
Systeme Hoher Sicherheit und Qualität
Universität Bremen WS 2015/2016

Lecture 13 (25.01.2016)

Modelchecking with LTL and CTL

Christoph Lüth Jan Peleska Dieter Hutter

Organisatorisches

I Evaluation: auf der stud.ip-Seite (unter Lehrevaluation)

I Prüfungen & Fachgespräche:

I KW 7 (15./16. Februar), oder

I 02. Februar (letzte Semesterwoche, zum Übungstermin).

SSQ, WS 15/16 2 [25]

Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook

SSQ, WS 15/16 3 [25]

Modelchecking in the Development Process

I Model-checking proves properties of abstractions of the system.

I Thus, it scales also to higher levels of the development process

SSQ, WS 15/16 4 [25]

Introduction

I In the last lectures, we were verifying program properties with the
Floyd-Hoare calculus and related approaches. Program verification was
reduced to a deductive problem by translating the program into logic
(specifically, state change becomes substitution).

I Model-checking takes a different approach: instead of directly working
with the program, we work with an abstraction of the system (a
model). Because we build abstractions, this approach is also applicable
in the higher verification levels.

I But what are the properties we want to express? How do we express
them, and how do we prove them?

SSQ, WS 15/16 5 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM?

I What is φ?

I How to prove it?

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ?

I How to prove it?

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it?

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it? Enumerating states — model checking

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it? Enumerating states — model checking

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

Finite State Machines

Finite State Machine (FSM)
A FSM is given byM = 〈Σ,→〉 where
I Σ is a finite set of states, and
I → ⊆ Σ× Σ is a transition relation, such that → is left-total:

∀s ∈ Σ.∃s ′ ∈ Σ. s → s ′

I Many variations of this definition exists, e.g. sometimes we have state
variables or labelled transitions.

I Note there is no final state, and no input or output (this is the key
difference to automata).

I If → is a function, the FSM is deterministic, otherwise it is
non-deterministic.

SSQ, WS 15/16 7 [25]

The Railway Crossing

Source: Wikipedia

SSQ, WS 15/16 8 [25]

The Railway Crossing — Abstraction

Train

Car

Gates

SSQ, WS 15/16 9 [25]

The Railway Crossing — Model

States of the train:

xing

away

lvngappr

gate= closd

States of the car:

xing

away

lvngappr

gate= open gate = closed

States of the gate:

closdopen

train = appr

train = lvng
train = lvngtrain= appr

SSQ, WS 15/16 10 [25]

The FSM

I The states here are a map from variables Car, Train, Gate to the
domains

ΣCar = {appr, xing, lvng, away}
ΣTrain = {appr, xing, lvng, away}
ΣGate = {open, clsd}

or alternatively, a three-tuple S ∈ Σ = ΣCar × ΣTrain × ΣGate.

I The transition relation is given by e.g.

〈away, open, away〉 → 〈appr, open, away〉
〈appr, open, away〉 → 〈xing, open, away〉
. . .

SSQ, WS 15/16 11 [25]

Railway Crossing — Safety Properties

I Now we want to express safety (or security) properties, such as the
following:
I Cars and trains never cross at the same time.
I The car can always leave the crossing
I Approaching trains may eventually cross.
I There are cars crossing the tracks.

I We distinguish safety properties from liveness properties:
I Safety: something bad never happens.
I Liveness: something good will (eventually) happen.

I To express these properties, we need to talk about sequences of states
in an FSM.

SSQ, WS 15/16 12 [25]

Linear Temporal Logic (LTL) and Paths

I LTL allows us to talk about paths in a FSM, where a path is a
sequence of states connected by the transition relation.

I We first define the syntax of formula,

I then what it means for a path to satisfy the formula, and

I from that we derive the notion of a model for an LTL formula.

Paths
Given a FSMM = 〈Σ,→〉, a path inM is an (infinite) sequence
〈s1, s2, s3, . . .〉 such that si ∈ Σ and si → si+1 for all i .

I For a path p = 〈s1, s2, s3, . . .〉, we write pi for si (selection) and pi for
〈si , si+1, . . .〉 (the suffix starting at i).

SSQ, WS 15/16 13 [25]

Linear Temporal Logic (LTL)

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| X φ — Next state
| ♦φ — Some Future State
| �φ — All future states (Globally)
| φ1 U φ2 — Until

I Operator precedence: Unary operators; then U; then ∧, ∨; then −→.
I An atomic formula p above denotes a state predicate. Note that

different FSMs have different states, so the notion of whether an
atomic formula is satisfied depends on the FSM in question. A different
(but equivalent) approach is to label states with atomic propositions.

I From these, we can define other operators, such as φ R ψ (release) or
φW ψ (weak until).

SSQ, WS 15/16 14 [25]

Satifsaction and Models of LTL
Given a path p and an LTL formula φ, the satisfaction relation p |= φ is
defined inductively as follows:

p |= True
p 6|= False
p |= p iff p(p1)
p |= ¬φ iff p 6|= φ

p |= φ ∧ ψ iff p |= φ and p |= ψ
p |= φ ∨ ψ iff p |= φ or p |= ψ
p |= φ −→ ψ iff whenever p |= φ then p |= ψ

p |= X φ iff p2 |= φ
p |= �φ iff for all i , we have pi |= φ
p |= ♦φ iff there is i such that pi |= φ
p |= φ U ψ iff there is i pi |= ψ and for all j = 1, . . . , i − 1, pj |= φ

Models of LTL formulae
A FSMM satisfies an LTL formula φ,M |= φ, iff every path p inM
satisfies φ.

SSQ, WS 15/16 15 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!

SSQ, WS 15/16 16 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!

SSQ, WS 15/16 16 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!

SSQ, WS 15/16 16 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!

SSQ, WS 15/16 16 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!
SSQ, WS 15/16 16 [25]

Computational Tree Logic (CTL)

I LTL does not allow us the quantify over paths, e.g. assert the
existance of a path satisfying a particular property.

I To a limited degree, we can solve this problem by negation: instead of
asserting a property φ, we check wether ¬φ is satisfied; if that is not
the case, φ holds. But this does not work for mixtures of universal and
existential quantifiers.

I Computational Tree Logic (CTL) is an extension of LTL which allows
this by adding universal and existential quantifiers to the modal
operators.

I The name comes from considering paths in the computational tree
obtained by unwinding the FSM.

SSQ, WS 15/16 17 [25]

CTL Formulae

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| AX φ | EX φ — All or some next state
| AFφ | EFφ — All or some future states
| AGφ | EGφ — All or some global future
| A[φ1 U φ2] | E[φ1 U φ2] — Until all or some

SSQ, WS 15/16 18 [25]

Satifsfaction

I Note that CTL formulae can be considered to be a LTL formulae with
a ’modality’ (A or E) added on top of each temporal operator.

I Generally speaking, the A modality says the temporal operator holds
for all paths, and the E modality says the temporal operator only holds
for all least one path.

I Of course, that strictly speaking is not true, because the arguments of the
temporal operators are in turn CTL forumulae, so we need recursion.

I This all explains why we do not define a satisfaction for a single path
p, but satisfaction with respect to a specific state in an FSM.

SSQ, WS 15/16 19 [25]

Satisfaction for CTL

Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

M, s |= True
M, s 6|= False
M, s |= p iff p(s)
M, s |= φ ∧ ψ iffM, s |= φ andM, s |= ψ
M, s |= φ ∨ ψ iffM, s |= φ orM, s |= ψ
M, s |= φ −→ ψ iff wheneverM, s |= φ thenM, s |= ψ
. . .

SSQ, WS 15/16 20 [25]

Satisfaction for CTL (c’ed)
Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

. . .
M, s |= AX φ iff for all s1 with s → s1, we have M, s1 |= φ
M, s |= EX φ iff for some s1 with s → s1, we haveM, s1 |= φ
M, s |= AGφ iff for all paths p with p1 = s,

we haveM, pi |= φ for all i ≥ 2
M, s |= EGφ iff there is a path p with p1 = s and

we haveM, pi |= φ for all i ≥ 2
M, s |= AFφ iff for all paths p with p1 = s

we haveM, pi |= φ for some i
M, s |= EFφ iff there is a path p with p1 = s and

we have;M, pi |= φ for some i
M, s |= A[φ U ψ] iff for all paths p with p1 = s, there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
M, s |= E[φ U ψ] iff there is a path p with p1 = s and there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
SSQ, WS 15/16 21 [25]

Patterns of Specification

I Something bad (p) cannot happen: AG¬p

I p occurs infinitly often: AG(AF p)

I p occurs eventually: AF p

I In the future, p will hold eventually forever: AFAG p

I Whenever p will hold in the future, q will hold eventually:
AG(p −→ AF q)

I In all states, p is always possible: AG(EF p)

SSQ, WS 15/16 22 [25]

LTL and CTL

I We have seen that CTL is more expressive than LTL, but (surprisingly),
there are properties which we can formalise in LTL but not in CTL!

I Example: all paths which have a p along them also have a q along
them.

I LTL: ♦p −→ ♦q

I CTL: Not AF p −→ AF q (would mean: if all paths have p, then all
paths have q), neither AG(p −→ AF q) (which means: if there is a p,
it will be followed by a q).

I The logic CTL∗ combines both LTL and CTL (but we will not consider
it further here).

SSQ, WS 15/16 23 [25]

State Explosion and Complexity

I The basic problem of model checking is state explosion.
I Even our small railway crossing has
|Σ| = |ΣCar × ΣTrain × ΣGate| = |ΣCar| · |ΣTrain| · |ΣGate| = 4 · 4 · 2 = 32
states. Add one integer variable with 232 states, and this gets
intractable.

I Theoretically, there is not much hope. The basic problem of deciding
wether a particular formula holds is known as the satisfiability problem,
and for the temporal logics we have seen, its complexity is as follows:
I LTL without U is NP-complete.
I LTL is PSPACE -complete.
I CTL is EXPTIME -complete.

I The good news is that at least it is decidable. Practically, state
abstraction is the key technique. E.g. instead of considering all possible
integer values, consider only wether i is zero or larger than zero.

SSQ, WS 15/16 24 [25]

Summary

I Model-checking allows us to show to show properties of systems by
enumerating the system’s states, by modelling systems as finite state
machines, and expressing properties in temporal logic.

I We considered Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL). LTL allows us to express properties of single paths, CTL
allows quantifications over all possible paths of an FSM.

I The basic problem: the system state can quickly get huge, and the
basic complexity of the problem is horrendous. Use of abstraction and
state compression techniques make model-checking bearable.

I Tomorrow: practical experiments with model-checkers (NuSMV and/or
Spin)

SSQ, WS 15/16 25 [25]

