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Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook
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Semantics in the Development Process
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Semantics — what does that mean?

” Semantics: The meaning of words, phrases or systems. “

— Oxford Learner’s Dictionaries

I In mathematics and computer science, semantics is giving a meaning
in mathematical terms. It can be contrasted with syntax, which
specifies the notation.

I Here, we will talk about the meaning of programs. Their syntax is
described by formal grammars, and their semantics in terms of
mathematical structures.

I Why would we want to do that?
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Why Semantics?

Semantics describes the meaning of a program (written in a
programming language) in mathematical precise and unambiguous way.
Here are three reasons why this is a good idea:

I It lets us write better compilers. In particular, it makes the language
independent of a particular compiler implementation.

I If we know the precise meaning of a program, we know when it should
produce a result and when not. In particular, we know which situations
the program should avoid.

I Finally, it lets us reason about program correctness.

Empfohlene Literatur: Glynn Winskel. The Formal Semantics of
Programming Languages: An Introduction. The MIT Press, 1993.
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Semantics of Programming Languages

Historically, there are three ways to write down the semantics of a
programming language:

I Operational semantics describes the meaning of a program by
specifying how it executes on an abstract machine.

I Denotational semantics assigns each program to a partial function on
the system state.

I Axiomatic semantics tries to give a meaning of a programming
construct by giving proof rules. A prominent example of this is the
Floyd-Hoare logic of previous lectures.
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A Tale of Three Semantics

P := 1;
C := 1;
while C <= N {
  P := P * C;
  C := C + 1
}

Operational

Axiomatic

Denotational

Programs

I Each semantics should be
considered a view of the
program.

I Importantly, all semantics
should be equivalent. This
means we have to put
them into relation with
each other, and show that
they agree. Doing so is an
important sanity check for
the semantics.

I In the particular case of
axiomatic semantics
(Floyd-Hoare logic), it is
the question of correctness
of the rules.
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Operational Semantics
I Evaluation is directed by the syntax.
I We inductively define relations → between configurations (a command

or expression together with a state) to an integer, boolean or a state:

→A ⊆ (AExp,Σ)× Z
→B ⊆ (BExp,Σ)× Bool
→S ⊆ (Com,Σ)× Σ

where the system state is defined as as

Σ def= Loc⇀ Z

I (p, σ)→S σ
′ means that evaluating the program p in state σ results in

state σ′, and (a, σ)→A i means evaluating expression a in state σ
results in integer value i .

SSQ, WS 15/16 8 [27]



Structural Operational Semantics

I The evaluation relation is defined by rules of the form

〈a, σ〉 →A i
〈p a1, σ〉 →A f (i)

for each programming language construct p. This means that when the
argument a of the construct has been evaluated, we can evaluate the
whole expression.

I This is called structural operational semantics.

I Note that this does not specify an evaluation strategy.

I This evaluation is partial and can be non-deterministic.
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IMP: Arithmetic Expressions

Numbers: 〈n, σ〉 →A n

Variables: 〈X, σ〉 →A σ(X)

Addition:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 + a1, σ〉 →A n + m

Subtraction:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 - a1, σ〉 →A n −m

Multiplication:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 * a1, σ〉 →A n ·m
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IMP: Boolean Expressions (Constants, Relations)

〈true, σ〉 →B True 〈false, σ〉 → False

〈b, σ〉 →B False
〈not b, σ〉 →B True

〈b, σ〉 →B True
〈not b, σ〉 →B False

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 = a1, σ〉 →B True

n = m 〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 = a1, σ〉 →B False n 6= m

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 < a1, σ〉 →B True n < m

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 < a1, σ〉 →B False n ≥ m
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IMP: Boolean Expressions (Operators)

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B True

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B False
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IMP: Boolean Expressions (Operators — Variation)

〈b0, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B True

〈b0, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B False

What is the difference?
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Operational Semantics of IMP: Statements

〈skip, σ〉 →S σ

〈a, σ〉 →S n
〈X := a, σ〉 →S σ[n/X ]

〈c0, σ〉 →S τ 〈c1, τ〉 →S τ
′

〈c0; c1, σ〉 →S τ
′

〈b, σ〉 →B True 〈c0, σ〉 →S τ

〈if b {c0} else {c1}, σ〉 →S τ

〈b, σ〉 → False 〈c1, σ〉 →S τ

〈if b {c0} else {c1}, σ〉 →S τ

〈b, σ〉 →B False
〈while b {c}, σ〉 →S σ

〈b, σ〉 →B True 〈c, σ〉 →S τ
′ 〈while b {c}, τ ′〉 →S τ

〈while b {c}, σ〉 →S τ
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Why Denotational Semantics?

I Denotational semantics takes an abstract view of program: if c1 ∼ c2,
they have the “same meaning”.

I This allows us, for example, to compare programs in different
programming languages.

I It also accommodates reasoning about programs far better than
operational semantics. In particular, we can prove the correctness of
the Floyd-Hoare rules.

I It gives us compositionality and referential transparency, mapping
programming language construct p to denotation φ:

D[[p(e1, . . . , en)]] = φ(D[[e1]], . . . ,D[[en]])
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Denotational Semantics

I Programs are denoted by functions on states Σ = Loc⇀ Z.

I Semantic functions assign a meaning to statements and expressions:

Arithmetic expressions: E : AExp→ (Σ→ Z)
Boolean expressions: B : BExp→ (Σ→ Bool)
Statements: D : Com→ (Σ ⇀ Σ)

I Note the meaning of a program p is a partial function, reflecting the
fact that programs may not terminate.

I Our expressions always do, but that is because our language is quite simple.
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Denotational Semantics of IMP: Arithmetic
Expressions

E [[n]] def= λσ ∈ Σ.n
E [[X ]] def= λσ ∈ Σ.σ(X )

E [[a0 + a1]] def= λσ ∈ Σ.(E [[a0]]σ + E [[a1]]σ)
E [[a0 - a1]] def= λσ ∈ Σ.(E [[a0]]σ − E [[a1]]σ)
E [[a0 * a1]] def= λσ ∈ Σ.(E [[a0]]σ · E [[a1]]σ)
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Denotational Semantics of IMP: Boolean
Expressions

B[[true]] def= λσ ∈ Σ.True
B[[false]] def= λσ ∈ Σ.False
B[[not b]] def= λσ ∈ Σ.¬B[[b]]σ

B[[a0 = a1]] def= λσ ∈ Σ.
{

True E [[a0]]σ = E [[a1]]σ
False E [[a0]]σ 6= E [[a1]]σ

B[[a0 < a1]] def= λσ ∈ Σ.
{

True E [[a0]]σ < E [[a1]]σ
False E [[a0]]σ ≥ E [[a1]]σ

B[[b0 and b1]] def= λσ ∈ Σ.B[[b0]]σ ∧ B[[b1]]σ
B[[b0 or b1]] def= λσ ∈ Σ.B[[b0]]σ ∨ B[[b1]]σ
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Denotational Semantics of IMP: Statements

The simple part:

D[[skip]] def= λσ ∈ Σ. σ
D[[X := a]] def= λσ ∈ Σ. σ[E [[a]]σ/X ]
D[[c0; c1]] def= D[[c1]] ◦ D[[c0]]

D[[if b {c0} else {c1}]]
def= λσ ∈ Σ.

{
D[[c0]]σ B[[b]]σ = True
D[[c1]]σ B[[b]]σ = False

The hard part:

D[[while b {c}]] = λσ ∈ Σ.
{
σ B[[b]]σ = False
(D[[while b {c}]] ◦ D[[c]])σ B[[b]]σ = True

This recursive definition is not constructive — it does not tell us how to
construct the function. Worse, it is unclear it even exists in general.
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Partial Orders and Least Upper Bounds

To construct fixpoints of the form x = f (x), we need the theory of
complete partial orders (cpo’s).

Definition (Partial Order)
Given a set X , a partial order v ⊆ X × X is
(i) transitive: if x v y , y v z , then x v z
(ii) reflexive: x v x
(iii) anti-symmetric: if x v y , y v x then x = y

Definition (Least Upper Bound)
For Y ⊆ X , the least upper bound

⊔
Y ∈ X is:

(i) ∀y ∈ Y . y v
⊔
Y

(ii) for any z ∈ X such that ∀y ∈ Y . y v z , we have
⊔
Y v z
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Complete Partial Orders

Definition (Complete Partial Order)
A partial order v is complete (a cpo) if any ω-chain
x1 v x2 v x3 v x4 . . . = {xi | i ∈ ω} has a least upper bound⊔

i∈ω xi ∈ X .

A cpo is called pointed (pcpo), if there is a smallest element ⊥ ∈ X .
(Note some authors assume all cpos to be pointed.)

Definition (Continuous Function)
Given cpos (X ,v) and (Y ,≤). A function f : X → Y is
(i) monotone, if x v y then f (x) ≤ f (y)
(ii) continuous, if monotone and f (

⊔
i∈ω xi ) =

⊔
i∈ω f (xi )
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Fixpoints

Theorem (Each continuous function has a least fixpoint)
Let (X ,v) be a pcpo, and f : X → X continuous, then f has a least
fixpoint fix(f ),given as

fix(f ) =
⊔

n∈ω

f n(⊥)

I In our case, the state Σ is made into a pcpo Σ⊥ by ’adjoining’ a new
element ⊥, ordered as ⊥ v σ.

I This models partial functions: Σ ⇀ Σ ∼= Σ→ Σ⊥

I Σ→ Σ⊥ ist a pcpo, ordered as

f v g ←→ ∀x .f (x) v g(x)

Concretely, f v g means that f is defined on fewer states than g .
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Denotational Semantics of IMP: Statements

D[[skip]] def= λσ ∈ Σ. σ
D[[X := a]] def= λσ ∈ Σ. σ[E [[a]]σ/X ]
D[[c0; c1]] def= D[[c1]] ◦ D[[c0]]

D[[if b {c0} else {c1}]]
def= λσ ∈ Σ.

{
D[[c0]]σ B[[b]]σ = True
D[[c1]]σ B[[b]]σ = False

D[[while b {c}]] def= fix(Γ)

where Γ(φ) def= λσ ∈ Σ.
{
φ ◦ D[[c]]σ B[[b]]σ = True
σ B[[b]]σ = False
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Equivalence of Semantics
Lemma
(i) For a ∈ Aexp, n ∈ N, E [[a]]σ = n iff 〈a, σ〉 →A n
(ii) For b ∈ BExp, t ∈ Bool, B[[b]]σ = t iff 〈b, σ〉 →B t

Proof: Structural Induction on a and b.
Lemma
For c ∈ Com, if 〈c, σ〉 →S σ

′ then D[[c]]σ = σ′

Proof: Induction over deriviation of 〈c, σ〉 →S σ
′.

Theorem (Equivalence of Semantics)
For c ∈ Com, and σ, σ′ ∈ Σ,

〈c, σ〉 →S σ
′ iff D[[c]]σ = σ′

The proof of this theorem requires a technique called fixpoint induction
which we will not go into detail about here.
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Correctness of Floyd-Hoare Rules

Denotational semantics allows us to prove the correctness of the
Floyd-Hoare rules.
I We extend the boolean semantic functions E and B to AExpv and
BExpv, respectively.

I We can then define the validity of a Hoare triple in terms of
denotations:

|= {P} c {Q} iff ∀σ.B[[P]]σ ∧ D[[c]]σ 6= ⊥ −→ B[[Q]](D[[c]]σ)

I We can now show the rules preserve validity, i.e. if the preconditions
are valid Hoare triples, then so is the conclusion.
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Remarks

I Our language and semantics is quite simple-minded. We have not take
into account:
I undefined expressions (such as division by 0 or accessing an undefined

variable),
I side effects in expressions,
I declaration of variables,
I pointers, references, pointer arithmetic,
I input/output (what is the semantic model?), or
I concurrency.

I However, there are formal semantics for languages such as
StandardML, C, or Java, although most of them concentrate on some
aspect of the language (e.g. Java concurrency is not very well defined
in the standard). Only StandardML has a language standard which is
written as an operational semantics.
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Conclusion

I Programming semantics come in three flavours: operational,
denotational, axiomatic.

I Each of these has their own use case:

I Operational semantics gives details about evaluation of programs, and is
good for implementing the programming language.

I Denotational semantics is abstract and good for high-level reasoning (e.g.
correctness of program logics or tools).

I Axiomatic semantics is about program logics, and reasoning about
programs.

I Denotational semantics needs the mathematical toolkit of cpos to
construct fixpoints.
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