

Form and Output of Hazard Analysis

- ▶ The output of Hazard Analysis is a list of safety requirements, and documents detailing how these were
- ▶ Because the process is informal, it can only be **checked** by reviewing.

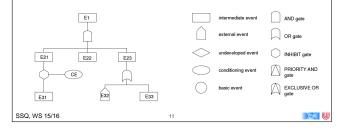
▶ It is therefore critical that standard forms of analysis are used, documents have a standard form, and all assumptions are documented.

Classification of Requirements

- ▶ Requirements to ensure
 - Safety
 - Security
- ▶ Requirements for
 - Hardware
 - Software
- ► Characteristics / classification of requirements
 - according to the type of a property

Classification of Hazard Analysis

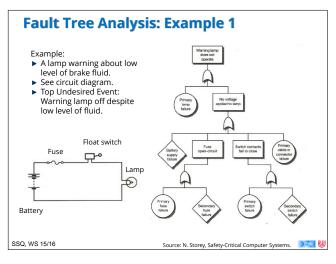
- ► Top-down methods start with an anticipated hazard and work back from the hazard event to potential causes for the hazard
 - Good for finding causes for hazard
 - Good for avoiding the investigation of "non-relevant" errors
 - Bad for detection of missing hazards
- ▶ Bottom-up methods consider "arbitrary" faults and resulting errors of the system, and investigate whether they may finally cause a hazard
 - Properties are complementary to top-down properties

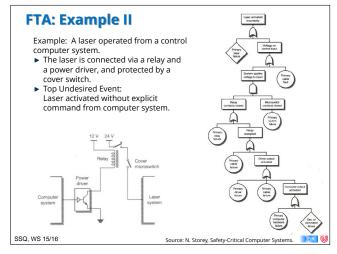

SSQ, WS 15/16 9

Hazard Analysis Methods ► Fault Tree Analysis (FTA) – top-down ► Failure Modes and Effects Analysis (FMEA) – bottom up ► Event Tree Analysis (ETA) – bottom-up ► Cause Consequence Analysis – bottom up ► HAZOP Analysis – bottom up

SSQ, WS 15/16 10

Fault Tree Analysis (FTA)

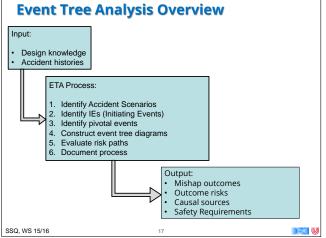

- ► Top-down deductive failure analysis (of undesired states)
 - Define undesired top-level event
 - Analyse all causes affecting an event to construct fault (sub)tree
 - Evaluate fault tree

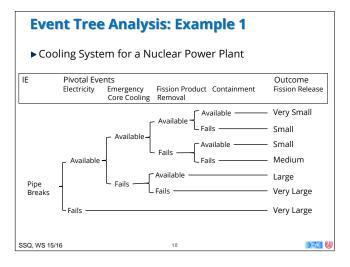


Fault-Tree Analysis: Process Overview

- 1. Understand system design
- 2. Define top undesired event
- 3. Establish boundaries (scope)
- 4. Construct fault tree
- 5. Evaluate fault tree (cut sets, probabilities)
- 6. Validate fault tree (check if correct and complete)
- 7. Modify fault tree (if required)
- 8. Document analysis

SSQ, WS 15/16 12





Event Tree Analysis (ETA)

- ▶ Applies to a chain of cooperating activities
- ▶ Investigates the effect of activities failing while the chain is processed
- ▶ Depicted as binary tree; each node has two leaving edges:
 - Activity operates correctly
 - Activity fails
- Useful for calculating risks by assigning probabilities to edges
- ► O(2^n) complexity

Event Tree Analysis: Example 2 ▶ Fire Detection/Suppression System for Office Building Pivotal Events Outcomes Prob. Fire Detection Fire Alarms Fire Sprinkler Works Works Works YES (P= 0.8) Limited damage 0.00504 NO (P= 0.2) Extensive damage, 0.00126 People escape YES (P= 0.9) Limited damage, Wet people YES (P= 0.8) 0.00216 Fire Starts Death/injury, Extensive damage P = 0.01NO (P= 0.2) 0.00054 Death/injury, Extensive damage NO (P= 0.1) SSQ, WS 15/16

Failure Modes and Effects Analysis (FMEA)

- Analytic approach to review potential failure modes and their causes.
- ► Three approaches: functional, structural or hybrid.
- ► Typically performed on hardware, but useful for software as well.
- ▶ It analyzes
 - the failure mode,
 - the failure cause,
 - the failure effect,
 - its criticality,
 - and the recommended action.

and presents them in a standardized table.

SSQ, WS 15/16 20

Software Failure Modes

Guide word	Deviation	Example Interpretation
omission	The system produces no output when it should. Applies to a single instance of a service, but may be repeated.	No output in response to change in input; periodic output missing.
commission	The system produces an output, when a perfect system would have produced none. One must consider cases with both, correct and incorrect data.	Same value sent twice in series; spurious output, when inputs have not changed.
early	Output produced before it should be.	Really only applies to periodic events; Output before input is meaningless in most systems.
late	Output produced after it should be.	Excessive latency (end-to-end delay) through the system; late periodic events.
value (detectable)	Value output is incorrect, but in a way, which can be detected by the recipient.	Out of range.
value (undetectable)	Value output is incorrect, but in a way, which cannot be detected.	Correct in range; but wrong value
SQ, WS 15/16	21	DF

Criticality Classes

▶ Risk as given by the *risk mishap index* (MIL-STD-882):

Severity	Probability		
1. Catastrophic	A. Frequent		
2. Critical	B. Probable		
3. Marginal	C. Occasional		
4. Negligible	D. Remote		
	E. Improbable		

- ▶ Names vary, principle remains:
 - Catastrophic single failure
 - Critical two failures
 - Marginal multiple failures/may contribute

SQ, WS 15/16

FMEA Example: Airbag Control (Struct.)

ID	Mode	Cause	Effect	Crit.	Appraisal
1	Omission	Gas cartridge empty	Airbag not released in emergency situation	C1	SR-56.3
2	Omission	Cover does not detach	Airbag not released fully in emergency situation.	C1	SR-57.9
3	Omission	Trigger signal not present in emergency.	Airbag not released in emergency situation	C1	Ref. To SW- FMEA
4	Comm.	Trigger signal present in non- emergency	Airbag released during normal vehicle operation	C2	Ref. To SW- FMEA
SSQ, W	3 15/16		23		DEX

FMEA Example: Airbag Control (Funct.)

ID	Mode	Cause	Effect	Crit.	Appraisal
5-1	Omission	Software terminates abnormally	Airbag not released in emergency.	C1	See 1.1, 1.2.
5-1.1	Omission	- Division by 0	See 1	C1	SR-47.3 Static Analysis
5-1.2	Omission	- Memory fault	See 1	C1	SR-47.4 Static Analysis
5-2	Omision	Software does not terminate	Airbag not released in emergency.	C1	SR-47.5 Static Analysis
5-3	Late	Computation takes too long.	Airbag not released in emergency.	C1	SR-47.6
5-4	Comm.	Spurious signal generated	Airbag released in non- emergency	C2	SR-49.3
5-5	Value (u)	Software computes wrong result	Either of 5-1 or 5-4.	C1	SR-12.1 Formal Verification
SQ, WS 15	5/16		24		DEX

The Seven Principles of Hazard Analysis

Ericson (2005)

- 1) Hazards, mishaps and risk are not chance events.
- 2) Hazards are created during design.
- 3) Hazards are comprised of three components.
- 4) Hazards and mishap risk is the core safety process.
- 5) Hazard analysis is the key element of hazard and mishap risk management.
- Hazard management involves seven key hazard analysis types.
- 7) Hazard analysis primarily encompasses seven hazard analysis techniques.

SSQ, WS 15/16 26

Summary

SSQ, WS 15/16

- ▶ Hazard Analysis is the **start** of the formal development.
- ▶ Its most important output are **safety requirements**.
- ▶ Adherence to safety requirements has to be **verified** during development, and **validated** at the end.
- ▶ We distinguish different types of analysis:
 - Top-Down analysis (Fault Trees)
 - Bottom-up (FMEAs, Event Trees)
- ▶ It makes sense to combine different types of analyses, as their results are complementary.

Conclusions

- ▶ Hazard Analysis is a creative process, as it takes an informal input ("system safety") and produces a formal outout (safety requirements). Its results cannot be formally proven, merely checked and reviewed.
- ▶ Review plays a key role. Therefore,
 - documents must be readable, understandable, auditable;
 - analysis must be in well-defined and well-documented format;
 - all assumptions must be well documented.
- ▶ Next week: High-Level Specification.

SSQ, WS 15/16

