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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Hazard Analysis 

05: High-Level Design with SysML 

06: Formal Modelling with SysML and OCL 

07: Detailed Specification with SysML  

08: Testing 

09: Static Program Analysis 

10 and 11: Software Verification (Hoare-Calculus) 

12: Model-Checking   

13: Concurrency 

14: Conclusions 
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Today: Static Program Analysis 

Analysis of run-time behavior of programs without 
executing them (sometimes called static testing) 

Analysis is done for all possible runs of a program 
(i.e. considering all possible inputs)  

Typical tasks 

 Does the variable x have a constant value ? 

 Is the value of the variable x always positive ? 

 Can the pointer p be null at a given program point ? 

 What are the possible values of the variable y ? 

These tasks can be used for verification (e.g. is there any 
possible dereferencing of the null pointer), or for 
optimisation when compiling. 
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Program Analysis in the Development Cycle 
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Usage of Program Analysis 

Optimising compilers 
Detection of sub-expressions that are evaluated multiple times 

Detection of unused local variables 

Pipeline optimisations 

 

Program verification 
Search for runtime errors in programs 

Null pointer dereference 

Exceptions which are thrown and not caught 

Over/underflow of integers, rounding errors with floating point 
numbers 

Runtime estimation (worst-caste executing time, wcet) 

In other words, specific verification aspects.  
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Program Analysis: The Basic Problem 

Basic Problem:  

 

 

Given a property P and a program p, we say 𝑝 ⊨ 𝑃 if a P 
holds for p. An algorithm (tool) 𝜙 which decides P is a 
computable predicate 𝜙: 𝑝 → 𝐵𝑜𝑜𝑙. We say: 

 𝜙 is sound if    whenever 𝜙 𝑝  then 𝑝 ⊨ 𝑃.  

 𝜙 is safe (or complete) if    whenever 𝑝 ⊨ 𝑃 then 𝜙 𝑝 . 

From the basic problem it follows that there are no 
sound and safe tools for interesting properties. 

 In other words, all interesting tools must either under- or 
overapproximate.  

  

 

 

All interesting program properties are undecidable. 
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Program Analysis: Approximation 

 

 

Correct Errors 

Overapproximation 

Underapproximation 

 

Underapproximation only finds correct 
programs but may miss out some 

 Useful in optimising compilers 

 Optimisation must respect semantics 
of program, but may optimise. 

 

Overapproximation finds all errors but 
may find non-errors (false positives) 

 Useful in verification. 

 Safety analysis must find all errors, 
but may report some more. 

 Too high rate of false positives may 
hinder acceptance of tool. 

Not 
computable 

Computable 

All programs 
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Program Analysis Approach 

Provides approximate answers 

 yes / no / don’t know or  

 superset or subset of values 

 Uses an abstraction of program’s behavior 

 Abstract data values (e.g. sign abstraction) 

 Summarization of information from  
execution paths e.g. branches of the if-else statement 

Worst-case assumptions about environment’s behavior 

 e.g. any value of a method parameter is possible 

Sufficient precision with good performance 
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Flow Sensitivity 

Flow-sensitive analysis 

Considers program's flow of control 

Uses control-flow graph as a representation of the 
source 

Example: available expressions analysis 

 

Flow-insensitive analysis 

Program is seen as an unordered collection of 
statements 

Results are valid for any order of statements 
e.g.  S1 ; S2 vs. S2 ; S1 

Example: type analysis (inference) 
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Context Sensitivity 

Context-sensitive analysis 

Stack of procedure invocations and return values of 
method parameters 

Results of analysis of the method M depend on the caller 
of M 

 

Context-insensitive analysis 

Produces the same results for all possible invocations of 
M independent of possible callers and parameter values. 
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Intra- vs. Inter-procedural Analysis 

 

Intra-procedural analysis 

Single function is analyzed in isolation 

Maximally pessimistic assumptions about parameter 
values and results of procedure calls 

 

Inter-procedural analysis 

Whole program is analyzed at once 

Procedure calls are considered 
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Data-Flow Analysis 

Focus on questions related to values of variables and their lifetime 
 

Selected analyses: 

Available expressions (forward analysis) 

 Which expressions have been computed already without 
change of the occurring variables (optimization) ? 

Reaching definitions (forward analysis) 

 Which assignments contribute to a state in a program point? 
(verification) 

Very busy expressions (backward analysis) 

 Which expressions are executed in a block regardless which 
path the program takes (verification) ? 

Live variables (backward analysis) 

 Is the value of a variable in a program point used in a later part 
of the program (optimization) ? 
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Our Simple Programming Language 

In the last lecture, we introduced a very simple language 
with  a C-like syntax. 

Synposis: 

 

Arithmetic operators given by 
𝑎 ∷= 𝑥  𝑛  𝑎1 𝑜𝑝𝑎 𝑎2 

Boolean operators given by 
𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏 𝑏2  𝑎1𝑜𝑝𝑟 𝑎2 
𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟 , 𝑜𝑝𝑟 ∈ =,<,≤,>,≥,≠  

Statements given by  
𝑆 ∷= 
𝑥 ≔ 𝑎 𝑙  | 𝑠𝑘𝑖𝑝 𝑙   𝑆1; 𝑆2 | 𝑖𝑓 𝑏

𝑙 𝑆1  𝑒𝑙𝑠𝑒 𝑆2  𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 {𝑆} 
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Computing the Control Flow Graph 

To calculate the cfg, we define some functions on the 
abstract syntax: 

 The initial label (entry point) init: 𝑆 → 𝐿𝑎𝑏 

 The final labels (exit points) final: 𝑆 →  ℙ 𝐿𝑎𝑏  

 The elementary blocks block: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠  
where an elementary block is  

► an assignment [x:= a],  

► or [skip],  

► or a test [b]  

 The control flow flow: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏  and reverse 
control flowR: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 .  

The control flow graph of a program S  is given by  

 elementary blocks block 𝑆  as nodes, and 

 flow(S) as vertices.  
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Labels, Blocks, Flows: Definitions 

  

𝑓𝑖𝑛𝑎𝑙 𝑥 ≔ 𝑎 𝑙 = 𝑙  

𝑓𝑖𝑛𝑎𝑙 𝑠𝑘𝑖𝑝 𝑙 = 𝑙  
𝑓𝑖𝑛𝑎𝑙 𝑆1; 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆2  
𝑓𝑖𝑛𝑎𝑙 𝑖𝑓 𝑏 𝑙   𝑆1 𝑒𝑙𝑠𝑒 {𝑆2} = 𝑓𝑖𝑛𝑎𝑙 𝑆1 ∪ 𝑓𝑖𝑛𝑎𝑙 𝑆2  

𝑓𝑖𝑛𝑎𝑙 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙  𝑆  = {𝑙} 

 

𝑖𝑛𝑖𝑡 𝑥 ≔ 𝑎 𝑙 = 𝑙 

𝑖𝑛𝑖𝑡 𝑠𝑘𝑖𝑝 𝑙 = 𝑙 
𝑖𝑛𝑖𝑡 𝑆1; 𝑆2 = 𝑖𝑛𝑖𝑡 𝑆1  
𝑖𝑛𝑖𝑡 (𝑖𝑓 𝑏 𝑙   𝑆1  𝑒𝑙𝑠𝑒 𝑆2 = 𝑙 
𝑖𝑛𝑖𝑡 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙   𝑆 = 𝑙  

𝑓𝑙𝑜𝑤 𝑥 ≔ 𝑎 𝑙 = ∅ 

𝑓𝑙𝑜𝑤 𝑠𝑘𝑖𝑝 𝑙 = ∅ 
𝑓𝑙𝑜𝑤 𝑆1; 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 )  𝑙 ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆1  
𝑓𝑙𝑜𝑤 𝑖𝑓 𝑏 𝑙  𝑆1 𝑒𝑙𝑠𝑒 {𝑆2 } = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ {(𝑙, 𝑖𝑛𝑖𝑡 𝑆1 ), 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 )  

𝑓𝑙𝑜𝑤 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙  𝑆  = 𝑓𝑙𝑜𝑤 𝑆 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆 ∪ { 𝑙′, 𝑙 |𝑙′ ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆 } 

𝑓𝑙𝑜𝑤𝑅 𝑆 = 𝑙′, 𝑙  𝑙, 𝑙′ ∈ 𝑓𝑙𝑜𝑤(𝑆)} 

𝑏𝑙𝑜𝑐𝑘𝑠 𝑥 ≔ 𝑎 𝑙 = 𝑥 ≔ 𝑎 𝑙  

𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑘𝑖𝑝 𝑙 =  𝑠𝑘𝑖𝑝 𝑙  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1; 𝑆2 = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑓 𝑏 𝑙  𝑆1  𝑒𝑙𝑠𝑒 𝑆2

= 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙  𝑆 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

𝑙𝑎𝑏𝑒𝑙𝑠 𝑆 = 𝑙  𝐵 𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)}  
𝐹𝑉 𝑎 = free variables in 𝑎 
𝐴𝑒𝑥𝑝 𝑆 = non-trival subexpressions 
                    in 𝑆 (variables and                                      
                    constants are trivial) 
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An Example Program 

init(P) = 1 

final(P) = {3} 

blocks(P) = 

     { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b]5} 

flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} 

flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} 

labels(P) = {1, 2, 3, 4, 5) 

 

FV(a + b) = {a, b} 

FV(P) = {a, b, x, y} 

Aexp(P) = {a+b, a*b, a+1} 

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

P =  [x := a+b]1; [y := a*b]2; while [y > a+b]3 { [a:=a+1]4; [x:= a+b]5 } 
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Available Expression Analysis 

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

S : 

For each program point, which 
expressions must have already been 
computed, and not modified, on all 
paths to this program point.   

The available expression analysis will 
determine:    
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Available Expression Analysis 

  

kill( [x :=a]l ) = 𝑎′ ∈ 𝐴𝑒𝑥𝑝 𝑆  𝑥 ∈ 𝐹𝑉 ′𝑎 } 
kill( [skip]l ) = ∅ 

kill( [b]l ) = ∅  

gen( [x :=a]l ) = 𝑎′ ∈ 𝐴𝑒𝑥𝑝 𝑎  𝑥 ∉ 𝐹𝑉 ′𝑎 } 
gen( [skip]l ) = ∅ 

gen( [b]l ) = 𝐴𝑒𝑥𝑝(𝑏) 

AEin( l ) =  
∅,                                                      if l ∈  init(S)

   𝐴𝐸𝑜𝑢𝑡 𝑙′  𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤(𝑆) , otherwise   
 

AEout ( l ) = 𝐴𝐸𝑖𝑛 𝑙   \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 , where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

 

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

S : 

l kill(l) gen(l) 

1 ∅ {a+b} 

2 ∅ {a*b} 

3 ∅ {a+b} 

4 {a+b, a*b, a+1} ∅ 

5 ∅ {a+b} 

l AEin AEout 

1 ∅ {a+b} 

2 {a+b} {a+b, a*b} 

3 {a+b} {a+b} 

4 {a+b} ∅ 

5 ∅ {a+b} 
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Reaching Definitions Analysis 

Reaching definitions (assignment) 
analysis determines if: 

  

An assignment of the form [x := a]l 

may reach a certain program point k 
if there is an execution of the 
program where x was last assigned a 
value at l when the program point k 
is reached  

x := 5 

x > 1 

y := x * y 

x := x - 1 

1 

5 

4 

3 

y := 1 
2 

S : 
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Reaching Definitions Analysis 

  

kill( [skip]l ) = ∅ 

kill( [b]l ) = ∅ 

kill( [x :=a]l ) = 𝑥, ? ∪  𝑥, 𝑘  𝐵𝑘  𝑖𝑠 𝑎𝑛 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆} 

gen( [x :=a]l ) = { 𝑥, 𝑙 } 
gen( [skip]l ) = ∅ 

gen( [b]l ) = ∅ 

RDin( l ) =  
{ 𝑥, ? |𝑥 ∈ 𝐹𝑉 𝑠                           if l ∈  init(S)

  𝑅𝐷𝑜𝑢𝑡 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤 𝑆         otherwise 
 

RDout ( l ) = 𝑅𝐷𝑖𝑛 𝑙  \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙   where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

x := 5 

x > 1 

y := x * y 

x := x - 1 

1 

5 

4 

3 

y := 1 
2 

l kill(Bl) gen(Bl) 

1 {(x,?), (x,1),(x,5)} {(x, 1)} 

2 {(y,?), (y,2),(y,4)} {(y, 2)} 

3 ∅ ∅ 

4 {(y,?), (y,2),(y,4)} {(y, 4)} 

5 {(x,?), (x,1),(x,5)} {(x, 5)} 

S : 

l RDin RDout 

1 {(x,?), (y,?)} {(x,1), (y,?)} 

2 {(x,1), (y,?)} {(x,1), (y,2)} 

3 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5), (y,2), (y,4)} 

4 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5),(y,4)} 

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)} 
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Live Variables Analysis 

A variable x is live at some program 
point (label l) if there exists if there 
exists a path from l to an exit point that 
does not change the variable. 

Live Variables Analysis determines: 

 

 

 

 

 

Application: dead code elemination. 

  

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

S : 

z := y*y 
6 

x := z 

7 

For each program point, which 
variables may be live at the exit 
from that point. 
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Live Variables Analysis 

  

kill( [x :=a]l ) = {𝑥}  
kill( [skip]l ) = ∅ 

kill( [b]l ) = ∅ 

gen( [x :=a]l ) = 𝐹𝑉(𝑎) 
gen( [skip]l ) = ∅ 

gen( [b]l ) = 𝐹𝑉(𝑏)  

LVout( l ) =  
∅                                                         if l ∈ final(S)

 𝐿𝑉𝑖𝑛 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅 𝑆       otherwise 
  

LVin ( l ) = 𝐿𝑉𝑜𝑢𝑡 𝑙  \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙       where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

l kill(l) gen(l) 

1 {x} ∅ 

2 {y} ∅ 

3 {x} ∅ 

4 ∅ {x, y} 

5 {z} {y} 

6 {z} {y} 

7 {x} {z} 

l LVin LVout 

1 ∅ ∅ 

2 ∅ {y} 

3 {y} {x, y} 

4 {x, y} {y} 

5 {y} {z} 

6 {y} {z} 

7 {z} ∅ 

S : 

z := y*y 
6 

x := z 

7 
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First Generalized Schema 

Analysis ( l ) =   
  𝐄𝐕                                                                         if 𝑙 ∈ 𝐄
□ Analysis ( l‘ ) 𝑙′, 𝑙 ∈ 𝐅𝐥𝐨𝐰 𝑆 }  otherwise

 

 

Analysis ( l ) = 𝑓l ( Analysis ( l ) ) 

 

With: 

□ is either  or  

𝐄𝐕  is the initial / final analysis information 

𝐅𝐥𝐨𝐰 is either flow or flowR 

𝐄 is either {init(S)} or final(S) 

𝑓𝑙  is the transfer function associated with 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 
 

Backward analysis: 𝐅𝐥𝐨𝐰 = flowR,  = IN,  = OUT 

Forward analysis: 𝐅𝐥𝐨𝐰 = flow,  = OUT,  = IN 
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Partial Order 

𝐿 =  𝑀,⊑  is a partial order iff 

 Reflexivity: ∀𝑥 ∈ 𝑀. 𝑥 ⊑ 𝑥 

 Transitivity: ∀𝑥, 𝑦, 𝑧 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧 

 Anti-symmetry: ∀𝑥, 𝑦 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦 

 

Let 𝐿 =  𝑀,⊑  be a partial order,  𝑆 ⊆ 𝑀 

 𝑦 ∈ 𝑀 is upper bound for 𝑆 𝑆 ⊑ 𝑦  iff ∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑦 

 𝑦 ∈ 𝑀 is lower bound for S (𝑦 ⊑ 𝑆) iff ∀𝑥 ∈ 𝑆. 𝑦 ⊑ 𝑥 

 Least upper bound ⨆𝑋 ∈ 𝑀 of 𝑋 ⊆ 𝑀:  

► 𝑋 ⊑ ⨆𝑋 ∧ ∀𝑦 ∈ 𝑀.𝑋 ⊑ 𝑦 ⇒ ⨆𝑋 ⊑ 𝑦 

 Greatest lower bound ⊓ 𝑋 of 𝑋 ⊆ 𝑀: 

► ⊓ 𝑋 ⊑ 𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑦 ⊑ 𝑋 ⇒ 𝑦 ⊑  ⊓ 𝑋 
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Lattice 

A lattice (“Verbund”) is a partial order L = (M, ⊑) such that 

 

 ⊔X and ⊓X exist for all X ⊆ M 

 Unique greatest element ⊤ = ⊔M = ⊓∅ 

 Unique least element ⊥ = ⊓M = ⊔∅ 
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Transfer Functions 

Transfer functions to propagate information along the execution 
path (i.e. from input to output, or vice versa) 

 

Let 𝐿 = 𝑀,⊑  be a lattice. Let 𝐹  be the set of transfer functions of 
the form   
 fl : L  L with l being a label  

 

Knowledge transfer is monotone 

 ∀ 𝑥, 𝑦. 𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦   

 

Space 𝐹 of transfer functions 

 𝐹   contains all transfer functions fl 

 𝐹   contains the identity function id:  ∀𝑥 ∈ 𝑀. 𝑖𝑑 𝑥 = 𝑥  

 𝐹   is closed under composition: ∀ 𝑓, 𝑔 ∈ 𝐹. 𝑔 ∘ 𝑓 ∈ 𝐹  
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The Generalized Analysis 

Analysis ( l ) =  ⊔ Analysis ( l‘ ) | (l′, l) ∈ 𝐹𝑙𝑜𝑤 𝑆 ⊔ { 𝜄𝐸
′  }    

     with  𝜄𝐸
′ =  

𝐸𝑉             if 𝑙 ∈ 𝐸
⊥        otherwise  

Analysis ( l ) = 𝑓𝑙( Analysis ( l ) ) 

 

With: 
 

L property space representing data flow information with  
𝐿,⊑  a lattice 

 𝐹𝑙𝑜𝑤 is a finite flow  (i.e. 𝑓𝑙𝑜𝑤 or 𝑓𝑙𝑜𝑤𝑅  ) 

𝐸𝑉 is an extremal value for the extremal labels 𝐸 (i.e.  𝑖𝑛𝑖𝑡 𝑆  or 
𝑓𝑖𝑛𝑎𝑙(𝑆) 

transfer functions 𝑓𝑙  of a space of transfer functions 𝐹 
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Summary 
 

Static Program Analysis is the analysis of run-time 
behavior of programs without executing them 
(sometimes called static testing). 

Approximations of program behaviours by analyzing the 
program‘s cfg. 

Analysis include 

 available expressions analysis,  

 reaching definitions, 

 live variables analysis. 

These are instances of a more general framework. 

These techniques are used commercially, e.g. 

 AbsInt aiT (WCET) 

 Astrée Static Analyzer (C program safety) 


