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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11-12: Model Checking 

 13: Conclusions 
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Software Verification in the Development Cycle 
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Software Verification 

Software Verification proves properties of programs. That is, 
given the basic problem of program 𝑃 satisyfing a property 𝑝 
we want to show that for all possible inputs and runs of 𝑃 , 
the property 𝑝 holds. 

Software verification is far more powerful than static 
analysis. For the same reasons, it cannot be fully automatic 
and thus requires user interaction. Hence, it is complex to 
use. 

Software verification does not have false negatives, only 
failed proof attempts. If we can prove a property, it holds. 

Software verification is used in highly critical systems. 
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The Basic Idea 

What does this program compute? 

 The index of the maximal element 
of the array 𝑎 if it is non-empty. 

 

How to prove it? 

(1) We need a language in which to 
formalise such assertions. 

(2) We need a notion of meaning 
(semantics) for the program. 

(3) We need to way to deduce valid 
assertions. 

 

Floyd-Hoare logic provides us with (1) 
and (3). 

i: =  0; 
x:=  0; 
while (i <  n) { 
    if a i ≥ a x  { 
       x ≔ i; 
       } 
     i ≔ i + 1; 
     } 

Formalizing correctness: 
 
array a, n ∧ n > 0 ⟹ 
   a x = max a, n  
 
∀i. 0 ≤ i < n ⟹ 
       a[i] ≤ max (a, n) 
∃j. 0 ≤ j < n ⟹ 
                a[j] = max (a, n) 
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Recall our simple programming language 

Arithmetic expressions: 

𝑎 ∷= 𝑥  𝑛  𝑎1 𝑎2  | 𝑎1 𝑜𝑝𝑎 𝑎2 

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/} 

Boolean expressions: 

𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏 𝑏2  𝑎1𝑜𝑝𝑟  𝑎2 

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟  

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠  

Statements: 

 S ::= x := a | skip | S1; S2 | if (b)  S1 else S2 | while (b) S 

 Labels from basic blocks omitted, only used in static 
analysis to derive cfg. 

 Note this abstract syntax, operator precedence and 
grouping statements is not covered.  
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Semantics of our simple language 

The semantics of an imperative language is state transition: 
the program has an ambient state, which is changed by 
assigning values to certain locations. 

Example:  

 

 

 

 

 

Semantics in a nutshell: 

x ? 

y 12 

z ? 

x 5 

y 12 

z ? 

x 5 

y 12 

z 17 

x 6 

y 12 

z 17 

z := x + y x := 5 x := x + 1 

𝜎 𝜎1 = 𝜎[x/5] 𝜎2 = 𝜎1[z/17] 
     = 𝜎[x/5, z/17] 

𝜎3 = 𝜎2[x/6] 
     = 𝜎[x/6, z/17] 

Expressions evaluate to values 𝑉𝑎𝑙 (for our language integers). 

Locations 𝐿𝑜𝑐 are variable names. 

A program state maps locations to values: Σ = 𝐿𝑜𝑐 ⇀ 𝑉𝑎𝑙 
A program maps an initial state to a final state, if it terminates.  

Assertions are predicates over program states. 
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Semantics in a nutshell 

There are three major ways to denote semantics. 

 

(1) As a relation between program states, described by an 
abstract machine (operational semantics). 

(2) As a function between program states, defined for each 
statement of the programming langauge (denotational 
semantics). 

(3) As the set of all assertions which hold for a program 
(axiomatic semantics). 

 

Floyd-Hoare logic covers the third aspect, but it is important 
that all three semantics agree.  

 We will not cover semantics in detail here, but will 
concentrate on how to use Floyd-Hoare logic to prove 
correctness.  
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Extending our simple language 
We introduce a set 𝑉𝑎𝑟 of logical variables. 

Assertions are boolean expressions, which may not be 
executable, and arithmetic expressions containing logical 
variables. 

 

  Arithmetic assertions 
𝑎𝑒 ∷= 𝑥  𝑋  𝑛  𝑎𝑒1 𝑎𝑒2  | 𝑎𝑒1 𝑜𝑝𝑎 𝑎𝑒2   𝑓(𝑎𝑒1, … , 𝑎𝑒𝑛) 

 where 𝑥 ∈ 𝐿𝑜𝑐, 𝑋 ∈ 𝑉𝑎𝑟, 𝑜𝑝𝑎 ∈ {+,−,∗,/} 

 

Boolean assertions: 
𝑏𝑒 ≔ true  false not 𝑏𝑒  𝑏𝑒1𝑜𝑝𝑏 𝑏𝑒2  𝑎𝑒1𝑜𝑝𝑟  𝑎𝑒2  

                          𝑝 𝑎𝑒1, … , 𝑎𝑒𝑛 | ∀𝑋. 𝑏𝑒  ∃𝑋. 𝑏𝑒 

 Boolean operators: 𝑜𝑝𝑏 ∈ ∧,∨,⟹  

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠  
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Floyd-Hoare Triples 

The basic build blocks of Floyd-Hoare logic are 
Hoare triples of the form  𝑃 𝑐 𝑄 . 

 

P, Q are assertions using variables in 𝐿𝑜𝑐 and 𝑉𝑎𝑟  

 e.g.  x < 5 + y,  Odd(x),  … 

 

A state 𝜎 satisfies P (written 𝜎 ⊨ 𝑃) iff  𝑃[𝜎 𝑥 𝑥 ] is true for all 
𝑥 ∈ 𝐿𝑜𝑐 and all possible values for  X ∈ 𝑉𝑎𝑟: 

 e.g.  let 

 

 

A formula P describes a set of states, i.e. all states that satisfy 
the formula P. 
 

 

x 5 

y 12 

z 17 

𝜎 =   then 𝜎 satisfies x < 5 + y,  Odd(x)  
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Partial and Total Correctness 
 

  Partial correctness: ⊨ 𝑃 𝑐{𝑄} 

 𝑐 is partial correct with precondition 𝑃 and postcondition 
𝑄 iff, for all states 𝜎 which satisfy P and for which the 
execution of 𝑐 terminates in some state 𝜎′ then it holds 
that 𝜎′ satisfies 𝑄. 
∀𝜎. 𝜎 ⊨ 𝑃 ∧ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ⟹ 𝜎′ ⊨ 𝑄 

 

  Total correctness: ⊨ 𝑃 𝑐[𝑄] 

 𝑐 is total correct with precondition 𝑃 and postcondition 𝑄 
iff, for all states 𝜎 which satisfy 𝑃 the execution of c 
terminates in some state 𝜎′ which satisfies 𝑄. 
i.e  ∀𝜎. 𝜎 ⊨ 𝑃 ⟹ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ∧ 𝜎′ ⊨ 𝑄 

 

Examples: ⊨ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒  𝑠𝑘𝑖𝑝 𝑡𝑟𝑢𝑒 ,   
                       ⊭ 𝑡𝑟𝑢𝑒  𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝  [𝑡𝑟𝑢𝑒]  
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Reasoning with Floyd-Hoare Triples 

How do we know that ⊨ 𝑃 𝑐 𝑄  in practice ? 
 

Calculus to derive triples, written as ⊢ 𝑃 𝑐{𝑄} 

 Rules operate along the constructs of the programming 
language (cf. operational semantics) 

 Only one rule is applicable for each construct (!) 

 Rules are of the form 
 

⊢ 𝑃1 𝑐1 𝑄1 , … , ⊢ 𝑃𝑛 𝑐𝑛{𝑄𝑛} 

⊢ 𝑃 𝑐 {𝑄}
 

 

meaning we can derive ⊢ 𝑃 𝑐 𝑄  if all ⊢ 𝑃𝑖 𝑐𝑖 𝑄𝑖  are 
derivable. 
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Floyd-Hoare Rules:  Assignment 

Assignment rule: 

⊢ {𝑃[𝑒 𝑥 ]}  𝑥 ∶=  𝑒  {𝑃}  
 

 

𝑃[𝑒 𝑥 ] replaces all occurrences of the program variable 𝑥 by 
the arithmetic expression 𝑒. 

 

Examples:  

 ⊢  {0 <  10} 𝑥 ∶=  0 {𝑥 <  10} 

 ⊢ 𝑥 –  1 <  10  𝑥 ∶=  𝑥 − 1 𝑥 <  10  

 
 

 ⊢ {𝑥 +  1 +  𝑥 +  1 <  10}  𝑥 ∶=  𝑥 +  1 {𝑥 +  𝑥 <  10} 

x < 11 

x + x < 8 
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Rules: Sequencing and Conditional 

Sequence:  
⊢ 𝑃  𝑐1 𝑄  ⊢ 𝑄  𝑐2 {𝑅}  

⊢ 𝑃  𝑐1; 𝑐2 {𝑅}
 

 

 Needs an intermediate state predicate 𝑄. 

 

Conditional: 
⊢ 𝑃 ∧ 𝑏  𝑐1 𝑄  ⊢ 𝑃 ∧ ¬𝑏  𝑐2 {𝑄}  

⊢ 𝑃  if b  𝑐1else 𝑐2 {𝑄}
 

 

 Two preconditions capture both cases of 𝑏 and ¬ 𝑏. 

 Both branches end in the same postcondition Q. 
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Rules: Iteration and Skip 

⊢ 𝑃 ∧ 𝑏  𝑐 {𝑃}

⊢ 𝑃  while (𝑏) 𝑐 {𝑃 ∧ ¬ 𝑏}
 

𝑃 is called the loop invariant. It has to hold both before and 
after the loop (but not necessarily in the whole body).  

Before the loop, we can assume the loop condition 𝑏 holds. 

After the loop, we know the loop condition 𝑏 does not hold. 

 In practice, the loop invariant has to be  given– this is the 
creative and difficult part of working with the Floyd-Hoare 
calculus.  

 

⊢ 𝑃  𝐬𝐤𝐢𝐩 {𝑃}
 

skip has no effect: pre- and postcondition are the same.  
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𝑃1 

Final Rule: Weakening 

Weakening is crucial, because it allows us to change pre- or 
postconditions by applying rules of logic. 
 

𝑃2⟹ 𝑃1       ⊢ 𝑃1  𝑐 𝑄1        𝑄1⟹ 𝑄2
⊢ 𝑃2  𝑐 𝑄2

 

We can weaken the precondition and strengthen the 
postcondition: 

 ⊨ 𝑃 𝑐 𝑄  means whenever 𝑐 starts in a state in which 𝑃 
holds, it ends in a state in which 𝑄 holds. So, we can 
reduce the starting set, and enlarge the target set. 

𝑄2 𝑃2 𝑄1 
c 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -  

How to derive and denote proofs 

 The example shows ⊢ 𝑃 𝑐 𝑄  

We annotate the program with valid 
assertions: the precondition in the 
preceding line, the postcondition in 
the following line. 

 The sequencing rule is applied 
implicitly. 

Consecutive assertions imply 
weaking, which has to be proven 
separately.  

 In the example: 
𝑃 ⟹ 𝑃1,  
𝑃2⟹ 𝑃3,  
𝑃3 ∧ 𝑥 < 𝑛 ⟹ 𝑃4, 
𝑃3 ∧ ¬ 𝑥 < 𝑛 ⟹ 𝑄 

 

 

// {P} 

// {𝑃1} 

x:= e; 

// {𝑃2} 

// {𝑃3} 

while (x< n) { 

     // {𝑃3 ∧ 𝑥 < 𝑛} 

     // {𝑃4} 

     z := a 

     // {𝑃3} 

    } 

// {𝑃3 ∧ ¬(𝑥 < 𝑛)} 

// {𝑄} 
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More Examples 

P == 

p ≔ 1; 
c ≔ 1; 
while c ≤ n  { 
  p ≔ p ∗ c; 
  c ≔ c + 1 
  } 

R == 
r ≔ a; 
q ≔ 0; 
while b ≤ r { 
   r ≔ r − b; 
   q ≔ q + 1 
   } 

Specification: 
⊢  1 ≤ n  
     P 

            { p = n! }  

Specification: 
⊢  a ≥ 0 ∧ b ≥ 0  
     R 

        { a = b ∗ q + r ∧ 
            0 ≤ r ∧ r < b} 

 
      

Q == 

p ≔ 1; 
while 0 ≤ n  { 
  p ≔ p ∗ n; 
  n ≔ n − 1 
  } 

Specification: 
⊢  1 ≤ n ∧ 𝑛 = 𝑁  
    Q 
       { p = N! }  

Invariant: 
p = c − 1 ! 

Invariant: 

p =   i

N

i=n+1

 

Invariant: 
a = b ∗ q + r ∧ 0 ≤ r 
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How to find invariants 

Going backwards: try to split/weaken postcondition 𝑄 into 
negated loop-condition and „something else“ which becomes 
the invariant. 

Many while-loops are in fact for-loops, i.e. they count 
uniformly: 

i ≔ 0; 
𝐰𝐡𝐢𝐥𝐞 𝑖 < 𝑛  { 
   … ; 
    𝑖 ≔ 𝑖 + 1 
   } 

  In this case: 

 If post-condition is 𝑃(𝑛), invariant is 𝑃 𝑖 ∧ 𝑖 ≤ 𝑛. 

 If post-condition is ∀𝑗. 0 ≤ 𝑗 < 𝑛. 𝑃(𝑗) (uses indexing, 
typically with arrays), invariant is ∀𝑗. 𝑗 ≤ 0 < 𝑖. 𝑖 ≤ 𝑛 ∧  𝑃 𝑗 . 
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Summary 

Floyd-Hoare-Logic allows us to prove properties of programs. 

The proofs cover all possible inputs, all possible runs. 

There is partial and total correctness: 

 Total correctness = partial correctness + termination. 

There is one rule for each construct of the programming 
language.  

Proofs can in part be constructed automatically, but iteration 
needs an invariant (which cannot be derived mechanically). 

Next lecture: correctness and completeness of the rules. 


