21]



The Z Notation

I Z is a notation based on typed set theory.

I That means everything is described in terms of set (sets are types)

I There is a lot of syntactic convention (“syntactic sugar”)

I It is geared towards the specification of imperative programs

I State and state change built-in

I Developed late 80s (Jean-Claude Abrial, Oxford PRG; IBM UK)

I Used industrially (IBM, Altran Praxis ex. Praxis Critical Systems))

I LATEX-Notation and tool support (Community Z Tools, ProofPower)

6 [21]

http://czt.sourceforge.net/


Introducing the Birthday Book

I The birthday book is a well-known example introducing the main
concepts of the Z language. It can be found e.g. in the Z reference
manual (freely available, see course home page).

I It models a birthday calendar, where one can keep track of birthdays
(of family, acquaintances, business contacts . . . )

I Thus, we have names and dates as types, and operations to

I add a birthday,

I find a birthday,

I and get reminded of birthdays.

7 [21]



Birthday Book: Types

I We start by declaring the types for names and date. We do not say
what they are:

[NAME , DATE ]

I In Z, we define operations in terms of state transitions.

I We start with defining the state space of our birthday book system.
This is our abstract view of the system state.

I The system state should contain names and birthdays, and they
should be related such that we can map names to birthdays.

8 [21]



Birthday Book: The System State
I The system state is specified in form of a Z schema. A schema

consists of two parts: variable declarations and axioms.

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

I This says that there is a set known of names, and a partial map from
names to dates. (Z has a library, called the Mathematical Toolkit, of
predefined types and operations, such as the power set and partial map
used here.)

I The axiom is an invariant (meaning it has to be preserved by all
operations). It says that the set of known names is the domain of the
birthday map.

9 [21]



Schema Operations: Pre- and Poststate
I Operations are defined as schemas as well.
I Operations have a prestate (before the operation is applied) and a

poststate (after the operation has been applied). The poststate is
denoted by dashed variables.

I Here is an operation which just adds my name, cxl, to a set of known
names:

AddMe
known : PNAME
known′ : PNAME

known′ = known ∪ {cxl}

I In order to minimise repetition, schemas can comprise other schemas.
We can also dash whole schemas. Further, the schema operator ∆S
is shorthand for ∆S def

= S ∧ S ′, or “include S and S ′”.
10 [21]



Birthday Book: First Operation
I As a first operation, we want to add a birthday.
I This requires a name and a birthday as input variables.

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? /∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

I Input variables are only defined in the prestate. (Similary, output
variables, written as name!, are only defined in the poststate.)

I The Birthday invariant holds both in pre- and poststate. From this, we
can show that the following sensible property holds:

known′ = known ∪ {name?}

11 [21]



Birthday Book: Finding a birthday
I Finding a birthday gives the name as input, and a date as output:

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

I This introduces the Ξ operator. It is shorthand for
ΞS def

= (∆S ∧ S = S ′) (or, “for schema S, nothing changes”.)
I The FindBirthday operation has a precondition (the name must be in

the set of known names); only if that holds, the postcondition is
guaranteed to hold as well.

12 [21]



Birthday Book: Reminders

I A reminder takes a date as input, and returns the names of entries
with this birthday.

Remind
ΞBirthdayBook
today? : DATE
cards! : PNAME

cards! = {n : known | birthday(n) = today?}

I A variation of this schema just selects one name. It is an example of a
non-deterministic operation.

13 [21]



Birthday Book: Reminders

I A reminder takes a date as input, and returns the names of entries
with this birthday.

RemindOne
ΞBirthdayBook
today? : DATE
card ! : NAME

card ! ∈ known
birthday card ! = today?

I A variation of this schema just selects one name. It is an example of a
non-deterministic operation.

13 [21]



Birthday Book: Putting it all together

I We need an initial state. It does not say explicitly that birthday ′ is
empty, but that is implicit, because its domain is empty.

InitBirthdayBook
BirthdayBook ′

known′ = {}

I And we put it all together by conjoining the schemas:

System == InitBirthdayBook ∧ (AddBirthday ∧ FindBirthday ∧ Remind)

14 [21]



Case Study: the OmniProtect Project

I The objective of the OmniProtect project is to develop a safety
module for omnimobile robots.

I These robots have a behaviour which is easily describable: they move
with a velocity which is given by a vector ~v (per time t).

I The velocity can be changed instanteneously, but we assume that
braking is linear.

I The shape of the robot is described by a convex polygon.

I We move the robot by moving the polygon by the given velocity ~v .

I We will first describe this movement, and the area covered by this
movement (modelling). We will then (next lecture) describe the actual
operations (high-level specification), and investigate how to implement
them (low-level specification).

15 [21]



Modelling the Safe Robot: Planar Movement

v

Starting position

I Braking time and braking distance:

v(t) = v0 − abrkt s(t) = v0t − abrk
2 t2 T = v0

abrk
S =

v2
0

2abrk

I Modelling in Z: Calculating the braking distance

brk : N× N→ N

∀ v , a : N • brk (v , a) = (v ∗ v) div (2 ∗ a)

16 [21]



Modelling the Safe Robot: Planar Movement

End position

v

Starting position

I Braking time and braking distance:

v(t) = v0 − abrkt s(t) = v0t − abrk
2 t2 T = v0

abrk
S =

v2
0

2abrk

I Modelling in Z: Calculating the braking distance

brk : N× N→ N

∀ v , a : N • brk (v , a) = (v ∗ v) div (2 ∗ a)

16 [21]



Modelling the Safe Robot: Planar Movement

End position

v

Starting position

I Braking time and braking distance:

v(t) = v0 − abrkt s(t) = v0t − abrk
2 t2 T = v0

abrk
S =

v2
0

2abrk

I Modelling in Z: Calculating the braking distance

brk : N× N→ N

∀ v , a : N • brk (v , a) = (v ∗ v) div (2 ∗ a)

16 [21]



Mathematical Modelling: Points and Vectors
I Schema for points (vectors):

VEC
x : Z
y : Z

I Type für Polygons und segments:

POLY == {s : seq VEC | #s > 3 ∧ head s = last s}
SEG == VEC × VEC

I This introduces the type of sequents, seq, or finite lists, from the
Mathematical Toolkit. There are a number of useful predefined
functions on lists.

17 [21]



Mathematical Modelling: Vector Operations

I Addition and scalar multiplication of vectors

add : VEC × VEC → VEC
smult : R × VEC → VEC

∀ p, q : VEC • add(p, q) = (p.x + q.x , p.y + q.y)
∀ n : R; p : VEC • smult (n, p) = (n ∗ p.x , n ∗ p.y)

I We have slightly cheated here — Z does not really know real numbers.

18 [21]



More abouts Points and Vectors
I A segment defines a left half-plane (as a set of points)

left : SEG → PVEC

∀ a, b : VEC • left (a, b) = {p : VEC | (b.y − a.y) ∗ (p.x − b.x)−
(p.y − b.y) ∗ (b.x − a.x) < 0}

I The area of a (convex!) polygon is the intersection of the left
half-planes given by its sides.

sides : POLY → P SEG
area : POLY → PVEC

∀ p : POLY • sides p = {s : SEG | 〈s.1, s.2〉 in p}
∀ p : POLY • area p =

⋂
{s : SEG | s ∈ sides p • left s}

I We should make the restriction on convex explicit (next lecture).
19 [21]



Moving Polygons

End position

v

Starting position

I Moving a polygon by a vector:

move : POLY × VEC → POLY

∀ p : POLY ; v : VEC • move(p, v) = (λ x : VEC • add(x , v)) ◦ p

I Area covered by this movement

cov : POLY × VEC → PVEC

∀ p : POLY ; v : VEC •
cov (p, v) =

⋃
{τ : R | 0 ≤ τ ≤ 1 • area(move(p, smult(τ, v)))}

20 [21]



Moving Polygons

Braking area End position

v

Starting position

I Moving a polygon by a vector:

move : POLY × VEC → POLY

∀ p : POLY ; v : VEC • move(p, v) = (λ x : VEC • add(x , v)) ◦ p

I Area covered by this movement

cov : POLY × VEC → PVEC

∀ p : POLY ; v : VEC •
cov (p, v) =

⋃
{τ : R | 0 ≤ τ ≤ 1 • area(move(p, smult(τ, v)))}

20 [21]



Summary

I Z is a modelling language based on typed set theory

I Its elements are
I axiomatic definitions
I schema and the schema calculus
I the Mathematical Toolkit (standard library)

I In Z, we start with modelling the system state(s), followed by the
operations (which are state transitions)

I The birthday book example can be found in the Z reference manual.

I We have started with modelling the robot.

I Next lecture: the safe robot, and its operations.

21 [21]



Systeme Hoher Qualität und Sicherheit
Vorlesung 6 vom 25.11.2013: Detailed Specification, Refinement &

Implementation

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2360 1 [24]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation

I Lecture 7: Testing
I Lecture 8: Static Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Concluding Remarks

2 [24]



Your Daily Menu

I Refinement: from abstract to concrete specification

I Implementation: from concrete specification to code

I Running examples: the safe autonomous robot, the birthday book

3 [24]



Design Specification

I At this point, we want to be relate implementation to the more
abstract specifications in the higher lever, and have a systematic way
to go from higher to lower levels (refinement).

4 [24]



Refinment in the Development Process

I Recall that we have horizontal and vertical structuring.

I Refinement is a vertical structure in the development process.

I The simplest form of refinement is implicational, where an
implementation I implies the abstract requirement A

I ⇒ A

I Recall that refinement typically preserves safety requirements, but not
security — thus, there is a systematic way to construct safe systems,
but not so for secure ones.

5 [24]



The Autonomous Robot: Basic Types
I We first declare a datatype for the time:

[Time]

I We then declare the robot parameters, and the state of the world —
these are the things which do not change.

RobotParam
cont : POLY

I Obstacles are just a set of points (instead of polygons)

World
RobotParam
obs : PVEC

6 [24]



The Autonomous Robot: Safety Requirements

I The robot’s state depends on the
time, so we do not have pre/post
conditions. It has a position
vector, o, which determines the
current contour polygon c.

Robot
RobotParam
c : Time → POLY
o : Time → VEC

c(t) = move(cont, o(t))

I Here is the main safety
requirement: the robot is safe if
its current contour never contains
any obstacles.

RobotSafe
Robot

∀ t.c(t) ∩ obs = ∅

7 [24]



The Autonomous Robot: Implementation

I When implementing the autonomous robot, we assume a control loop
architecture, where a control function is called each T ms. It can
read thecurrent system state, and sets control variables which
determine the system’s behaviour over the next clock cycle.

I The cycle time (“tick”) T is part of the robot parameters. We also add
the braking accelaration abrk .

RobotParam
cont : POLY
abrk : Z
T : Z

World
RobotParam
obs : PVEC

8 [24]



The Autonomous Robot: Implementation
I This specifies the control
behaviour of the robot.

I Velocity is given by the linear
velocity vel , and steering angle
ω. This describes the velocity
vector v in polar form.

I This does not yet describe how
the velocity is controlled.

Robot
RobotParam
vel , ω : Z
v , o : VEC
c : POLY

c = move (cont, o)
v = cart (vel , ω)

I The function cart converts a vector in polar form to the cartesian
form. A simple specification in Z might be this:

cart : Z× R → VEC

∀ r : Z; ω : R; p : VEC • cart(r , ω) = p ⇒ r ∗ r = p.x ∗ p.x + p.y ∗ p.y

I Unfortunately, the Mathematical Toolkit does not support trigonmetric
functions (or real numbers).

9 [24]



The Autonomous Robot: Control
I The velocity is controlled by two input variables a? and dω?, which

set the acceleration and change of steering angle for the next cycle.
This determines vel and ω, and hence v .

RobotMoves
∆Robot
ΞWorld
a? : Z
dω? : Z

vel ′ = vel + a? ∗ T
ω′ = ω + dω? ∗ T
o′ = add (o, v ′)

I This now describes the control loop behaviour of the robot.
I But when is it safe?

10 [24]



Moving and Driving Safely
I It is easy to say what it means for the robot to move safely: it will

not run into any obstacles.

RobotMovesSafely
RobotMoves

cov (c, v ′) ∩ obs = ∅

I Is that enough?

I No, this will give us a false sense of safety — it only fails when it is
far too late to initiate braking.

I To ensure safety here we would need:

RobotMovesSafely ⇒ RobotMovesSafely ′

11 [24]



Moving and Driving Safely
I It is easy to say what it means for the robot to move safely: it will

not run into any obstacles.

RobotMovesSafely
RobotMoves

cov (c, v ′) ∩ obs = ∅

I Is that enough?
I No, this will give us a false sense of safety — it only fails when it is
far too late to initiate braking.

I To ensure safety here we would need:

RobotMovesSafely ⇒ RobotMovesSafely ′

11 [24]



Braking and Safe Braking

I Our safety strategy: we must always be able to brake safely
I We first need to specify braking and safe braking. Braking is safe if

the braking area is clear of obstacles.

RobotBrakes
∆Robot
ΞWorld

vel ′ = vel − abrk ∗ T
ω′ = ω
o′ = add (o, v ′)

RobotBrakesSafely
RobotBrakes

cov (c, brk (v , ω, abrk)) ∩ obs = ∅

I Implementing the overall strategy: if we can move safely, we do,
otherwise we brake.

I Invariant: we can always brake safely.

12 [24]



The Safe Robot: Implementation

I We drive safe if we will be able to brake safely.

RobotDrivesSafely
∆Robot
ΞWorld

(cov (c, v ′) ∪ cov (move (c, v ′), brk (v ′, ω′, abrk))) ∩ obs = ∅
vel ′ = vel + a? ∗ T
ω′ = ω + dω? ∗ T
o′ = add (o, v ′)

I The safe robot implements the safety strategy:

RobotSafeImpl = RobotDrivesSafely ∨ RobotBrakes

13 [24]



Showing Safety

I We need to show:

RobotSafeImpl ⇒ RobotMovesSafely
RobotSafeImpl ⇒ RobotMovesSafely ′

I The first holds directly.

I The second holds because of the following:

RobotSafeImpl ⇒ RobotBrakesSafely ′

RobotBrakesSafely ⇒ RobotMovesSafely
RobotBrakesSafely ′ ⇒ RobotMovesSafely ′

14 [24]



Missing Pieces

I We start off at the origin (or anywhere else), and with velocity 0.

I We need to specify that initially we are clear of obstacles.

InitRobot
Robot

o = (0, 0)
vel = 0
ω = 0
cont ∩ obs = ∅

15 [24]



Summing Up

I The first, abstract, safety specification was RobotSafe.

I We implemented this via a second, more concrete specification
RobotSafeImpl.

I Showing refinement required several lemmas.

I The general safety argument:

I Safety holds for the initial position: InitRobot ⇒ RobotMovesSafely

I Safety is preserved:
RobotSafeImpl ⇒ RobotMovesSafely ∧ RobotMovesSafely ′

I Thus, safety holds always (proof by induction).

16 [24]



From Specification to Implementation

I How would we implement the birthday book?

I We need a data structure to keep track of names and dates.

I And we need to link this data structure with the specification.

I There are two ways out of this:

I Either, the specification language also models datatypes (wide-spectrum
language).

I Or there is fixed mapping from the specification language to a
programming language.

17 [24]



Implementing Arrays

I In Z, arrays can be represented as functions from N1. Thus, if we want
to keep names and dates in arrays (linked by the index), we take

names : N1 → NAME
dates : N1 → DATE

I To look up names[i ], we just apply the function: names(i).

I To assignment names[i ] := v , we change the function with the
pointwise update operator ⊕:

names ′ = names ⊕ {i 7→ v}.

18 [24]



Implementing the Birthday Book

I We need a variable hwm which indicates how many date/name pairs
are known.

I The axiom makes sure that each name is associated to exactly one
birthday.

BirthdayBookImpl
names : N1 → NAME
dates : N1 → DATE
hwm : N

∀ i , j : 1 . . hwm •
i 6= j ⇒ names(i) 6= names(j)

19 [24]



Linking Specification and Implementation

I We need to link specification and implementation.

I This is done in an abstraction or linking schema:

Abs
BirthdayBook
BirthdayBookImpl

known = { i : 1 . . hwm • names(i) }

∀ i : 1 . . hwm •
birthday(names(i)) = dates(i)

I This specificies how known and birthday are reflected by the
implementing arrays.

20 [24]



Operation: Adding a birthday

I Adding a birthday changes the concrete state:

AddBirthdayImpl
∆BirthdayBookImpl
name? : NAME
date? : DATE

∀ i : 1 . . hwm • name? 6= names(i)

hwm′ = hwm + 1
names ′ = names ⊕ {hwm′ 7→ name?}
dates ′ = dates ⊕ {hwm′ 7→ date?}

I We need to show that the pre- and post-states of AddBirthday and
AddBirthdayImpl are related via Abs.

21 [24]



Showing Correctness of the Implementation

I Assume a state where the precondition of the specification holds, find
the corresponding state of the implementation via Abs, and show that
this state satisfies the precondition.

I Similarly, assume a pair of states where the invariant of
AddBirthdayBook holds, find the corresponding states of the
implementation via Abs, and show that they satisfy the invariant.

22 [24]



Operation: Finding a birthday
I We specify that the found day corresponds to the name via an index i .

FindBirthdayImp
ΞBirthdayBookImpl
name? : NAME
date! : DATE

∃ i : 1 . . hwm •
name? = names(i) ∧ date! = dates(i)

I Note that we are still some way off a concrete implementation — we
do not say how we find the index i .

I To formally show that an iterative loop from 1 to hdw always returns
the right i , we need the Hoare calculus (later in these lectures);
presently, we argue informally.

23 [24]



Summary

I We have seen how we refine abstract specifications to more concrete
ones.

I To implement specifications, we need to relate the specification
language to a programming language

I In Z, there are some types which correspond to well-known datatypes, such
as finite maps N1 → T and arrays of T .

I We have now reached the bottom of the V-model. Next week, we will
climb our way up on the right-hand side, starting with testing.

24 [24]



Systeme Hoher Qualität und Sicherheit
Vorlesung 7 vom 02.12.2013: Testing

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2403 1 [26]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

2 [26]



Your Daily Menu

I What is testing?

I Different kinds of tests.

I Different test methods: black-box vs. white-box.

I Problem: cannot test all possible inputs.

I Hence, coverage criteria: how to test enough.

3 [26]



Testing in the Development Process

I Tests are one way of verifying that the system is built according to
the specifications.

I Note we can test on all levels of the ‘verification arm’.
4 [26]



What is testing?
Myers, 1979
Testing is the process of executing a program or system with the intent
of finding errors.

I In our sense, testing is selected, controlled program execution.
I The aim of testing is to detect bugs, such as

I derivation of occurring characteristics of qualitiy properties compared to
the specified ones;

I inconsistency between specification and implementation;
I or structural feature of a program that causes a faulty behavior of a

program.

E. W. Dijkstra, 1972
Program testing can be used to show the presence of bugs, but never to
show their absence.

5 [26]



Testing Process

I Test cases, test plan etc.

I system-under-test (s.u.t.)

I Warning: test literature is quite expansive:

Hetzel, 1983
Testing is any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its required results.

6 [26]



Test Levels

I Component tests and unit tests: test at the interface level of single
components (modules, classes);

I Integration test: testing interfaces of components fit together;

I System test: functional and non-functional test of the complete system
from the user’s perspective;

I Acceptance test: testing if system implements contract details.

7 [26]



Basic Kinds of Test

I Functional test

I Non-functional test

I Structural test

I Regression test

8 [26]



Test Methods

I Static vs. dynamic:

I With static tests, the code is analyzed without being run. We cover these
methods separately later.

I With dynamic tests, we run the code under controlled conditions, and
check the results against a given specification.

I The central question: where do the test cases come from?

I Black-box: the inner structure of the s.u.t. is opaque, test cases are
derived from specification only;

I Grey-box: some inner structure of the s.u.t. is known, eg. module
architecture;

I White-box: the inner structure of the s.u.t. is known, and tests cases are
derived from the source code;

9 [26]



Black-Box Tests

I Limit analysis:

I If the specification limits input parameters, then values close to these
limits should be chosen.

I Idea is that programs behave continously, and errors occur at these limits.

I Equivalence classes:

I If the input parameter values can be decomposed into classes which are
treated equivalently, test cases have to cover all classes.

I Smoke test:

I “Run it, and check it does not go up in smoke.”

10 [26]



Example: Black-Box Testing

Example: A Company Bonus System
The loyalty bonus shall be computed depending on the time of
employment. For employess of more than three years, it shall be 50% of
the monthly salary, for employees of more than five years, 75%, and for
employees of more than eight years, it shall be 100%.

I Equivalence classes or limits?

Example: Air Bag
The air bag shall be released if the vertical acceleration av equals or
exceeds 15m/s2. The vertical acceleration will never be less than zero, or
more than 40m/s2.

I Equivalence classes or limits?

11 [26]



Example: Black-Box Testing

Example: A Company Bonus System
The loyalty bonus shall be computed depending on the time of
employment. For employess of more than three years, it shall be 50% of
the monthly salary, for employees of more than five years, 75%, and for
employees of more than eight years, it shall be 100%.

I Equivalence classes or limits?

Example: Air Bag
The air bag shall be released if the vertical acceleration av equals or
exceeds 15m/s2. The vertical acceleration will never be less than zero, or
more than 40m/s2.

I Equivalence classes or limits?

11 [26]



Black-Box Tests

I Quite typical for GUI tests.

I Testing invalid input: depends on programming language, the stronger
the typing, the less testing for invalid input is required.

I Example: consider lists in C, Java, Haskell.

I Example: consider ORM in Python, Java.

12 [26]



Other approaches: Monte-Carlo Testing

I In Monte-Carlo testing (or random testing), we generate random
input values, and check the results against a given spec.

I This requires executable specifications.

I Attention needs to be paid to the distribution values.

I Works better with high-level languages (Java, Scala, Haskell) where
the datatypes represent more information on an abstract level.

I Example: consider lists in C, Java, Haskell, and list reversal.
I Executable spec:

I Reversal is idempotent.
I Reversal distributes over concatenation.

I Question: how to generate random lists?

13 [26]



White-Box Tests

I In white-box tests, we derive test cases based on the structure of the
program.

I To abstract from the source code (which is a purely syntactic
artefact), we consider the control flow graph of the program.

Control Flow Graph (cfg)
I Nodes are elementary statements (e.g. assignments, return, break, . . . ), and

control expressions (eg. in conditionals and loops), and
I there is a vertex from n to m if the control flow can reach node m coming

from n.

I Hence, paths in the cfg correspond to runs of the program.

14 [26]



Example: Control Flow Graph

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I A path through the
program is a path through
the cfg.

I Possible paths include:

[1, 3, 4, 7, E ]
[1, 2, 3, 4, 7, E ]
[1, 2, 3, 4, 5, 6, 4, 7, E ]
[1, 3, 4, 5, 6, 4, 5, 6, 4, 7, E ]
. . .

15 [26]



Example: Control Flow Graph

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I A path through the
program is a path through
the cfg.

I Possible paths include:

[1, 3, 4, 7, E ]

[1, 2, 3, 4, 7, E ]
[1, 2, 3, 4, 5, 6, 4, 7, E ]
[1, 3, 4, 5, 6, 4, 5, 6, 4, 7, E ]
. . .

15 [26]



Example: Control Flow Graph

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I A path through the
program is a path through
the cfg.

I Possible paths include:

[1, 3, 4, 7, E ]
[1, 2, 3, 4, 7, E ]

[1, 2, 3, 4, 5, 6, 4, 7, E ]
[1, 3, 4, 5, 6, 4, 5, 6, 4, 7, E ]
. . .

15 [26]



Example: Control Flow Graph

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I A path through the
program is a path through
the cfg.

I Possible paths include:

[1, 3, 4, 7, E ]
[1, 2, 3, 4, 7, E ]
[1, 2, 3, 4, 5, 6, 4, 7, E ]

[1, 3, 4, 5, 6, 4, 5, 6, 4, 7, E ]
. . .

15 [26]



Example: Control Flow Graph

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I A path through the
program is a path through
the cfg.

I Possible paths include:

[1, 3, 4, 7, E ]
[1, 2, 3, 4, 7, E ]
[1, 2, 3, 4, 5, 6, 4, 7, E ]
[1, 3, 4, 5, 6, 4, 5, 6, 4, 7, E ]

. . .

15 [26]



Example: Control Flow Graph

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I A path through the
program is a path through
the cfg.

I Possible paths include:

[1, 3, 4, 7, E ]
[1, 2, 3, 4, 7, E ]
[1, 2, 3, 4, 5, 6, 4, 7, E ]
[1, 3, 4, 5, 6, 4, 5, 6, 4, 7, E ]
. . .

15 [26]



Coverage

I Statement coverage: Each node in the cfg is visited at least once.

I Branch coverage: Each vertex in the cfg is traversed at least once.

I Decision coverage: Like branch coverage, but specifies how often
conditions (branching points) must be evaluated.

I Path coverage: Each path in the cfg is executed at least once.

16 [26]



Example: Statement Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I Which (minimal) path p
covers all statements?

p = [1, 2, 3, 4, 5, 6, 4, 7, E ]

I Which state generates p?

x = −1
y any
z any

17 [26]



Example: Statement Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I Which (minimal) path p
covers all statements?

p = [1, 2, 3, 4, 5, 6, 4, 7, E ]

I Which state generates p?

x = −1
y any
z any

17 [26]



Example: Statement Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I Which (minimal) path p
covers all statements?

p = [1, 2, 3, 4, 5, 6, 4, 7, E ]

I Which state generates p?

x = −1
y any
z any

17 [26]



Example: Branch Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I Which (minimal) paths
cover all vertices?

p1 = [1, 2, 3, 4, 5, 6, 4, 7, E ],
p2 = [1, 3, 4, 7, E ]

I Which states generate
p1, p2?

p1 p2
x = −1 x = 0
y any y any
y any z any

I Note p3 (corresponding to
x = 1) does not add to
coverage.

18 [26]



Example: Branch Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I Which (minimal) paths
cover all vertices?

p1 = [1, 2, 3, 4, 5, 6, 4, 7, E ],
p2 = [1, 3, 4, 7, E ]

I Which states generate
p1, p2?

p1 p2
x = −1 x = 0
y any y any
y any z any

I Note p3 (corresponding to
x = 1) does not add to
coverage.

18 [26]



Example: Branch Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I Which (minimal) paths
cover all vertices?

p1 = [1, 2, 3, 4, 5, 6, 4, 7, E ],
p2 = [1, 3, 4, 7, E ]

I Which states generate
p1, p2?

p1 p2
x = −1 x = 0
y any y any
y any z any

I Note p3 (corresponding to
x = 1) does not add to
coverage.

18 [26]



Example: Path Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I How many paths are
there?

I Let q1
def
=[1, 2, 3]

q2
def
=[1, 3]

p def
=[4, 5, 6]

r def
=[4, 7, E ]

then all paths are given by

P = (q1 | q2) p∗ r

I Number of possible paths:

|P| = 2nMaxInt − 1

19 [26]



Example: Path Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I How many paths are
there?

I Let q1
def
=[1, 2, 3]

q2
def
=[1, 3]

p def
=[4, 5, 6]

r def
=[4, 7, E ]

then all paths are given by

P = (q1 | q2) p∗ r

I Number of possible paths:

|P| = 2nMaxInt − 1

19 [26]



Example: Path Coverage

i f ( x<0) /∗ 1 ∗/ {
x= − x /∗ 2 ∗/ ;

}
z= 1 /∗ 3 ∗/ ;
whi le ( x> 0) /∗ 4 ∗/ {

z= z∗ y /∗ 5 ∗/ ;
x= x− 1 /∗ 6 ∗/ ;

}
return z /∗ 7 ∗/ ;

1

2

3

4

6

7

5

E

I How many paths are
there?

I Let q1
def
=[1, 2, 3]

q2
def
=[1, 3]

p def
=[4, 5, 6]

r def
=[4, 7, E ]

then all paths are given by

P = (q1 | q2) p∗ r

I Number of possible paths:

|P| = 2nMaxInt − 1

19 [26]



Statement, Branch and Path Coverage

I Statement Coverage:
I Necessary but not sufficient, not suitable as only test approach.
I Detects dead code (code which is never executed).
I About 18% of all defects are identified.

I Branch coverage:
I Least possible single approach.
I Detects dead code, but also frequently executed program parts.
I About 34% of all defects are identified.

I Path Coverage:
I Most powerful structural approach;
I Highest defect identification rate (100%);
I But no practical relevance because of restricted practicability.

20 [26]



Decision Coverage

I Decision coverage is more then branch coverage, but less then full
path coverage.

I Decision coverage requires that for all decisions in the program, each
possible outcome is considered once.

I Problem: cannot sufficiently distinguish boolean expressions.

I For A || B, the following are sufficient: A B Result
false false false
true false true

I But this does not distinguish A || B from A; B is effectively not tested.

21 [26]



Decomposing Boolean Expressions

I The binary boolean operators include conjunction x ∧ y , disjunction
x ∨ y , or anything expressible by these (e.g. exclusive disjunction,
implication).

Elementary Boolean Terms
An elementary boolean term does not contain binary boolean
operators, and cannot be further decomposed.

I An elementary term is a variable, a boolean-valued function, a relation
(equality =, orders <, ≤, ≥ etc), or a negation of these.

I This is a fairly operational view, e.g. x ≤ y is elementary, but
x < y ∨ x = y is not, even though they are equivalent.

I In logic, these are called literals.

22 [26]



Simple Condition Coverage

I In simple condition coverage, for each condition in the program, each
elementary boolean term evaluates to True and False at least once.

I Note that this does not say much about the possible value of the
condition.

I Examples and possible solutions:

i f ( t empe ra tu r e > 90 && p r e s s u r e > 120) { . . .
T1 T2

T1 T2 Result
true false false
false true false

T1 T2 Result
true true true
false false false

23 [26]



Modified Condition Coverage

I It is not always possible to generate all possible combinations of
elementary terms, e.g: 3 <= x && x < 5.

I In modified (or minimal) condition coverage, all possible
combinations of those elementary terms the value of which determines
the value of the whole condition need to be considered.

I Example: 3 <= x x < 5 Result
false false false ←− not needed
false true false
true false false
true true true

I Another example: (x > 1 && ! p) || q

24 [26]



Modified Condition/Decision Coverage

I Modified Condition/Decision Coverage (MC/DC) is required by
DO-178B for Level A software.

I It is a combination of the previous coverage criteria defined as
follows:

I Every point of entry and exit in the program has been invoked at least
once;

I Every decision in the program has taken all possible outcomes at least
once;

I Every condition in a decision in the program has taken all possible
outcomes at least once;

I Every condition in a decision has been shown to independently affect that
decision’s outcome.

25 [26]



Summary

I (Dynamic) Testing is the controlled execution of code, and comparing
the result against an expected outcome.

I Testing is (traditionally) the main way for verification

I Depending on how the test cases are derived, we distinguish
white-box and black-box tests.

I In black-box tests, we can consider limits and equivalence classes for
input values to obtain test cases.

I In white-box tests, we have different notions of coverage: statement
coverage, path coverage, condition coverage, etc.

I Next week: Static testing aka. static program analysis.

26 [26]



  SQS, WS 13/14 

Systeme hoher Qualität und Sicherheit 
Universität Bremen, WS 2013/14 

Christoph Lüth 
Christian Liguda 

Lecture 08 (09.12.2013) 
 

Static Program Analysis 
 

  



  SQS, WS 13/14 

Where are we? 

Lecture 01: Concepts of Quality 

Lecture 02: Concepts of Safety and Security, Norms and Standards 

Lecture 03: Quality of the Software Development Process 

Lecture 04: Requirements Analysis     

Lecture 05: High-Level Design & Formal Modelling 

Lecture 06: Detailed Specification 

Lecture 07: Testing 

Lecture 08: Static Program Analysis 

Lecture 09: Model-Checking 

Lecture 10 and 11: Software Verification (Hoare-Calculus) 

Lecture 12: Concurrency 

Lecture 13: Conclusions 

 

2 



  SQS, WS 13/14 

Today: Static Program Analysis 

Analysis of run-time behavior of programs without 
executing them (sometimes called static testing) 

Analysis is done for all possible runs of a program 
(i.e. considering all possible inputs)  

Typical tasks 

 Does the variable x have a constant value ? 

 Is the value of the variable x always positive ? 

 Can the pointer p be null at a given program point ? 

 What are the possible values of the variable y ? 

These tasks can be used for verification (e.g. is there any 
possible dereferencing of the null pointer), or for 
optimisation when compiling. 

  



  SQS, WS 13/14 

Static Program Analysis in the Development Cycle 
 



  SQS, WS 13/14 

Usage of Program Analysis 

 

Optimising compilers 
Detection of sub-expressions that are evaluated multiple times 

Detection of unused local variables 

Pipeline optimisations 

 

Program verification 
Search for runtime errors in programs 

Null pointer dereference 

Exceptions which are thrown and not caught 

Over/underflow of integers, rounding errors with floating point 
numbers 

Runtime estimation (worst-caste executing time, wcet; AbsInt tool) 

   



  SQS, WS 13/14 

Program Analysis: The Basic Problem 

Basic Problem:  

 

 

Given a property P and a program p, we say 𝑝 ⊨ 𝑃 if a P 
holds for p. An algorithm (tool) 𝜙 which decides P is a 
computable predicate 𝜙: 𝑝 → 𝐵𝑜𝑜𝑙. We say: 

 𝜙 is sound if whenever 𝜙 𝑝  then 𝑝 ⊨ 𝑃.  

 𝜙 is safe (or complete) if whenever 𝑝 ⊨ 𝑃 then 𝜙 𝑝 . 

From the basic problem it follows that there are no 
sound and safe tools for interesting properties. 

 In other words, all tools must either under- or 
overapproximate.  

  

 

 

All interesting program properties are undecidable. All interesting program properties are undecidable. 



  SQS, WS 13/14 

Program Analysis: Approximation 

 

 

Correct Errors 

Not 
Computable 

Overapproximation 

Underapproximation 

 

Underapproximation only finds correct 
programs but may miss out some 

 Useful in optimising compilers 

 Optimisation must respect semantics 
of program, but may optimise. 

Overapproximation finds all errors but 
may find non-errors (false positives) 

 Useful in verification. 

 Safety analysis must find all errors, 
but may report some more. 

 Too high rate of false positives may 
hinder acceptance of tool. 



  SQS, WS 13/14 

Program Analysis Approach 

Provides approximate answers 

 yes / no / don’t know or  

 superset or subset of values 

 Uses an abstraction of program’s behavior 

 Abstract data values (e.g. sign abstraction) 

 Summarization of information from  
execution paths e.g. branches of the if-else statement 

Worst-case assumptions about environment’s behavior 

 e.g. any value of a method parameter is possible 

Sufficient precision with good performance 

  



  SQS, WS 13/14 

Flow Sensitivity 

Flow-sensitive analysis 

Considers program's flow of control 

Uses control-flow graph as a representation of the 
source 

Example: available expressions analysis 

 

Flow-insensitive analysis 

Program is seen as an unordered collection of 
statements 

Results are valid for any order of statements 
e.g.  S1 ; S2 vs. S2 ; S1 

Example: type analysis (inference) 

  



  SQS, WS 13/14 

Context Sensitivity 

Context-sensitive analysis 

Stack of procedure invocations and return values of 
method parameters 
then results of analysis of the method M depend on the 
caller of M 

 

Context-insensitive analysis 

Produces the same results for all possible invocations of 
M independent of possible callers and parameter values 

  



  SQS, WS 13/14 

Intra- vs. Inter-procedural Analysis 

 

Intra-procedural analysis 

Single function is analyzed in isolation 

Maximally pessimistic assumptions about parameter 
values and results of procedure calls 

 

Inter-procedural analysis 

Whole program is analyzed at once 

Procedure calls are considered 

  



  SQS, WS 13/14 

Data-Flow Analysis 

Focus on questions related to values of variables and their lifetime 
 

Selected analyses: 

Available expressions (forward analysis) 

 Which expressions have been computed already without 
change of the occurring variables (optimization) ? 

Reaching definitions (forward analysis) 

 Which assignments contribute to a state in a program point? 
(verification) 

Very busy expressions (backward analysis) 

 Which expressions are executed in a block regardless which 
path the program takes (verification) ? 

Live variables (backward analysis) 

 Is the value of a variable in a program point used in a later part 
of the program (optimization) ? 

  



  SQS, WS 13/14 

A Very Simple Programming Language 

In the following, we use a very simple language with  

 Arithmetic operators given by 
𝑎 ∷= 𝑥  𝑛  𝑎1 𝑜𝑝𝑎 𝑎2 

with 𝑥 a variable, 𝑛 a numeral,  𝑜𝑝𝑎arith. op. (e.g. +, -, *)  

 Boolean operators given by 
𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏  𝑏2  𝑎1𝑜𝑝𝑟 𝑎2 

with 𝑜𝑝𝑏 boolean operator (e.g. and, or) and 𝑜𝑝𝑟 a 
relational operator (e.g. =, <) 

 Statements given by 
𝑆 ∷=

𝑥 ≔ 𝑎 𝑙  skip 𝑙  𝑆1; 𝑆2  if 𝑏 𝑙then 𝑆1else 𝑆2  while 𝑏 𝑙do 𝑆  

An Example Program: 

[x := a+b]1; 

[y := a*b]2;  

while [y > a+b]3 do ( [a:=a+1]4; [x:= a+b]5 ) 

[x := a+b]1; 

[y := a*b]2;  

while [y > a+b]3 do ( [a:=a+1]4; [x:= a+b]5 ) 



  SQS, WS 13/14 

The Control Flow Graph 

We define some functions on the abstract syntax: 

 The initial label (entry point) init: 𝑆 → 𝐿𝑎𝑏  

 The final labels (exit points) final: 𝑆 →  ℙ 𝐿𝑎𝑏  

 The elementary blocks block: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠  
where an elementary block is  

► an assignment [x:= a],  

► or [skip],  

► or a test [b]  

 The control flow flow: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏  and reverse 
control flowR: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 .  

The control flow graph of a program S  is given by  

 elementary blocks block 𝑆  as nodes, and 

 flow(S) as vertices.  



  SQS, WS 13/14 

Labels, Blocks, Flows: Definitions 

  

init( [x :=a]l ) = l 

init( [skip]l ) = l 

init( S1; S2) = init( S1) 

init(if [b]l then S1 else S2) = l 

init(while [b]l  do S) = l 

final( [x :=a]l ) = { l } 

final( [skip]l ) = { l } 

final( S1; S2) = final( S2) 
final(if [b]l then S1 else S2) = final( S1) [ final( S2) 

final(while [b]l  do S) = { l } 

blocks( [x :=a]l ) = { [x :=a]l  } 

blocks( [skip]l ) = { [skip]l } 
blocks( S1; S2) = blocks( S1) [ blocks( S2) 

blocks(if [b]l then S1 else S2) 
    = { [b]l } [ blocks( S1) [ blocks( S2) 

blocks( while [b]l  do S) = { [b]l } [ blocks( S)  

flow( [x :=a]l ) = ; 

flow( [skip]l ) = ;  

flow( S1; S2) = flow(S1) [ flow(S2) [ {( l, init(S2)) | l 2 final(S1) } 

flow(if [b]l then S1 else S2) = flow(S1) [ flow(S2) [ { ( l, init(S1), ( l, init(S2) } 
flow( while [b]l  do S) = flow(S) [ { ( l, init(S) } [ {( l‘, l) | l‘ 2 final(S) } 

 

flowR(S) = {(l‘, l) | (l, l‘) 2 flow(S)} 

labels(S) = { l | [B]l2 blocks(S)} 

FV(a) = free variables in a 

Aexp(S) = nontrivial   

    subexpressions of S 



  SQS, WS 13/14 

Another Example 

init(P) = 1 

final(P) = {3} 

blocks(P) = 

     { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b] } 

flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} 

flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} 

labels(P) = {1, 2, 3, 4, 5) 

 

FV(a + b) = {a, b} 

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

no 

yes 

1 

5 

4 

3 

y := a * b 
2 

P =  [x := a+b]1; [y := a*b]2; while [y > a+b]3 do ( [a:=a+1]4; [x:= a+b]5 ) 



  SQS, WS 13/14 

Available Expression Analysis 

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

no 

yes 

1 

5 

4 

3 

y := a * b 
2 

S : 

For each program point, which 
expressions must have already been 
computed, and not later modified, on 
all paths to this program point.   

For each program point, which 
expressions must have already been 
computed, and not later modified, on 
all paths to this program point.   

The avaiable expression analysis will 
determine:    



  SQS, WS 13/14 

Available Expression Analysis 

  

kill( [x :=a]l ) = { a‘ 2 Aexp(S) | x 2 FV(a‘) } 

kill( [skip]l ) = ; 
kill( [b]l ) = ;  

gen( [x :=a]l ) = { a‘ 2 Aexp(a) | xFV(a‘) } 

gen( [skip]l ) = ; 
gen( [b]l ) = Aexp(b) 

AEin( l ) =  ;  , if l 2 init(S)  and 

AEin( l ) =   {AEout ( l‘ ) | (l‘, l) 2 flow(S) }   , otherwise 

AEout ( l ) = ( AEin( l ) \ kill(Bl ) ) [ gen(Bl ) where Bl  2 blocks(S) 
 

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

no 

yes 

1 

5 

4 

3 

y := a * b 
2 

l kill(l) gen(l) 

1 

2 

3 

4 

5 

l AEin AEout 

1 

2 

3 

4 

5 

S : 



  SQS, WS 13/14 

Available Expression Analysis 

  

kill( [x :=a]l ) = { a‘ 2 Aexp(S) | x 2 FV(a‘) } 

kill( [skip]l ) = ; 
kill( [b]l ) = ;  

gen( [x :=a]l ) = { a‘ 2 Aexp(a) | xFV(a‘) } 

gen( [skip]l ) = ; 
gen( [b]l ) = Aexp(b) 

AEin( l ) =  ;  , if l 2 init(S)  and 

AEin( l ) =   {AEout ( l‘ ) | (l‘, l) 2 flow(S) }   , otherwise 

AEout ( l ) = ( AEin( l ) \ kill(Bl ) ) [ gen(Bl ) where Bl  2 blocks(S) 
 

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

no 

yes 

1 

5 

4 

3 

y := a * b 
2 

l kill(l) gen(l) 

1 ; {a+b} 

2 ; {a*b} 

3 ; {a+b} 

4 {a+b, a*b, a+1} ; 

5 ; {a+b} 

l AEin AEout 

1 ; {a+b} 

2 {a+b} {a+b, a*b} 

3 {a+b} {a+b} 

4 {a+b} ; 

5 ; {a+b} 

S : 



  SQS, WS 13/14 

Reaching Definitions Analysis 

Reaching definitions (assignment) 
analysis determines if: 

  

An assignment of the form [x := a]l 

may reach a certain program point k 
if there is an execution of the 
program where x was last assigned a 
value at l when the program point k 
is reached  

An assignment of the form [x := a]l 

may reach a certain program point k 
if there is an execution of the 
program where x was last assigned a 
value at l when the program point k 
is reached  

x := 5 

x > 1 

y := x * y 

x := x - 1 

no 

yes 

1 

5 

4 

3 

y := 1 
2 

S : 



  SQS, WS 13/14 

Reaching Definitions Analysis 

  

kill( [skip]l ) = ; 
kill( [b]l ) = ;  

kill( [x :=a]l ) = { (x, ?) } [ { (x, k) | Bk is an assignment to x in S } 
 

gen( [x :=a]l ) = { (x, l) } 
gen( [skip]l ) = ; 
gen( [b]l ) = ;  

RDin( l ) = { (x, ?) | x 2 FV(S)}  , if l 2 init(S)  and 

RDin( l ) =   {RDout ( l‘ ) | (l‘, l) 2 flow(S) }   , otherwise 

RDout ( l ) = ( RDin( l ) \ kill(Bl ) ) [ gen(Bl )  where Bl  2 blocks(S) 

x := 5 

x > 1 

y := x * y 

x := x - 1 

no 

yes 

1 

5 

4 

3 

y := 1 
2 

l kill(Bl) gen(Bl) 

1 {(x,?), (x,1),(x,5)} {(x, 1)} 

2 {(y,?), (y,2),(y,4)} {(y, 2)} 

3 ; ; 

4 {(y,?), (y,2),(y,4)} {(y, 4)} 

5 {(x,?), (x,1),(x,5)} {(x, 5)} 

l RDin RDout 

1 

2 

3 

4 

5 

S : 



  SQS, WS 13/14 

Reaching Definitions Analysis 

  

kill( [skip]l ) = ; 
kill( [b]l ) = ;  

kill( [x :=a]l ) = { (x, ?) } [ { (x, k) | Bk is an assignment to x in S } 
 

gen( [x :=a]l ) = { (x, l) } 
gen( [skip]l ) = ; 
gen( [b]l ) = ;  

RDin( l ) = { (x, ?) | x 2 FV(S)}  , if l 2 init(S)  and 

RDin( l ) =   {RDout ( l‘ ) | (l‘, l) 2 flow(S) }   , otherwise 

RDout ( l ) = ( RDin( l ) \ kill(Bl ) ) [ gen(Bl )  where Bl  2 blocks(S) 

x := 5 

x > 1 

y := x * y 

x := x - 1 

no 

yes 

1 

5 

4 

3 

y := 1 
2 

l kill(Bl) gen(Bl) 

1 {(x,?), (x,1),(x,5)} {(x, 1)} 

2 {(y,?), (y,2),(y,4)} {(y, 2)} 

3 ; ; 

4 {(y,?), (y,2),(y,4)} {(y, 4)} 

5 {(x,?), (x,1),(x,5)} {(x, 5)} 

l RDin RDout 

1 {(x,?), (y,?)} {(x,1), (y,?)} 

2 {(x,1), (y,?)} {(x,1), (y,2)} 

3 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5), (y,2), (y,4)} 

4 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5),(y,4)} 

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)} 

 

S : 



  SQS, WS 13/14 

Live Variables Analysis 

A variable x is live at some program 
point (label l) if there exists if there 
exists a path from l to an exit point that 
does not change the variable. 

Live Variables Analysis determines: 

 

 

 

 

 

Application: dead code elemination. 

  

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

S : 

z := y*y 
6 

x := z 
7 

For each program point, which 
variables may be live at the exit 
from that point. 

For each program point, which 
variables may be live at the exit 
from that point. 



  SQS, WS 13/14 

Live Variables Analysis 

  

kill( [x :=a]l ) = {x}  
kill( [skip]l ) = ; 
kill( [b]l ) = ; 

gen( [x :=a]l ) = FV(a) 
gen( [skip]l ) = ; 
gen( [b]l ) = FV(b)  

LVout( l ) =  ;  , if l 2 final(S)  and 

LVout( l ) =   {LVin ( l‘ ) | (l‘, l) 2 flowR(S) }   , otherwise 

LVin ( l ) = ( LVout( l ) \ kill(Bl ) ) [ gen(Bl ) where Bl  2 blocks(S) 
 

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

l kill(l) gen(l) 

1 

2 

3 

4 

5 

6 

7 

l LVin LVout 

1 

2 

3 

4 

5 

6 

7 

S : 

z := y*y 
6 

x := z 
7 



  SQS, WS 13/14 

Live Variables Analysis 

  

kill( [x :=a]l ) = {x}  
kill( [skip]l ) = ; 
kill( [b]l ) = ; 

gen( [x :=a]l ) = FV(a) 
gen( [skip]l ) = ; 
gen( [b]l ) = FV(b)  

LVout( l ) =  ;  , if l 2 final(S)  and 

LVout( l ) =   {LVin ( l‘ ) | (l‘, l) 2 flowR(S) }   , otherwise 

LVin ( l ) = ( LVout( l ) \ kill(Bl ) ) [ gen(Bl ) where Bl  2 blocks(S) 
 

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

l kill(l) gen(l) 

1 {x} ; 

2 {y} ; 

3 {x} ; 

4 ; {x, y} 

5 {z} {y} 

6 {z} {y} 

7 {x} {z} 

l LVin LVout 

1 ; ; 

2 ; {y} 

3 {y} {x, y} 

4 {x, y} {y} 

5 {y} {z} 

6 {y} {z} 

7 {z} ; 

S : 

z := y*y 
6 

x := z 
7 



  SQS, WS 13/14 

First Generalized Schema 

Analyse ( l ) =  EV  , if l 2 E  and 

Analyse ( l ) =  t { Analyse ( l‘ ) | (l‘, l) 2 Flow(S) }, otherwise 
 

Analyse ( l ) = fl ( Analyse ( l ) ) 

 

With: 

t is either  or  

EV is the initial / final analysis information 

Flow is either flow or flowR 

E is either {init(S)} or final(S) 

fl  is the transfer function associated with Bl 2 blocks(S) 
 

Backward analysis:  F = flowR,  = IN,  = OUT 

Forward analysis:  F = flow,  = OUT,  = IN 

  



  SQS, WS 13/14 

Partial Order 

L = (M, ⊑ ) is a partial order iff 

 Reflexivity: 8 x 2 M. x ⊑ x 

 Transitivity: 8 x,y,z 2 M.  x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z 

 Anti-symmetry: 8 x,y 2 M. x ⊑ y ∧ y ⊑ x ⇒ x = y 

 

Let L = (M, ⊑ ) be a partial order,  S ⊆ M. 

 y 2 M is upper bound for S (S ⊑ y) iff 8 x 2 S. x ⊑ y 

 y 2 M is lower bound for S (y ⊑ S) iff 8 x 2 S. y ⊑ x 

 Least upper bound ⊔X 2 M of X ⊆ M :  

► X ⊑ ⊔X ∧ 8 y 2 M : X ⊑ y ⇒ ⊔X ⊑ y 

 Greatest lower bound ⊓X 2 M of X ⊆ M: 

► ⊓X ⊑ X ∧ 8 y 2 M : y ⊑ X ⇒ y ⊑ ⊓X 

 
  



  SQS, WS 13/14 

Lattice 

A lattice (“Verbund”) is a partial order L = (M, ⊑) such that 

 

 ⊔X and ⊓X exist for all X ⊆ M 

 Unique greatest element ⊤ = ⊔M = ⊓∅ 

 Unique least element ⊥ = ⊓M = ⊔∅ 

 

 

  



  SQS, WS 13/14 

Transfer Functions 

Transfer functions to propagate information along the execution 
path 
(i.e. from input to output, or vice versa) 

 

Let L = (M, ⊑) be a lattice. Set F  of transfer functions of the form   
 fl : L  L with l being a label  

 

Knowledge transfer is monotone 

 8 x,y.  x ⊑ y ⇒ fl (x) ⊑ fl (y) 

 

Space F of transfer functions 

 F  contains all transfer functions fl 

 F  contains the identity function id,  i.e.  8 x 2 M. id(x) = x 

 F  is closed under composition, i.e. 8 f,g 2 F.  (f  g) 2 F 

  



  SQS, WS 13/14 

The Generalized Analysis 

Analyse ( l ) =  t { Analyse ( l‘ ) | (l‘, l) 2 Flow(S) } t ¶l
E   

     with  ¶l
E = EV  if  l 2 E  and  

             ¶l
E = ⊥    otherwise 

Analyse ( l ) = fl ( Analyse ( l ) ) 

 

With: 
 

L property space representing data flow information with  
(L, t ) being a lattice 

Flow is a finite flow  (i.e. flow or flowR ) 

EV is an extremal value for the extremal labels E (i.e.  {init(S)} or 
final(S)) 

transfer functions fl  of a space of transfer functions F 

  



  SQS, WS 13/14 

Summary 
 

Static Program Analysis is the analysis of run-time 
behavior of programs without executing them 
(sometimes called static testing). 

Approximations of program behaviours by analyzing the 
program‘s cfg. 

Analysis include 

 available expressions analysis,  

 reaching definitions, 

 live variables analysis. 

These are instances of a more general framework. 

These techniques are used commercially, e.g. 

 AbsInt aiT (WCET) 

 Astrée Static Analyzer (C program safety) 



Systeme Hoher Qualität und Sicherheit
Vorlesung 9 vom 16.12.2013: Verification with Floyd-Hoare-Logic

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2410 1 [19]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

2 [19]



Floyd-Hoare logic in the Development Process

I The Floyd-Hoare calculus proves properties of sequential programs.
I Thus, it is at home in the lower levels of the verification branch,

much like the static analysis from last week.
I It is far more powerful than static analysis — and hence, far more
complex to use (it requires user interaction, and is not automatic).

3 [19]



Idea

I What does this compute?

I How can we prove this?
I Inuitively, we argue about which

value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

P := 1 ;
C := 1 ;
whi le C ≤ N do {

P := P × C ;
C := C + 1

}

4 [19]



Idea

I What does this compute? P = N!

I How can we prove this?

I Inuitively, we argue about which
value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

P := 1 ;
C := 1 ;
whi le C ≤ N do {

P := P × C ;
C := C + 1

}

4 [19]



Idea

I What does this compute? P = N!

I How can we prove this?
I Inuitively, we argue about which

value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le C ≤ N do {

P := P × C ;
C := C + 1

}
{P = N!}

4 [19]



Floyd-Hoare-Logic

I Floyd-Hoare-Logic consists of a set of rules to derive valid assertions
about programs. The assertions are denoted in the form of
Floyd-Hoare-Triples.

I The logical language has both logical variables (which do not change),
and program variables (the value of which changes with program
execution).

I Floyd-Hoare-Logic has one basic principle and one basic trick.

I The principle is to abstract from the program state into the logical
language; in particular, assignment is mapped to substitution.

I The trick is dealing with iteration: iteration corresponds to induction
in the logic, and thus is handled with an inductive proof. The trick
here is that in most cases we need to strengthen our assertion to
obtain an invariant.

5 [19]



Recall Our Small Language

I Arithmetic Expressions (AExp)

a ::= N | Loc | a1 + a2 | a1 − a2 | a1 × a2

with variables Loc, numerals N

I Boolean Expressions (BExp)

b ::= true | false | a1 = a2 | a1 < a2 | ¬b | b1 ∧ b2 | b1 ∨ b2

I Statements (Com)

c ::= skip | Loc := AExp | if b then c1 else c2
| while b do c | c1; c2 | {c}

6 [19]



Semantics of our Small Language
I The semantics of an imperative language is state transition: the

program has an ambient state, and changes it by assigning values to
certain locations

I Concrete example: execution starting with N = 3

P ?

C ?

N 3
 

P 1
C ?

N 3
 

P 1
C 1
N 3

 
P 1
C 1
N 3

 . . .

P 6
C 4
N 3

Semantics in a nutshell
I Expressions evaluate to values Val(in our case, integers)
I A program state maps locations to values: Σ = Loc⇀ Val
I A programs maps an initial state to possibly a final state (if it

terminates)
I Assertions are predicates over program states.

7 [19]



Floyd-Hoare-Triples

Partial Correctness (|= {P} c {Q})
c is partial correct with precondition P and postcondition Q if:
for all states σ which satisfy P
if the execution of c on σ terminates in σ′

then σ′ satisfies Q

Total Correctness (|= [P] c [Q])
c is total correct with precondition P and postcondition Q if:
for all states σ which satisfy P
the execution of c on σ terminates in σ′

and σ′ satisfies Q

I |= {true} while true do skip {false} holds

I |= [true] while true do skip [false] does not hold

8 [19]



Assertion Language

I Extension of AExp and BExp by
I logical variables Var v := n,m, p, q, k, l , u, v , x , y , z
I defined functions and predicates on Aexp n!,

∑n
i=1, . . .

I implication, quantification b1 ⇒ b2,∀v . b,∃v . b

I Aexpv

a ::= N | Loc | a1 + a2 | a1 − a2 | a1 × a2 | Var | f (e1, . . . , en)

I Bexpv

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2 | b1 ∨ b2
| b1 ⇒ b2 | p(e1, . . . , en) | ∀v . b | ∃v . b

9 [19]



Rules of Floyd-Hoare-Logic

I The Floyd-Hoare logic allows us to derive assertions of the form
` {P} c {Q}

I The calculus of Floyd-Hoare logic consists of six rules of the form

` {P1} c1 {Q1} . . . ` {Pn} cn {Qn}
` {P} c {Q}

I This means we can derive ` {P} c {Q} if we can derive ` {Pi} ci {Qi}

I There is one rule for each construction of the language.

10 [19]



Rules of Floyd-Hoare Logic: Assignment

` {B[e/X ]}X := e {B}

I An assigment X:=e changes the state such that at location X we now
have the value of expression e. Thus, in the state before the
assignment, instead of X we must refer to e.

I It is quite natural to think that this rule should be the other way
around.

I Examples:

X := 10 ;
{0 < 10←→ (X < 10)[X/0]}
X := 0
{X < 10}

{X < 9←→ X + 1 < 10}
X := X+ 1
{X < 10}

11 [19]



Rules of Floyd-Hoare Logic: Conditional and
Sequencing

` {A ∧ b} c0 {B} ` {A ∧ ¬b} c1 {B}
` {A} if b then c0 else c1 {B}

I In the precondition of the positive branch, the condition b holds,
whereas in the negative branch the negation ¬b holds.

I Both branches must end in the same postcondition.

` {A} c0 {B} ` {B} c1 {C}
` {A} c0; c1 {C}

I We need an intermediate state predicate B.

12 [19]



Rules of Floyd-Hoare Logic: Iteration

` {A ∧ b} c {A}
` {A} while b do c {A ∧ ¬b}

I Iteration corresponds to induction. Recall that in (natural) induction
we have to show the same property P holds for 0, and continues to
hold: if it holds for n, then it also holds for n + 1.

I Analogously, here we need an invariant A which has to hold both
before and after the body (but not necessarily in between).

I In the precondition of the body, we can assume the loop condition
holds.

I The precondition of the iteration is simply the invariant A, and the
postcondition of the iteration is A and the negation of the loop
condition.

13 [19]



Rules of Floyd-Hoare Logic: Weakening
A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

c

All possible program states

A B

c

All possible program states

B'A'

I |= {A} c {B} means that whenever we start in a state where A holds,
c ends1 in state where B holds.

I Further, for two sets of states, P ⊆ Q iff P −→ Q.

I We can restrict the set A to A′ (A′ ⊆ A or A′ −→ A) and we can
enlarge the set B to B′ (B ⊆ B′ or B −→ B′), and obtain
|= {A′} c {B′}.

1If end it does.
14 [19]



Rules of Floyd-Hoare Logic: Weakening
A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

c

All possible program states

A B

c

All possible program states

B'A'

I |= {A} c {B} means that whenever we start in a state where A holds,
c ends1 in state where B holds.

I Further, for two sets of states, P ⊆ Q iff P −→ Q.
I We can restrict the set A to A′ (A′ ⊆ A or A′ −→ A) and we can

enlarge the set B to B′ (B ⊆ B′ or B −→ B′), and obtain
|= {A′} c {B′}.
1If end it does.

14 [19]



Overview: Rules of Floyd-Hoare-Logic

` {A} skip {A} ` {B[e/X ]}X := e {B}

` {A ∧ b} c0 {B} ` {A ∧ ¬b} c1 {B}
` {A} if b then c0 else c1 {B}

` {A ∧ b} c {A}
` {A} while b do c {A ∧ ¬b}

` {A} c0 {B} ` {B} c1 {C}
` {A} c0; c1 {C}

A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

15 [19]



Properties of Hoare-Logic

Soundness
If ` {P} c {Q}, then |= {P} c {Q}

I If we derive a correctness assertion, it holds.
I This is shown by defining a formal semantics for the programming

language, and showing that all rules are correct wrt. to that semantics.

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I Failure to derive a correctness assertion is always due to a failure to
prove some logical statements (in the weakening).

I First-order logic itself is incomplete, so this result is as good as we can
get.

16 [19]



The Need for Verification

Consider the following variations of the faculty example.
Which ones are correct?

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le C≤N do {

C := C+1
P := P× C ;

}
{P = N!}

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le C<N do {

C := C+1
P := P×C ;

}
{P = N!}

{1 ≤ N ∧ n = N}
P := 1 ;
whi le 0<N do {

P := P×N ;
N := N−1

}
{P = n!}

17 [19]



A Hatful of Examples

{i = Y }
X := 1 ;
whi le ¬ (Y = 0) do {
Y := Y−1 ;
X := 2 ×X

}
{X = 2i}

{A ≥ 0 ∧ B ≥ 0}
Q := 0 ;
R := A−(B×Q) ;
whi le B ≤ R do {
Q := Q+1 ;
R := A−(B×Q)

}
{A = B ∗ Q + R ∧ R < B}

{0 < A}
T:= 1 ;
S:= 1 ;
I := 0 ;
whi le S ≤ A do {

T := T+ 2 ;
S := S+ T ;
I := I+ 1
}

{I ∗ I <= A ∧ A < (I + 1) ∗ (I + 1)}

18 [19]



A Hatful of Examples

{i = Y ∧ Y ≥ 0}
X := 1 ;
whi le ¬ (Y = 0) do {
Y := Y−1 ;
X := 2 ×X

}
{X = 2i}

{A ≥ 0 ∧ B ≥ 0}
Q := 0 ;
R := A−(B×Q) ;
whi le B ≤ R do {
Q := Q+1 ;
R := A−(B×Q)

}
{A = B ∗ Q + R ∧ R < B}

{0 < A}
T:= 1 ;
S:= 1 ;
I := 0 ;
whi le S ≤ A do {

T := T+ 2 ;
S := S+ T ;
I := I+ 1
}

{I ∗ I <= A ∧ A < (I + 1) ∗ (I + 1)}

18 [19]



Summary

I Floyd-Hoare logic in a nutshell:

I The logic abstracts over the concrete program state by program
assertions

I Program assertions are boolean expressions, enriched by logical variables
(and more)

I We can prove partial correctness assertions of the form |= {P} c {Q} (or
total |= [P] c [Q]).

I Validity (correctness wrt a real programming language) depends very
much on capturing the exact semantics formally.

I Floyd-Hoare logic itself is rarely used directly in practice, verification
condition generation is — see next lecture.

19 [19]



Systeme Hoher Qualität und Sicherheit
Vorlesung 10 vom 06.01.2014: Verification Condition Generation

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2421 1 [19]



Frohes Neues Jahr!

2 [19]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

3 [19]



Introduction

I In the last lecture, we learned about the Floyd-Hoare calculus.

I It allowed us to state and prove correctness assertions about
programs, written as {P} c {Q}.

I The problem is that proofs of ` {P} c {Q} are exceedingly tedious,
and hence not viable in practice.

I We are looking for a calculus which reduces the size (and tediousness)
of Floyd-Hoare proofs.

I The starting point is the relative completeness of the Floyd-Hoare
calculus.

4 [19]



Completeness of the Floyd-Hoare Calculus

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I To show this, one constructs a so-called weakest precondition.

Weakest Precondition
Given a program c and an assertion P, the weakest precondition is an
assertion W which
1. is a valid precondition: |= {W } c {P}

2. and is the weakest such: if |= {Q} c {P}, then W −→ Q.

I Question: is the weakest precondition unique?

Only up to logical equivalence: if W1 and W2 are weakest
preconditions, then W1 ←→W2.

5 [19]



Completeness of the Floyd-Hoare Calculus

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I To show this, one constructs a so-called weakest precondition.

Weakest Precondition
Given a program c and an assertion P, the weakest precondition is an
assertion W which
1. is a valid precondition: |= {W } c {P}

2. and is the weakest such: if |= {Q} c {P}, then W −→ Q.

I Question: is the weakest precondition unique?
Only up to logical equivalence: if W1 and W2 are weakest
preconditions, then W1 ←→W2.

5 [19]



Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;

Y:= X ;

X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

6 [19]



Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;

Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

6 [19]



Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;
{Z = y ∧ X = x}
Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

6 [19]



Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}
←→
{Y = y ∧ X = x}
Z:= Y ;
{Z = y ∧ X = x}
Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

6 [19]



Constructing the Weakest Precondition
I There are four straightforward cases:

wp(skip,P)
def
= P

wp(X := e,P)
def
= P[e/X ]

wp(c0; c1,P)
def
= wp(c0,wp(c1,P))

wp(if b then c0 else c1,P)
def
= (b ∧ wp(c0,P)) ∨ (¬b ∧ wp(c1,P))

I The complicated one is iteration. This is not surprising, because
iteration gives us computational power (and makes our language
Turing-complete). It can be given recursively:

wp(while b do c,P)
def
= (¬b ∧ P) ∨ (b ∧ wp(c,wp(while b do c,P)))

A closed formula can be given using Turing’s β-predicate, but it is
unwieldy to write down.

I Hence, wp(c,P) is not an effective way to prove correctness.
7 [19]



Verfication Conditions: Annotated Programs

I Idea: invariants specified in the program by annotations.

I Arithmetic and Boolean Expressions (AExp, BExp) remain as they
are.

I Annotated Statements (ACom)

c ::= skip | Loc := AExp | assert P | if b then c1 else c2
| while b inv I do c | c1; c2 | {c}

8 [19]



Calculuation Verification Conditions

I For an annotated statement c ∈ ACom and an assertion P (the
postcondition), we calculuate a set of verification conditions vc(c,P)
and a precondition pre(c,P).

I The precondition is an auxiliary definition — it is mainly needed to
compute the verification conditions.

I If we can prove the verification conditions, then pre(c,P) is a proper
precondition, i.e. |= {pre(c,P)} c {P}.

9 [19]



Calculating Verification Conditions

pre(skip,P)
def
= P

pre(X := e,P)
def
= P[e/X ]

pre(c0; c1,P)
def
= pre(c0, pre(c1,P))

pre(if b then c0 else c1,P)
def
= (b ∧ pre(c0,P)) ∨ (¬b ∧ pre(c1,P))

pre(assert Q,P)
def
= Q

pre(while b inv I do c,P)
def
= I

vc(skip,P)
def
= ∅

vc(X := e,P)
def
= ∅

vc(c0; c1,P)
def
= vc(c0, pre(c1,P)) ∪ vc(c1,P)

vc(if b then c0 else c1,P)
def
= ∅

vc(assert Q,P)
def
= {Q −→ P}

vc(while b inv I do c,P)
def
= vc(c, I) ∪{I ∧ b −→ pre(c, I)}

∪ {I ∧ ¬b −→ P}

10 [19]



Correctness of the VC Calculus

Correctness of the VC Calculus
For an annotated program c and an assertion P, let
vc(c,P) = {P1, . . . ,Pn}. If P1 ∧ . . . ∧ Pn, then |= {pre(c,P)} c {P}.

I Proof: By induction on c.

11 [19]



Example: Faculty

Let Fac be the annotated faculty program:
{0 ≤ N}
P := 1 ;
C := 1 ;
whi le C ≤ N inv {P = (C − 1)! ∧ C − 1 ≤ N} do {

P := P × C ;
C := C + 1

}
{P = N!}

vc(Fac) =
{ 0 ≤ N −→ 1 = 0! ∧ 0 ≤ N,

P = (C − 1)! ∧ C − 1 ≤ N ∧ C ≤ N −→ P × C = C ! ∧ C ≤ N,
P = (C − 1)! ∧ C − 1 ≤ N ∧ ¬(C ≤ N) −→ P = N! }

12 [19]



The Framing Problem

I One problem with the simple definition from above is that we need to
specify which variables stay the same (framing problem).

I Essentially, when going into a loop we use lose all information of the
current precondition, as it is replaced by the loop invariant.

I This does not occur in the faculty example, as all program variables are
changed.

I Instead of having to write this down every time, it is more useful to
modify the logic, such that we specify which variables are modified,
and assume the rest stays untouched.

I Sketch of definition: We say |= {P,X} c {Q} is a Hoare-Triple with
modification set X if for all states σ which satisfy P if c terminates
in a state σ′, then σ′ satisfies Q, and if σ(x) 6= σ′(x) then x ∈ X .

13 [19]



Verification Condition Generation Tools

I The Why3 toolset (http://why3.lri.fr)

I The Why3 verification condition generator

I Plug-ins for different provers

I Front-ends for different languages: C (Frama-C), Java (Krakatoa)

I The Boogie VCG
(http://research.microsoft.com/en-us/projects/boogie/)

I The VCC Tool (built on top of Boogie)

I Verification of C programs

I Used in German Verisoft XT project to verify Microsoft Hyper-V hypervisor

14 [19]

http://why3.lri.fr
http://research.microsoft.com/en-us/projects/boogie/


Why3 Overview: Toolset

15 [19]



Why3 Overview: VCG

16 [19]



Why3 Example: Faculty (in WhyML)

let fac(n: int): int
requires { n >= 0 }
ensures { result = fact(n) } =
let p = ref 0 in
let c = ref 0 in
p := 1;
c := 1;
while !c <= n do

invariant { !p= fact(!c-1) /\ !c-1 <= n }
variant { n- !c }
p:= !p* !c;
c:= !c+ 1
done;

!p

17 [19]



Why3 Example: Generated VC for Faculty
goal WP_parameter_fac :
forall n:int.
n >= 0 ->
(forall p:int.

p = 1 ->
(forall c:int.

c = 1 ->
(p = fact (c - 1) /\ (c - 1) <= n) /\
(forall c1:int, p1:int.

p1 = fact (c1 - 1) /\ (c1 - 1) <= n ->
(if c1 <= n then forall p2:int.

p2 = (p1 * c1) ->
(forall c2:int.

c2 = (c1 + 1) ->
(p2 = fact (c2 - 1) /\
(c2 - 1) <= n) /\
0 <= (n - c1) /\
(n - c2) < (n - c1))

else p1 = fact n))))
18 [19]



Summary

I Starting from the relative completeness of the Floyd-Hoare calculus,
we devised a Verification Condition Generation calculus which
makes program verification viable.

I Verification Condition Generation reduces an annotated program to a
set of logical properties.

I We need to annotate preconditions, postconditions and invariants.

I Tools which support this sort of reasoning include Why3 and Boogie.
They come with front-ends for real programming languages, such as
C, Java, C#, and Ada.

I To scale to real-world programs, we need to deal with framing,
modularity (each function/method needs to be verified
independently), and machine arithmetic (integer word arithmetic and
floating-points).

19 [19]



Systeme Hoher Qualität und Sicherheit
Vorlesung 11 vom 13.01.2014: Modelchecking with LTL and CTL

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2432 1 [23]



Organisatorisches

I Noch ein Übungsblatt?

I Prüfungen — KW 06 (4./5. Feb.)

2 [23]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

3 [23]



Introduction

I Last lectures: verifying program properties with the Floyd-Hoare
calculus

I In the Floyd-Hoare calculus, program verification is reduced to a
deductive problem by translating the program into logic (specifically,
state change becomes substitution).

I Model-checking takes a different approach: the system is modelled
directly by a finite-state machine, and properties are expressed in some
logic for FSM. Program verification reduces to state enumeration,
which can be done automatically.

I The logics we will considere here are temporal logic: linear temporal
logic (LTL) and branching temporal logic (CTL)

4 [23]



The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM?

I What is φ?

I How to prove it?

5 [23]



The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ?

I How to prove it?

5 [23]



The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it?

5 [23]



The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it? Enumerating states — model checking

5 [23]



Finite State Machines

Finite State Machine (FSM)
A FSM is given byM = 〈Σ,→〉 where
I Σ is a finite set of states, and
I → ⊆ Σ× Σ is a transition relation, such that → is left-total:

∀s ∈ Σ.∃s ′ ∈ Σ. s → s ′

I Many variations of this definition exists, e.g. sometimes we have state
variables or labelled transitions.

I Note there is no final state, and no input or output (this is the key
difference to automata).

I If → is a function, the FSM is deterministic, otherwise it is
non-deterministic.

6 [23]



The Railway Crossing

Train

Car

Gates

7 [23]



Modelling the Railway Crossing

States of the train:

xing

away

lvngappr

gate= closd

States of the car:

xing

away

lvngappr

gate= open gate = closed

States of the gate:

closdopen

train = appr

train = lvng
train = lvngtrain= appr 

8 [23]



The FSM

I The states here are a map from variables Car, Train, Gate to the
domains

ΣCar = {appr, xing, lvng, away}
ΣTrain = {appr, xing, lvng, away}
ΣGate = {open, clsd}

or alternatively, a three-tuple S ∈ Σ = ΣCar × ΣTrain × ΣGate.

I The transition relation is given by e.g.

〈away, open, away〉 → 〈appr, open, away〉
〈appr, open, away〉 → 〈xing, open, away〉
. . .

9 [23]



Railway Crossing — Safety Properties

I Now we want to express safety (or security) properties, such as the
following:
I Cars and trains never cross at the same time.
I The car can always leave the crossing
I Approaching trains may eventually cross.
I There are cars crossing the tracks.

I We distinguish safety properties from liveness properties:
I Safety: something bad never happens.
I Liveness: something good will (eventually) happen.

I To express these properties, we need to talk about sequences of states
in an FSM.

10 [23]



Linear Temporal Logic (LTL) and Paths

I LTL allows us to talk about paths in a FSM, where a path is a
sequence of states connected by the transition relation.

I We first define the syntax of formula,

I then what it means for a path to satisfy the formula, and

I from that we derive the notion of a model for an LTL formula.

Paths
Given a FSMM = 〈Σ,→〉, a path inM is an (infinite) sequence
〈s1, s2, s3, . . .〉 such that si ∈ Σ and si → si+1 for all i .

I For a path p = 〈s1, s2, s3, . . .〉, we write pi for si (selection) and pi for
〈si , si+1, . . .〉 (the suffix starting at i).

11 [23]



Linear Temporal Logic (LTL)

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| X φ — Next state
| Fφ — Some Future State
| Gφ — All future states (Globally)
| φ1 U φ2 — Until

I Operator precedence: Unary operators; then U; then ∧, ∨; then −→.
I An atomic formula p above denotes a state predicate. Note that

different FSMs have different states, so the notion of whether an
atomic formula is satisfied depends on the FSM in question. A different
(but equivalent) approach is to label states with atomic propositions.

I From these, we can define other operators, such as φ R ψ (release) or
φW ψ (weak until).

12 [23]



Satifsaction and Models of LTL
Given a path p and an LTL formula φ, the satisfaction relation p |= φ
is defined inductively as follows:

p |= True
p 6|= False
p |= p iff p(p1)
p |= ¬φ iff p 6|= φ

p |= φ ∧ ψ iff p |= φ and p |= ψ
p |= φ ∨ ψ iff p |= φ or p |= ψ
p |= φ −→ ψ iff whenever p |= φ then p |= ψ

p |= X φ iff p2 |= φ
p |= Gφ iff for all i , we have pi |= φ
p |= Fφ iff there is i such that pi |= φ
p |= φ U ψ iff there is i pi |= ψ and for all j = 1, . . . , i − 1, pj |= φ

Models of LTL formulae
A FSMM satisfies an LTL formula φ,M |= φ, iff every path p inM
satisfies φ.

13 [23]



The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!

14 [23]



The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!

14 [23]



The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!

14 [23]



The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!

14 [23]



The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!
14 [23]



Computational Tree Logic (CTL)

I LTL does not allow us the quantify over paths, e.g. assert the
existance of a path satisfying a particular property.

I To a limited degree, we can solve this problem by negation: instead of
asserting a property φ, we check wether ¬φ is satisfied; if that is not
the case, φ holds. But this does not work for mixtures of universal and
existential quantifiers.

I Computational Tree Logic (CTL) is an extension of LTL which allows
this by adding universal and existential quantifiers to the modal
operators.

I The name comes from considering paths in the computational tree
obtained by unwinding the FSM.

15 [23]



CTL Formulae

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| AX φ | EX φ — All or some next state
| AFφ | EFφ — All or some future states
| AGφ | EGφ — All or some global future
| A[φ1 U φ2] | E[φ1 U φ2] — Until all or some

16 [23]



Satifsfaction

I Note that CTL formulae can be considered to be a LTL formulae with
a ’modality’ (A or E ) added on top of each temporal operator.

I Generally speaking, the A modality says the temporal operator holds
for all paths, and the E modality says the temporal operator only holds
for all least one path.

I Of course, that strictly speaking is not true, because the arguments of the
temporal operators are in turn CTL forumulae, so we need recursion.

I This all explains why we do not define a satisfaction for a single path
p, but satisfaction with respect to a specific state in an FSM.

17 [23]



Satisfaction for CTL

Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

M, s |= True
M, s 6|= False
M, s |= p iff p(s)
M, s |= φ ∧ ψ iffM, s |= φ andM, s |= ψ
M, s |= φ ∨ ψ iffM, s |= φ orM, s |= ψ
M, s |= φ −→ ψ iff wheneverM, s |= φ thenM, s |= ψ
. . .

18 [23]



Satisfaction for CTL (c’ed)
Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

. . .
M, s |= AX φ iff for all s1 with s → s1, we have M, s1 |= φ
M, s |= EX φ iff for some s1 with s → s1, we haveM, s1 |= φ
M, s |= AGφ iff for all paths p with p1 = s,

we haveM, pi |= φ for all i ≥ 2
M, s |= EGφ iff there is a path p with p1 = s and

we haveM, pi |= φ for all i ≥ 2
M, s |= AFφ iff for all paths p with p1 = s

we haveM, pi |= φ for some i
M, s |= EFφ iff there is a path p with p1 = s and

we have;M, pi |= φ for some i
M, s |= A[φ U ψ] iff for all paths p with p1 = s, there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
M, s |= E[φ U ψ] iff there is a path p with p1 = s and there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
19 [23]



Patterns of Specification

I Something bad (p) cannot happen: AG¬p

I p occurs infinitly often: AG(AF p)

I p occurs eventually: AF p

I In the future, p will hold eventually forever: AFAG p

I Whenever p will hold in the future, q will hold eventually:
AG(p −→ AF q)

I In all states, p is always possible: AG(EF p)

20 [23]



LTL and CTL

I We have seen that CTL is more expressive than LTL, but (surprisingly),
there are properties which we can formalise in LTL but not in CTL!

I Example: all paths which have a p along them also have a q along
them.

I LTL: F p −→ F q

I CTL: Not AF p −→ AF q (would mean: if all paths have p, then all
paths have q), neither AG(p −→ AF q) (which means: if there is a p,
it will be followed by a q).

I The logic CTL∗ combines both LTL and CTL (but we will not consider
it further here).

21 [23]



State Explosion and Complexity
I The basic problem of model checking is state explosion.
I Even our small railway crossing has
|Σ| = |ΣCar × ΣTrain × ΣGate| = |ΣCar| · |ΣTrain| · |ΣGate| = 4 · 4 · 2 = 32
states. Add one integer variable with 232 states, and this gets
intractable.

I Theoretically, there is not much hope. The basic problem of deciding
wether a particular formula holds is known as the satisfiability problem,
and for the temporal logics we have seen, its complexity is as follows:
I LTL without U is NP-complete.
I LTL is PSPACE -complete.
I CTL is EXPTIME -complete.

I The good news is that at least it is decidable. Practically, state
abstraction is the key technique. E.g. instead of considering all
possible integer values, consider only wether i is zero or larger than
zero.

22 [23]



Summary

I Model-checking allows us to show to show properties of systems by
enumerating the system’s states, by modelling systems as finite state
machines, and expressing properties in temporal logic.

I We considered Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL). LTL allows us to express properties of single paths, CTL
allows quantifications over all possible paths of an FSM.

I The basic problem: the system state can quickly get huge, and the
basic complexity of the problem is horrendous. Use of abstraction and
state compression techniques make model-checking bearable.

I Next lecture: practical experiments with model-checkers (NuSMV
and/or Spin)

23 [23]



Systeme Hoher Qualität und Sicherheit
Vorlesung 12 vom 20.01.2014: NuSMV and Spin

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2447 1 [9]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

2 [9]



Organisatorisches

I Fachgesprächstermine über Stud.IP (2./3. Februar).

I Für eine Modulprüfung: bitte zwei aufeinanderfolgende Termine
buchen.

I Fachgespräche in der Gruppe, Prüfung alleine.

I Helft uns, die Veranstaltung zu verbessern: Nehmt an der Evaluation
unter Stud.IP teil!

3 [9]



Introduction

I In the last lecture, we saw how to model systems as finite-state
machines, and how to specify properties about these in temporal logic
— namely, linear temporal logic (LTL) and computational tree
logic (CTL).

I The idea was to allow automatic verification or disproving of the
properties by model-checkers which enumerate the system states.

I Today, we look at two prominent model-checkers: NuSMV2 and Spin.
If time permits, we might also look at an interactive theorem prover.

4 [9]



NuSMV

I NuSMV2 originated with SMV model checker (Edmund Clarke, Ken
McMillan). SMV was the first m/c to use BDDs (binary decision
diagrams) to represent the transition relation, allowing for much more
compact state representation (around 1990). As a result, it could
represent up to 1020 states.

I NuSMV2 is currently maintained by CMU, FBK-irst (Trentino, Italy),
University of Genoa and University of Trentino.

I It allows simulation, tracing, and supports both LTL and CTL
specifications.

I Web Site: http://nusmv.fbk.eu/

5 [9]

http://nusmv.fbk.eu/


Spin

I Spin was written by Gerard Holzman. It originated with a protocol
analyser (PAN) in 1980, which became Spin in 1989.

I Spin uses the language Promela for modelling. As opposed to
NuSMV, it allows to model processes and communication between
them via channels. The key difference is that Spin is asynchronous,
whereas NuSMV is synchronous.

I Spin generates a program representing the model, which does the
actual model-checking. Besides higher speed, it allows a much more
flexible approach to modelling (e.g. one can inject C code into the
Promela model).

I Web Site: http://spinroot.com/

6 [9]

http://spinroot.com/


Recall: The Railway Crossing

Train

Car

Gates

7 [9]



Modelling the Railway Crossing

States of the train:

xing

away

lvngappr

gate= closd

States of the car:

xing

away

lvngappr

gate= open gate = closed

States of the gate:

closdopen

train = appr

train = lvng
train = lvngtrain= appr 

8 [9]



Summary

I NuSMV vs. Spin:

I Spin (Promela) is more concrete, closer to a programming language.

I NuSMV supports CTL as well as LTL.

I Model-checking:

I Can we trust the results? If it finds errors, we get counter-examples, but
how reliable are positive results?

I And just how good is our model?

9 [9]



Systeme Hoher Qualität und Sicherheit
Vorlesung 13 vom 27.01.2014: Concluding Remarks

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2447 1 [17]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Static Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Concluding Remarks

2 [17]



Summary I

I This lecture series was about developing systems of high quality and
high safety.

I Quality is measured by quality criteria, which guide improvement the
development process.

I Safety is “freedom from unacceptable risks”.

I Both high quality and safety can be achieved by the means described
in this lecture series.

I Moreover, there is the legal situation: the machinery directive and other
laws require (indirectly) you use these techniques where appropriate.

3 [17]



Quality in the Software Development Process

I Requirements analysis

I High-level specifications and
formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing

I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis

I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic

I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Lecture 01: Concepts of quality

I What is quality? What are quality criteria?

I What could be useful quality criteria?

I What is the conceptual difference between ISO 9001 and CMM?

5 [17]



Lecture 02: Concepts of Safety and Security

I What is safety?

I Norms and Standards:

I Legal situation

I What is the machinery directive?

I Norm landscape: First, second, third-tier norms

I Important norms: IEC 61508, ISO 26262, DIN EN 50128, DO-178B, ISO
15408

I Risk analysis:

I What is a SIL? Target SIL?

I How do we obtain a SIL? What does it mean for the development?

6 [17]



Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?

I Waterfall, spiral, agile, MDD, V-model:
I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?

I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views

7 [17]



Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?
I Waterfall, spiral, agile, MDD, V-model:

I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?

I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views

7 [17]



Lecture 04: Requirements Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?

8 [17]



Lecture 04: Requirements Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?

8 [17]



Lecture 05: High-level Design & Formal Modelling

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is Z?

I Basic elements of Z:

Axioms, Schema, Mathematical Toolkit

9 [17]



Lecture 05: High-level Design & Formal Modelling

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is Z?

I Basic elements of Z: Axioms, Schema, Mathematical Toolkit

9 [17]



Lecture 06: Detailed Specification, Refinement &
Implementation

I What is refinement? How is it used in the development process?

I What kind of refinements did we encounter?

I What does refinement preserve?

I How do we do refinements in Z?

I How do we go from implementation to code — in general, and in Z?

10 [17]



Lecture 07: Testing

I What is testing, and what are the aims? What can it achieve, what
not?

I What are test elevels?

I What is a black-box test? How are test cases chosen?

I What is a white-box test?

I What is the control-flow graph of a program?

I What kind of coverages are there, and how are they defined?

11 [17]



Lecture 08: Static Program Analysis

I Is what? Where in the development process is it used? What is the
difference to testing?

I What is the basic problem, and how is circumvented?

I What does it mean when we say an analysis is sound, or safe?

I What are false positives?

I Did we consider inter- or intraprocedural analysis?

I What examples for forward/backward analysis did we encounter?

12 [17]



Lecture 09: Verification with Floyd-Hoare Logic

I What is Floyd-Hoare logic, what does it do (and what not), and where
is used in the development process?

I How does it work?

I What do the notations {P} p {Q} and [P] p [Q] mean

I What rules does the Floyd-Hoare logic have?

I How are they used?

I Which properties does it have?

13 [17]



Lecture 10: Verification Condition Generation

I What does VCG do?

I How is it related to Floyd-Hoare logic?

I What is a weakest precondition, and how do we calculate it?

I What are program annotations? Why are they used? How are they
used?

I Which tools do VCG?

14 [17]



Lecture 11: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question?

M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?

15 [17]



Lecture 11: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question? M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?

15 [17]



Module Exams (Modulprüfungen)

I You may select two of the following areas:

I Lectures 1– 4: Quality, Norms and Standards, Development Processes,
Requirements Analysis

I Lecture 5 – 6: Formal Modelling and Refinement, Z

I Lecture 7 – 8: Testing and Static Program Analysis

I Lecture 9 – 10: Floyd-Hoare Logic and Verification Condition Generation

I Lecture 11 – 12: Model-Checking with LTL and CTL

I Questions will come from all lectures, but we will concentrate on your
chosen areas.

16 [17]



Assessments (Fachgespräche)

I Questions will pertain to exercises.

I You may try to improve your grade; in this case, expect questions
about the lecture material as well.

17 [17]


