
 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 09 (07-12-2015)

Static Program Analysis

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09: Static Program Analysis

10 and 11: Software Verification (Hoare-Calculus)

12: Model-Checking

13: Concurrency

14: Conclusions

 SSQ, WS 15/16

Today: Static Program Analysis

Analysis of run-time behavior of programs without
executing them (sometimes called static testing)

Analysis is done for all possible runs of a program
(i.e. considering all possible inputs)

Typical tasks

 Does the variable x have a constant value ?

 Is the value of the variable x always positive ?

 Can the pointer p be null at a given program point ?

 What are the possible values of the variable y ?

These tasks can be used for verification (e.g. is there any
possible dereferencing of the null pointer), or for
optimisation when compiling.

 SSQ, WS 15/16

Program Analysis in the Development Cycle

 SSQ, WS 15/16

Usage of Program Analysis

Optimising compilers
Detection of sub-expressions that are evaluated multiple times

Detection of unused local variables

Pipeline optimisations

Program verification
Search for runtime errors in programs

Null pointer dereference

Exceptions which are thrown and not caught

Over/underflow of integers, rounding errors with floating point
numbers

Runtime estimation (worst-caste executing time, wcet)

In other words, specific verification aspects.

 SSQ, WS 15/16

Program Analysis: The Basic Problem

Basic Problem:

Given a property P and a program p, we say 𝑝 ⊨ 𝑃 if a P
holds for p. An algorithm (tool) 𝜙 which decides P is a
computable predicate 𝜙: 𝑝 → 𝐵𝑜𝑜𝑙. We say:

 𝜙 is sound if whenever 𝜙 𝑝 then 𝑝 ⊨ 𝑃.

 𝜙 is safe (or complete) if whenever 𝑝 ⊨ 𝑃 then 𝜙 𝑝 .

From the basic problem it follows that there are no
sound and safe tools for interesting properties.

 In other words, all interesting tools must either under- or
overapproximate.

All interesting program properties are undecidable.

 SSQ, WS 15/16

Program Analysis: Approximation

Correct Errors

Overapproximation

Underapproximation

Underapproximation only finds correct
programs but may miss out some

 Useful in optimising compilers

 Optimisation must respect semantics
of program, but may optimise.

Overapproximation finds all errors but
may find non-errors (false positives)

 Useful in verification.

 Safety analysis must find all errors,
but may report some more.

 Too high rate of false positives may
hinder acceptance of tool.

Not
computable

Computable

All programs

 SSQ, WS 15/16

Program Analysis Approach

Provides approximate answers

 yes / no / don’t know or

 superset or subset of values

 Uses an abstraction of program’s behavior

 Abstract data values (e.g. sign abstraction)

 Summarization of information from
execution paths e.g. branches of the if-else statement

Worst-case assumptions about environment’s behavior

 e.g. any value of a method parameter is possible

Sufficient precision with good performance

 SSQ, WS 15/16

Flow Sensitivity

Flow-sensitive analysis

Considers program's flow of control

Uses control-flow graph as a representation of the
source

Example: available expressions analysis

Flow-insensitive analysis

Program is seen as an unordered collection of
statements

Results are valid for any order of statements
e.g. S1 ; S2 vs. S2 ; S1

Example: type analysis (inference)

 SSQ, WS 15/16

Context Sensitivity

Context-sensitive analysis

Stack of procedure invocations and return values of
method parameters

Results of analysis of the method M depend on the caller
of M

Context-insensitive analysis

Produces the same results for all possible invocations of
M independent of possible callers and parameter values.

 SSQ, WS 15/16

Intra- vs. Inter-procedural Analysis

Intra-procedural analysis

Single function is analyzed in isolation

Maximally pessimistic assumptions about parameter
values and results of procedure calls

Inter-procedural analysis

Whole program is analyzed at once

Procedure calls are considered

 SSQ, WS 15/16

Data-Flow Analysis

Focus on questions related to values of variables and their lifetime

Selected analyses:

Available expressions (forward analysis)

 Which expressions have been computed already without
change of the occurring variables (optimization) ?

Reaching definitions (forward analysis)

 Which assignments contribute to a state in a program point?
(verification)

Very busy expressions (backward analysis)

 Which expressions are executed in a block regardless which
path the program takes (verification) ?

Live variables (backward analysis)

 Is the value of a variable in a program point used in a later part
of the program (optimization) ?

 SSQ, WS 15/16

Our Simple Programming Language

In the last lecture, we introduced a very simple language
with a C-like syntax.

Synposis:

Arithmetic operators given by
𝑎 ∷= 𝑥 𝑛 𝑎1 𝑜𝑝𝑎 𝑎2

Boolean operators given by
𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2
𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟 , 𝑜𝑝𝑟 ∈ =,<,≤,>,≥,≠

Statements given by
𝑆 ∷=
𝑥 ≔ 𝑎 𝑙 | 𝑠𝑘𝑖𝑝 𝑙 𝑆1; 𝑆2 | 𝑖𝑓 𝑏

𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 {𝑆}

 SSQ, WS 15/16

Computing the Control Flow Graph

To calculate the cfg, we define some functions on the
abstract syntax:

 The initial label (entry point) init: 𝑆 → 𝐿𝑎𝑏

 The final labels (exit points) final: 𝑆 → ℙ 𝐿𝑎𝑏

 The elementary blocks block: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠
where an elementary block is

► an assignment [x:= a],

► or [skip],

► or a test [b]

 The control flow flow: 𝑆 → ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 and reverse
control flowR: 𝑆 → ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 .

The control flow graph of a program S is given by

 elementary blocks block 𝑆 as nodes, and

 flow(S) as vertices.

 SSQ, WS 15/16

Labels, Blocks, Flows: Definitions

𝑓𝑖𝑛𝑎𝑙 𝑥 ≔ 𝑎 𝑙 = 𝑙

𝑓𝑖𝑛𝑎𝑙 𝑠𝑘𝑖𝑝 𝑙 = 𝑙
𝑓𝑖𝑛𝑎𝑙 𝑆1; 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆2
𝑓𝑖𝑛𝑎𝑙 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 {𝑆2} = 𝑓𝑖𝑛𝑎𝑙 𝑆1 ∪ 𝑓𝑖𝑛𝑎𝑙 𝑆2

𝑓𝑖𝑛𝑎𝑙 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = {𝑙}

𝑖𝑛𝑖𝑡 𝑥 ≔ 𝑎 𝑙 = 𝑙

𝑖𝑛𝑖𝑡 𝑠𝑘𝑖𝑝 𝑙 = 𝑙
𝑖𝑛𝑖𝑡 𝑆1; 𝑆2 = 𝑖𝑛𝑖𝑡 𝑆1
𝑖𝑛𝑖𝑡 (𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 = 𝑙
𝑖𝑛𝑖𝑡 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑙

𝑓𝑙𝑜𝑤 𝑥 ≔ 𝑎 𝑙 = ∅

𝑓𝑙𝑜𝑤 𝑠𝑘𝑖𝑝 𝑙 = ∅
𝑓𝑙𝑜𝑤 𝑆1; 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆2) 𝑙 ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆1
𝑓𝑙𝑜𝑤 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 {𝑆2 } = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ {(𝑙, 𝑖𝑛𝑖𝑡 𝑆1), 𝑙, 𝑖𝑛𝑖𝑡 𝑆2)

𝑓𝑙𝑜𝑤 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑓𝑙𝑜𝑤 𝑆 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆 ∪ { 𝑙′, 𝑙 |𝑙′ ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆 }

𝑓𝑙𝑜𝑤𝑅 𝑆 = 𝑙′, 𝑙 𝑙, 𝑙′ ∈ 𝑓𝑙𝑜𝑤(𝑆)}

𝑏𝑙𝑜𝑐𝑘𝑠 𝑥 ≔ 𝑎 𝑙 = 𝑥 ≔ 𝑎 𝑙

𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑘𝑖𝑝 𝑙 = 𝑠𝑘𝑖𝑝 𝑙
𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1; 𝑆2 = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2
𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2

= 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2
𝑏𝑙𝑜𝑐𝑘𝑠 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

𝑙𝑎𝑏𝑒𝑙𝑠 𝑆 = 𝑙 𝐵 𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)}
𝐹𝑉 𝑎 = free variables in 𝑎
𝐴𝑒𝑥𝑝 𝑆 = non-trival subexpressions
 in 𝑆 (variables and
 constants are trivial)

 SSQ, WS 15/16

An Example Program

init(P) = 1

final(P) = {3}

blocks(P) =

 { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b]5}

flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}

flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)}

labels(P) = {1, 2, 3, 4, 5)

FV(a + b) = {a, b}

FV(P) = {a, b, x, y}

Aexp(P) = {a+b, a*b, a+1}

x := a +b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

P = [x := a+b]1; [y := a*b]2; while [y > a+b]3 { [a:=a+1]4; [x:= a+b]5 }

 SSQ, WS 15/16

Available Expression Analysis

x := a +b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

S :

For each program point, which
expressions must have already been
computed, and not modified, on all
paths to this program point.

The available expression analysis will
determine:

 SSQ, WS 15/16

Available Expression Analysis

kill([x :=a]l) = 𝑎′ ∈ 𝐴𝑒𝑥𝑝 𝑆 𝑥 ∈ 𝐹𝑉 ′𝑎 }
kill([skip]l) = ∅

kill([b]l) = ∅

gen([x :=a]l) = 𝑎′ ∈ 𝐴𝑒𝑥𝑝 𝑎 𝑥 ∉ 𝐹𝑉 ′𝑎 }
gen([skip]l) = ∅

gen([b]l) = 𝐴𝑒𝑥𝑝(𝑏)

AEin(l) =
∅, if l ∈ init(S)

 𝐴𝐸𝑜𝑢𝑡 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤(𝑆) , otherwise

AEout (l) = 𝐴𝐸𝑖𝑛 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 , where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := a +b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

S :

l kill(l) gen(l)

1 ∅ {a+b}

2 ∅ {a*b}

3 ∅ {a+b}

4 {a+b, a*b, a+1} ∅

5 ∅ {a+b}

l AEin AEout

1 ∅ {a+b}

2 {a+b} {a+b, a*b}

3 {a+b} {a+b}

4 {a+b} ∅

5 ∅ {a+b}

 SSQ, WS 15/16

Reaching Definitions Analysis

Reaching definitions (assignment)
analysis determines if:

An assignment of the form [x := a]l

may reach a certain program point k
if there is an execution of the
program where x was last assigned a
value at l when the program point k
is reached

x := 5

x > 1

y := x * y

x := x - 1

1

5

4

3

y := 1
2

S :

 SSQ, WS 15/16

Reaching Definitions Analysis

kill([skip]l) = ∅

kill([b]l) = ∅

kill([x :=a]l) = 𝑥, ? ∪ 𝑥, 𝑘 𝐵𝑘 𝑖𝑠 𝑎𝑛 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆}

gen([x :=a]l) = { 𝑥, 𝑙 }
gen([skip]l) = ∅

gen([b]l) = ∅

RDin(l) =
{ 𝑥, ? |𝑥 ∈ 𝐹𝑉 𝑠 if l ∈ init(S)

 𝑅𝐷𝑜𝑢𝑡 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤 𝑆 otherwise

RDout (l) = 𝑅𝐷𝑖𝑛 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := 5

x > 1

y := x * y

x := x - 1

1

5

4

3

y := 1
2

l kill(Bl) gen(Bl)

1 {(x,?), (x,1),(x,5)} {(x, 1)}

2 {(y,?), (y,2),(y,4)} {(y, 2)}

3 ∅ ∅

4 {(y,?), (y,2),(y,4)} {(y, 4)}

5 {(x,?), (x,1),(x,5)} {(x, 5)}

S :

l RDin RDout

1 {(x,?), (y,?)} {(x,1), (y,?)}

2 {(x,1), (y,?)} {(x,1), (y,2)}

3 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5), (y,2), (y,4)}

4 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5),(y,4)}

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)}

 SSQ, WS 15/16

Live Variables Analysis

A variable x is live at some program
point (label l) if there exists if there
exists a path from l to an exit point that
does not change the variable.

Live Variables Analysis determines:

Application: dead code elemination.

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

S :

z := y*y
6

x := z

7

For each program point, which
variables may be live at the exit
from that point.

 SSQ, WS 15/16

Live Variables Analysis

kill([x :=a]l) = {𝑥}
kill([skip]l) = ∅

kill([b]l) = ∅

gen([x :=a]l) = 𝐹𝑉(𝑎)
gen([skip]l) = ∅

gen([b]l) = 𝐹𝑉(𝑏)

LVout(l) =
∅ if l ∈ final(S)

 𝐿𝑉𝑖𝑛 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅 𝑆 otherwise

LVin (l) = 𝐿𝑉𝑜𝑢𝑡 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

l kill(l) gen(l)

1 {x} ∅

2 {y} ∅

3 {x} ∅

4 ∅ {x, y}

5 {z} {y}

6 {z} {y}

7 {x} {z}

l LVin LVout

1 ∅ ∅

2 ∅ {y}

3 {y} {x, y}

4 {x, y} {y}

5 {y} {z}

6 {y} {z}

7 {z} ∅

S :

z := y*y
6

x := z

7

 SSQ, WS 15/16

First Generalized Schema

Analysis (l) =
 𝐄𝐕 if 𝑙 ∈ 𝐄
□ Analysis (l‘) 𝑙′, 𝑙 ∈ 𝐅𝐥𝐨𝐰 𝑆 } otherwise

Analysis (l) = 𝑓l (Analysis (l))

With:

□ is either or

𝐄𝐕 is the initial / final analysis information

𝐅𝐥𝐨𝐰 is either flow or flowR

𝐄 is either {init(S)} or final(S)

𝑓𝑙 is the transfer function associated with 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

Backward analysis: 𝐅𝐥𝐨𝐰 = flowR, = IN, = OUT

Forward analysis: 𝐅𝐥𝐨𝐰 = flow, = OUT, = IN

 SSQ, WS 15/16

Partial Order

𝐿 = 𝑀,⊑ is a partial order iff

 Reflexivity: ∀𝑥 ∈ 𝑀. 𝑥 ⊑ 𝑥

 Transitivity: ∀𝑥, 𝑦, 𝑧 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧

 Anti-symmetry: ∀𝑥, 𝑦 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦

Let 𝐿 = 𝑀,⊑ be a partial order, 𝑆 ⊆ 𝑀

 𝑦 ∈ 𝑀 is upper bound for 𝑆 𝑆 ⊑ 𝑦 iff ∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑦

 𝑦 ∈ 𝑀 is lower bound for S (𝑦 ⊑ 𝑆) iff ∀𝑥 ∈ 𝑆. 𝑦 ⊑ 𝑥

 Least upper bound ⨆𝑋 ∈ 𝑀 of 𝑋 ⊆ 𝑀:

► 𝑋 ⊑ ⨆𝑋 ∧ ∀𝑦 ∈ 𝑀.𝑋 ⊑ 𝑦 ⇒ ⨆𝑋 ⊑ 𝑦

 Greatest lower bound ⊓ 𝑋 of 𝑋 ⊆ 𝑀:

► ⊓ 𝑋 ⊑ 𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑦 ⊑ 𝑋 ⇒ 𝑦 ⊑ ⊓ 𝑋

 SSQ, WS 15/16

Lattice

A lattice (“Verbund”) is a partial order L = (M, ⊑) such that

 ⊔X and ⊓X exist for all X ⊆ M

 Unique greatest element ⊤ = ⊔M = ⊓∅

 Unique least element ⊥ = ⊓M = ⊔∅

 SSQ, WS 15/16

Transfer Functions

Transfer functions to propagate information along the execution
path (i.e. from input to output, or vice versa)

Let 𝐿 = 𝑀,⊑ be a lattice. Let 𝐹 be the set of transfer functions of
the form
 fl : L L with l being a label

Knowledge transfer is monotone

 ∀ 𝑥, 𝑦. 𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦

Space 𝐹 of transfer functions

 𝐹 contains all transfer functions fl

 𝐹 contains the identity function id: ∀𝑥 ∈ 𝑀. 𝑖𝑑 𝑥 = 𝑥

 𝐹 is closed under composition: ∀ 𝑓, 𝑔 ∈ 𝐹. 𝑔 ∘ 𝑓 ∈ 𝐹

 SSQ, WS 15/16

The Generalized Analysis

Analysis (l) = ⊔ Analysis (l‘) | (l′, l) ∈ 𝐹𝑙𝑜𝑤 𝑆 ⊔ { 𝜄𝐸
′ }

 with 𝜄𝐸
′ =

𝐸𝑉 if 𝑙 ∈ 𝐸
⊥ otherwise

Analysis (l) = 𝑓𝑙(Analysis (l))

With:

L property space representing data flow information with
𝐿,⊑ a lattice

 𝐹𝑙𝑜𝑤 is a finite flow (i.e. 𝑓𝑙𝑜𝑤 or 𝑓𝑙𝑜𝑤𝑅)

𝐸𝑉 is an extremal value for the extremal labels 𝐸 (i.e. 𝑖𝑛𝑖𝑡 𝑆 or
𝑓𝑖𝑛𝑎𝑙(𝑆)

transfer functions 𝑓𝑙 of a space of transfer functions 𝐹

 SSQ, WS 15/16

Summary

Static Program Analysis is the analysis of run-time
behavior of programs without executing them
(sometimes called static testing).

Approximations of program behaviours by analyzing the
program‘s cfg.

Analysis include

 available expressions analysis,

 reaching definitions,

 live variables analysis.

These are instances of a more general framework.

These techniques are used commercially, e.g.

 AbsInt aiT (WCET)

 Astrée Static Analyzer (C program safety)

