
 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 08 (30-11-2015)

Testing

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09: Program Analysis

10 and 11: Software Verification (Hoare-Calculus)

12: Model-Checking

13: Concurrency

14: Conclusions

 SSQ, WS 15/16

Your Daily Menu

What is testing?

Different kinds of tests.

Different test methods: black-box vs. white-box.

The basic problem: cannot test all possible inputs.

Hence, coverage criteria: how to test enough.

3
 SSQ, WS 15/16

Testing in the Development Cycle

 SSQ, WS 15/16

What is Testing?

In our sense, testing is selected, controlled program
execution.

The aim of testing is to detect bugs, such as

 derivation of occurring characteristics of quality
properties compared to the specified ones;

 inconsistency between specification and implementation;

 or structural features of a program that cause a faulty
behavior of a program.

5

Testing is the process of executing a program or
system with the intent of finding errors.

Myers, 1979

Program testing can be used to show the presence of
bugs, but never to show their absence.

E.W. Dijkstra, 1972

 SSQ, WS 15/16

The Testing Process

Test cases, test plan, etc.

System-under-test (s.u.t.)

Warning -- test literature is quite expansive:

6

Testing is any activity aimed at evaluating an attribute
or capability of a program or system and determining
that it meets its required results.

Hetzel, 1983

 SSQ, WS 15/16

Test Levels

Component tests and unit tests: test at the interface

level of single components (modules, classes)

Integration test: testing interfaces of components fit

together

System test: functional and non-functional test of the

complete system from the user’s perspective

Acceptance test: testing if system implements contract

details

7
 SSQ, WS 15/16

Test Methods

Static vs. dynamic:

 With static tests, the code is analyzed without being run.
We cover these methods as static program analysis later.

 With dynamic tests, we run the code under controlled
conditions, and check the results against a given
specification.

The central question: where do the test cases come
from?

 Black-box: the inner structure of the s.u.t. is opaque, test
cases are derived from specification only;

 Grey-box: some inner structure of the s.u.t. is known, eg.
Module architecture;

 White-box: the inner structure of the s.u.t. is known, and
tests cases are derived from the source code;

8

 SSQ, WS 15/16

Black-Box Tests

Limit analysis:

 If the specification limits input parameters, then values
close to these limits should be chosen.

 Idea is that programs behave continuously, and errors
occur at these limits.

Equivalence classes:

 If the input parameter values can be decomposed into
classes which are treated equivalently, test cases have to
cover all classes.

Smoke test:

 “Run it, and check it does not go up in smoke.”

9
 SSQ, WS 15/16

Example: Black-Box Testing

Equivalence classes or limits?

Equivalence classes or limits?

10

Example: A Company Bonus System

The loyalty bonus shall be computed depending on the
time of employment. For employes of more than three
years, it shall be 50% of the monthly salary, for
employees of more than five years, 75%, and for
employees of more than eight years, it shall be 100%.

Example: Air Bag

The air bag shall be released if the vertical acceleration
𝑎𝑣 equals or exceeds 15 𝑚 𝑠2 . The vertical acceleration

will never be less than zero, or more than 40 𝑚 𝑠2 .

 SSQ, WS 15/16

Black-Box Tests

Quite typical for GUI tests, or functional testing.

Testing invalid input: depends on programming

language the stronger the typing, the less testing for

invalid input is required.

 Example: consider lists in C, Java, Haskell.

 Example: consider ORM in Python, Java.

11
 SSQ, WS 15/16

Other approaches: Monte-Carlo Testing

In Monte-Carlo testing (or random testing), we generate
random input values, and check the results against a
given spec.

This requires executable specifications.

Attention needs to be paid to the distribution values.

Works better with high-level languages (Java, Scala,
Haskell) where the datatypes represent more
information on an abstract level.

 ScalaCheck, QuickCheck for Haskell

Example: consider list reversal in C, Java, Haskell

 Executable spec:

► Reversal is idempotent.

► Reversal distributes over concatenation.

 Question: how to generate random lists?

12

 SSQ, WS 15/16

White-Box Tests

In white-box tests, we derive test cases based on the
structure of the program (structural testing)

 To abstract from the source code (which is a purely
syntactic artefact), we consider the control flow graph
of the program.

Hence, paths in the cfg correspond to runs of the
program.

13

Def: Control Flow Graph (cfg)

• Nodes are elementary statements (e.g. assignments,

return, break, . . .), and control expressions (eg. in

conditionals and loops), and

• there is a vertex from n to m if the control flow can reach

node m coming from n.

 SSQ, WS 15/16

A Very Simple Programming Language

In the following, we use a very simple language with a C-
like syntax.

Arithmetic operators given by
𝑎 ∷= 𝑥 𝑛 𝑎1 𝑜𝑝𝑎 𝑎2

with 𝑥 a variable, 𝑛 a numeral, 𝑜𝑝𝑎arith. op. (e.g. +, -, *)

Boolean operators given by
𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2

with 𝑜𝑝𝑏 boolean operator (e.g. and, or) and 𝑜𝑝𝑟 a
relational operator (e.g. =, <)

Statements given by
𝑆 ∷=
𝑥 ≔ 𝑎 𝑙 | 𝑠𝑘𝑖𝑝 𝑙 𝑆1; 𝑆2 | 𝑖𝑓 𝑏

𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 {𝑆}

We may write the labels als comments

 x:= a+ 10; /* 1 */ if (y < 3) /* 2 */ { x:= x+1; /* 3 */ } else { y:= y+1; /* 4 */ }

 SSQ, WS 15/16

Example: Control-Flow Graph

if (x < 0) /* 1 */ {

 x := – x; /* 2 */

 }

z := 1; /* 3 */

while (x > 0) /*4*/ {

 z := z * y; /* 5 */

 x := x – 1; /* 6 */

}

return z /* 7 */

1

2

3

4

5

6

7

An execution path is
a path though the
cfg.

Examples:
• [1,3,4,7, E]

• [1,2,3,4,7, E]

• [1,2,3,4,5,6,4,7, E]

• [1,3,4,5,6,4,5,6,4,7, E]

• …

E

 SSQ, WS 15/16

Coverage

Statement coverage: Each node in the cfg is visited at
least once.

Branch coverage: Each vertex in the cfg is traversed at
least once.

Decision coverage: Like branch coverage, but specifies
how often conditions (branching points) must be
evaluated.

Path coverage: Each path in the cfg is executed at least
once.

16

 SSQ, WS 15/16

Example: Statement Coverage

17

1

2

3

4

5

6

7

E

if (x < 0) /* 1 */ {

 x := – x /* 2 */

 };

z := 1; /* 3 */

while (x > 0) /*4*/ {

 z := z * y; /* 5 */

 x := x – 1 /* 6 */

};

return z /* 7 */

Which (minimal) path
covers all statements?

 p = [1,2,3,4,5,6,4,7,E]

Which state generates p?

 x = -1
 y any
 z any

 SSQ, WS 15/16

Example: Branch Coverage

18

1

2

3

4

5

6

7

E

if (x < 0) /* 1 */ {

 x := – x /* 2 */

 };

z := 1; /* 3 */

while (x > 0) /*4*/ {

 z := z * y; /* 5 */

 x := x – 1 /* 6 */

};

return z /* 7 */

Which (minimal) path
covers all vertices?

 𝑝1= 1,2,3, 4,5,6, 4,7, 𝐸
𝑝2 = [1,3, 4, 7, 𝐸]

Which states generate
𝑝1, 𝑝2?

 𝑝1 𝑝2
 x -1 0
 y any any
 z any any

Note 𝑝3 (x= 1) does not
add coverage.

 SSQ, WS 15/16

Example: Path Coverage

19

1

2

3

4

5

6

7

E

if (x < 0) /* 1 */ {

 x := – x /* 2 */

 };

z := 1; /* 3 */

while (x > 0) /*4*/ {

 z := z * y; /* 5 */

 x := x – 1 /* 6 */

};

return z /* 7 */

How many paths are
there?

Let 𝑞1 = 1,2,3
 𝑞2 = 1,3

 𝑝 = 4,5,6

 𝑟 = [4,7, 𝐸]

 then all paths are
𝑃 = 𝑞1 𝑞2) 𝑝

∗ 𝑟

Number of possible
paths:

 𝑃 = 2 ⋅ 𝑀𝑎𝑥𝐼𝑛𝑡 − 1

 SSQ, WS 15/16

Statement, Branch and Path Coverage

Statement Coverage:

 Necessary but not sufficient, not suitable as only test
approach.

 Detects dead code (code which is never executed).

 About 18% of all defects are identified.

Branch coverage:

 Least possible single approach.

 Detects dead code, but also frequently executed program
parts.

 About 34% of all defects are identified.

Path Coverage:

 Most powerful structural approach;

 Highest defect identification rate (100%);

 But no practical relevance.

20

 SSQ, WS 15/16

Decision Coverage

Decision coverage is more then branch coverage, but
less then full path coverage.

Decision coverage requires that for all decisions in the
program, each possible outcome is considered once.

Problem: cannot sufficiently distinguish boolean
expressions.

 For A || B, the following are sufficient:
 A B Result

 false false false

 true false true

 But this does not distinguish A || B from A; B is effectively
not tested.

21
 SSQ, WS 15/16

Decomposing Boolean Expressions

The binary boolean operators include conjunction 𝑥 ∧ 𝑦,
disjunction 𝑥 ∨ 𝑦, or anything expressible by these (e.g.
exclusive disjunction, implication).

An elementary term is a variable, a boolean-valued
function, a relation (equality =, orders <,≤,>,≥, etc), or
a negation of these.

This is a fairly syntactic view, e.g. 𝑥 ≤ 𝑦 is elementary, but
𝑥 < 𝑦 ∨ 𝑥 = 𝑦 is not, even though they are equivalent.

In formal logic, these are called literals.

22

Elementary Boolean Terms

An elementary boolean term does not contain binary

boolean operators, and cannot be further decomposed.

 SSQ, WS 15/16

Simple Condition Coverage

In simple condition coverage, for each condition in the
program, each elementary boolean term evaluates to
True and False at least once.

Note that this does not say much about the possible
value of the condition.

Examples and possible solutions:

23

if (temperature > 90 && pressure > 120) {…

 C1 C2 Result

 True True True

 True False False

 False True False

 False False False

 SSQ, WS 15/16

Modified Condition Coverage

It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3 <= x && x < 5.

In modified (or minimal) condition coverage, all
possible combinations of those elementary terms the
value of which determines the value of the whole
condition need to be considered.

Example:

Another example: (x > 1 && ! p) || q

24

3 <= x && x < 5

False False False ← not needed
False True False

True False False

True True True

 SSQ, WS 15/16

Modified Condition/Decision Coverage

Modified Condition/Decision Coverage (MC/DC) is
required by DO-178B for Level A software.

It is a combination of the previous coverage criteria
defined as follows:

 Every point of entry and exit in the program has been
invoked at least once;

 Every decision in the program has taken all possible
outcomes at least once;

 Every condition in a decision in the program has taken all
possible outcomes at least once;

 Every condition in a decision has been shown to
independently affect that decision’s outcome.

25
 SSQ, WS 15/16

How to achieve MC/DC

Not: Here is the source code, what is the minimal set of
test cases?

Rather: From requirements we get test cases, do they
achieve MC/DC?

Example:

 Test cases: Source Code:
 Z := (A || B) && (C || D)

26

Test case 1 2 3 4 5

Input A F F T F T

Input B F T F T F

Input C T F F T T

Input D F T F F F

Result Z F T F T T

Question: do test cases
achieve MC/DC?

Source: Hayhurst et al, A Practical Tutorial
on MC/DC. NASA/TM2001-210876

 SSQ, WS 15/16

Summary

(Dynamic) Testing is the controlled execution of code,
and comparing the result against an expected outcome.

Testing is (traditionally) the main way for verification

Depending on how the test cases are derived, we
distinguish white-box and black-box tests.

In black-box tests, we can consider limits and
equivalence classes for input values to obtain test
cases.

In white-box tests, we have different notions of
coverage: statement coverage, path coverage, condition
coverage, etc.

Next week: Static testing aka. static program analysis.

27

