
 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 06 (16-11-2015)

Formal Modelling with SysML and OCL

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)

13: Software Verification (VCG)

14: Conclusions

 SSQ, WS 15/16

Formal Modelling in the Development Cycle

 SSQ, WS 15/16

What is OCL?

OCL is the Object Constraint Language.

What is OCL?

 „A formal language used to describe expressions on UML
models. These expressions typically specify invariant
conditions that must hold for the system being modeled or
queries over objects described in a model.” (OCL standard, §7)

Why OCL?

 „A UML diagram, such as a class diagram, is typically not
refined enough to provide all the relevant aspects of a
specification. There is, among other things, a need to
describe additional constraints about the objects in the
model. “ (OCL standard, §7.1)

4

 SSQ, WS 15/16

Characteristics of the OCL

OCL is a pure specificication language.

 OCL expressions do not have side effects.

OCL is not a programming language.

 Expressions are not executable (though some may be).

OCL is typed language

 Each expression has type; all expressions must be well-
typed.

 Types are classes, defined by class diagrams.

5

 SSQ, WS 15/16

OCL can be used for the following:

as a query language

to specify invariants on classes and types in the class

to specify type invariant for Stereotypes

to describe pre- and post conditions on Operations and
Methods

to describe Guards

to specify target (sets) for messages and actions

to specify constraints on operations

to specify derivation rules for attributes for any
expression over a UML model.

 (OCL standard, §7.1.1)

6

 SSQ, WS 15/16

Example: A Flight-Booking System

Flight destinations are given by

 an IATA id, and a string

A flight is given by

 Source and destination, arrival and departure date,
capacity and free seats

A query asks for

 a flight from/to at a given time and number of free seats

Operations:

 Query

 Book a flight

7

 SSQ, WS 15/16

Example: A Flight-Booking System

Possible constraints:

No more free seats than capacity

Source and destination must be disjoint

Query must return „correct“ flight

Destination identifiers must be unique

To book a flight:

 Possible if enough free seats

 Afterwards, number of free seats reduced

Possible extension:

Query returns a schedule --- list of connecting flights

8

 SSQ, WS 15/16

Example: The Traffic Light

9

 SSQ, WS 15/16

pedLight: False
carLight: True
request: False
counter: 0

Example: The Traffic Light

10

 SSQ, WS 15/16

pedLight: False
carLight: True
request: True
counter: 1

Example: The Traffic Light

11

 SSQ, WS 15/16

pedLight: False
carLight: False
request: True
counter: 1

Example: The Traffic Light

12

 SSQ, WS 15/16

Deadlock

pedLight: True
carLight: False
request: False
counter: 1

Example: The Traffic Light

13

 SSQ, WS 15/16

OCL Basics

The language is typed: each expression has a type.

Three-valued logic (Kleene logic)

 Actually, more like four-valued (null)

Expressions always live in a context:

 Invariants on classes, interfaces, types.

 Pre/postconditions on operations or methods

14

context Class

 inv Name: expr

context Type :: op(a1: Type) : Type

 pre Name: expr

 post Name: expr

 SSQ, WS 15/16

OCL Types

Basic types:

 Boolean, Integer, Real, String

 OclAny, OclType, OclVoid

Collection types:

 Sequences, Bag, OrderedSet, Set

Model types

15

 SSQ, WS 15/16

Basic types and operations

Integer (ℤ) OCL-Std. §11.5.2

Real (ℝ) OCL-Std. §11.5.1

 Integer is a subclass of Real

 round, floor from Real to Integer

String (Zeichenketten) OCL-Std. §11.5.3

 substring, toReal, toInteger, characters, etc.

Boolean (Wahrheitswerte) OCL-Std. §11.5.4

 or, xor, and, implies

 Relationen auf Real, Integer, String

16

 SSQ, WS 15/16

Collection Types

Sequence, Bag, OrderedSet, Set OCL-Std. §11.7

Operations on all collections:

 size, includes, count, isEmpty, flatten

 Collections are always „flattened“

Set

 union, intersection

Bag

 union, intersection, count

Sequence

 first, last, reverse, prepend, append

17

 SSQ, WS 15/16

Collection Types: Iterators

Iterators are higher-order functions

All iterators defined via iterate OCL-Std. §7.7.6

coll->iterate(elem: Type, acc: Type= expr | expr[el, acc])

iterate(e: T, acc: T= v)

{ acc= v;

 for (Enumeration e= c.elements(); e.hasMoreElements();) {

 e= e.nextElement();

 acc.add(expr[e, acc]);

 }

 return acc;

}

18

 SSQ, WS 15/16

Model types

Model types are given by

 attributes,

 operations, and

 Associations of the model

Navigation along the association

 If cardinality is 1, type is of target type T

 Otherise, it is Set(T)

User-defined operations in expressions have to be
stateless (stereotype <<query>>)

19

 SSQ, WS 15/16

Undefinedness in OCL

Undefinedness is propagated OCL-Std §7.5.11

 In other words, all operations are strict

Exceptions:

 Boolean operators (and, or non-strict on both sides)

 Case distinction

 Test on definedness: oclIsUndefined with

𝑜𝑐𝑙𝐼𝑠𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑒 =
𝑡𝑟𝑢𝑒 𝑖𝑓 𝑒 = ⊥
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Resulting logic is three-valued (Kleene-Logic)

In fact, four-valued: there is always null

Iterators are “semi-strict”

20

 SSQ, WS 15/16

OCL Style Guide

Avoid complex navigation („Loose coupling“)

 Otherwise changes in models break OCL constraints

Always choose adequate context

„Use of allInstances()is discouraged“

Split up invariants if possible

Consider defining auxiliary operations if expressions
become too complex.

21

 SSQ, WS 15/16

Summary

OCL is a typed, state-free specification language which
allows us to denote constraints on models.

We can define or models much more precise.

 Ideally: no more natural language needed.

OCL is part of the more „academic“ side of UML/SysML.

 Tool support is not great, some tools ignore OCL, most
tools at least type-check OCL, hardly any do proofs.

However, in critical system development, the kind of
specification that OCL allows is essential.

Next week: detailed specification with SysML.

 Behavioural diagrams: state diagrams, sequence charts …

22

