

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 09:
Software Verification
with Floyd-Hoare Logic

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Correctness and Verification Condition Generation

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Software Verification in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Software Verification

Software Verification proves properties of programs. That is,
given the basic problem of program 𝑃 satisyfing a property 𝑝
we want to show that for all possible inputs and runs of 𝑃 ,
the property 𝑝 holds.

Software verification is far more powerful than static
analysis. For the same reasons, it cannot be fully automatic
and thus requires user interaction. Hence, it is complex to
use.

Software verification does not have false negatives, only
failed proof attempts. If we can prove a property, it holds.

Software verification is used in highly critical systems.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

The Basic Idea

What does this program compute?

 The index of the maximal element
of the array 𝑎 if it is non-empty.

How to prove it?

(1) We need a language in which to
formalise such assertions.

(2) We need a notion of meaning
(semantics) for the program.

(3) We need to way to deduce valid
assertions.

Floyd-Hoare logic provides us with (1)
and (3).

i: = 0;
x:= 0;
while (i < n) {
 if a i ≥ a x {
 x ≔ i;
 }
 i ≔ i + 1;
 }

Formalizing correctness:

array a, n ∧ n > 0 ⟹
 a x = max a, n

∀i. 0 ≤ i < n ⟹
 a[i] ≤ max (a, n)
∃j. 0 ≤ j < n ⟹
 a[j] = max (a, n)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Recall our simple programming language

Arithmetic expressions:

𝑎 ∷= 𝑥 𝑛 𝑎1 𝑎2 | 𝑎1 𝑜𝑝𝑎 𝑎2

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/}

Boolean expressions:

𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

Statements:

 S ::= x := a | skip | S1; S2 | if (b) S1 else S2 | while (b) S

 Labels from basic blocks omitted, only used in static
analysis to derive cfg.

 Note this abstract syntax, operator precedence and
grouping statements is not covered.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Semantics of our simple language

The semantics of an imperative language is state transition:
the program has an ambient state, which is changed by
assigning values to certain locations.

Example:

Semantics in a nutshell:

x ?

y 12

z ?

x 5

y 12

z ?

x 5

y 12

z 17

x 6

y 12

z 17

z := x + y x := 5 x := x + 1

𝜎 𝜎1 = 𝜎[x/5] 𝜎2 = 𝜎1[z/17]
 = 𝜎[x/5, z/17]

𝜎3 = 𝜎2[x/6]
 = 𝜎[x/6, z/17]

Expressions evaluate to values 𝑉𝑎𝑙 (for our language integers).

Locations 𝐿𝑜𝑐 are variable names.

A program state maps locations to values: Σ = 𝐿𝑜𝑐 ⇀ 𝑉𝑎𝑙
A program maps an initial state to a final state, if it terminates.

Assertions are predicates over program states.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Semantics in a nutshell

There are three major ways to denote semantics.

(1) As a relation between program states, described by an
abstract machine (operational semantics).

(2) As a function between program states, defined for each
statement of the programming langauge (denotational
semantics).

(3) As the set of all assertions which hold for a program
(axiomatic semantics).

Floyd-Hoare logic covers the third aspect, but it is important
that all three semantics agree.

 We will not cover semantics in detail here, but will
concentrate on how to use Floyd-Hoare logic to prove
correctness.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Extending our simple language
We introduce a set 𝑉𝑎𝑟 of logical variables.

Assertions are boolean expressions, which may not be
executable, and arithmetic expressions containing logical
variables.

 Arithmetic assertions
𝑎𝑒 ∷= 𝑥 𝑋 𝑛 𝑎𝑒1 𝑎𝑒2 | 𝑎𝑒1 𝑜𝑝𝑎 𝑎𝑒2 𝑓(𝑎𝑒1, … , 𝑎𝑒𝑛)

 where 𝑥 ∈ 𝐿𝑜𝑐, 𝑋 ∈ 𝑉𝑎𝑟, 𝑜𝑝𝑎 ∈ {+,−,∗,/}

Boolean assertions:
𝑏𝑒 ≔ true false not 𝑏𝑒 𝑏𝑒1𝑜𝑝𝑏 𝑏𝑒2 𝑎𝑒1𝑜𝑝𝑟 𝑎𝑒2

 𝑝 𝑎𝑒1, … , 𝑎𝑒𝑛 | ∀𝑋. 𝑏𝑒 ∃𝑋. 𝑏𝑒

 Boolean operators: 𝑜𝑝𝑏 ∈ ∧,∨,⟹

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Floyd-Hoare Triples

The basic build blocks of Floyd-Hoare logic are
Hoare triples of the form 𝑃 𝑐 𝑄 .

P, Q are assertions using variables in 𝐿𝑜𝑐 and 𝑉𝑎𝑟

 e.g. x < 5 + y, Odd(x), …

A state 𝜎 satisfies P (written 𝜎 ⊨ 𝑃) iff 𝑃[𝜎 𝑥 𝑥] is true for all
𝑥 ∈ 𝐿𝑜𝑐 and all possible values for X ∈ 𝑉𝑎𝑟:

 e.g. let

A formula P describes a set of states, i.e. all states that satisfy
the formula P.

x 5

y 12

z 17

𝜎 = then 𝜎 satisfies x < 5 + y, Odd(x)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Partial and Total Correctness

 Partial correctness: ⊨ 𝑃 𝑐{𝑄}

 𝑐 is partial correct with precondition 𝑃 and postcondition
𝑄 iff, for all states 𝜎 which satisfy P and for which the
execution of 𝑐 terminates in some state 𝜎′ then it holds
that 𝜎′ satisfies 𝑄.
∀𝜎. 𝜎 ⊨ 𝑃 ∧ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ⟹ 𝜎′ ⊨ 𝑄

 Total correctness: ⊨ 𝑃 𝑐[𝑄]

 𝑐 is total correct with precondition 𝑃 and postcondition 𝑄
iff, for all states 𝜎 which satisfy 𝑃 the execution of c
terminates in some state 𝜎′ which satisfies 𝑄.
i.e ∀𝜎. 𝜎 ⊨ 𝑃 ⟹ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ∧ 𝜎′ ⊨ 𝑄

Examples: ⊨ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝 𝑡𝑟𝑢𝑒 ,
 ⊭ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝 [𝑡𝑟𝑢𝑒]

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Reasoning with Floyd-Hoare Triples

How do we know that ⊨ 𝑃 𝑐 𝑄 in practice ?

Calculus to derive triples, written as ⊢ 𝑃 𝑐{𝑄}

 Rules operate along the constructs of the programming
language (cf. operational semantics)

 Only one rule is applicable for each construct (!)

 Rules are of the form

⊢ 𝑃1 𝑐1 𝑄1 , … , ⊢ 𝑃𝑛 𝑐𝑛{𝑄𝑛}

⊢ 𝑃 𝑐 {𝑄}

meaning we can derive ⊢ 𝑃 𝑐 𝑄 if all ⊢ 𝑃𝑖 𝑐𝑖 𝑄𝑖 are
derivable.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Floyd-Hoare Rules: Assignment

Assignment rule:

⊢ {𝑃[𝑒 𝑥]} 𝑥 ∶= 𝑒 {𝑃}

𝑃[𝑒 𝑥] replaces all occurrences of the program variable 𝑥 by
the arithmetic expression 𝑒.

Examples:

 ⊢ {0 < 10} 𝑥 ∶= 0 {𝑥 < 10}

 ⊢ 𝑥 – 1 < 10 𝑥 ∶= 𝑥 − 1 𝑥 < 10

 ⊢ {𝑥 + 1 + 𝑥 + 1 < 10} 𝑥 ∶= 𝑥 + 1 {𝑥 + 𝑥 < 10}

x < 11

x + x < 8

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Rules: Sequencing and Conditional

Sequence:
⊢ 𝑃 𝑐1 𝑄 ⊢ 𝑄 𝑐2 {𝑅}

⊢ 𝑃 𝑐1; 𝑐2 {𝑅}

 Needs an intermediate state predicate 𝑄.

Conditional:
⊢ 𝑃 ∧ 𝑏 𝑐1 𝑄 ⊢ 𝑃 ∧ ¬𝑏 𝑐2 {𝑄}

⊢ 𝑃 if b 𝑐1else 𝑐2 {𝑄}

 Two preconditions capture both cases of 𝑏 and ¬ 𝑏.

 Both branches end in the same postcondition Q.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Rules: Iteration and Skip

⊢ 𝑃 ∧ 𝑏 𝑐 {𝑃}

⊢ 𝑃 while (𝑏) 𝑐 {𝑃 ∧ ¬ 𝑏}

𝑃 is called the loop invariant. It has to hold both before and
after the loop (but not necessarily in the whole body).

Before the loop, we can assume the loop condition 𝑏 holds.

After the loop, we know the loop condition 𝑏 does not hold.

 In practice, the loop invariant has to be given– this is the
creative and difficult part of working with the Floyd-Hoare
calculus.

⊢ 𝑃 𝐬𝐤𝐢𝐩 {𝑃}

skip has no effect: pre- and postcondition are the same.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

𝑃1

Final Rule: Weakening

Weakening is crucial, because it allows us to change pre- or
postconditions by applying rules of logic.

𝑃2⟹ 𝑃1 ⊢ 𝑃1 𝑐 𝑄1 𝑄1⟹ 𝑄2
⊢ 𝑃2 𝑐 𝑄2

We can weaken the precondition and strengthen the
postcondition:

 ⊨ 𝑃 𝑐 𝑄 means whenever 𝑐 starts in a state in which 𝑃
holds, it ends in a state in which 𝑄 holds. So, we can
reduce the starting set, and enlarge the target set.

𝑄2 𝑃2 𝑄1
c

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

How to derive and denote proofs

 The example shows ⊢ 𝑃 𝑐 𝑄

We annotate the program with valid
assertions: the precondition in the
preceding line, the postcondition in
the following line.

 The sequencing rule is applied
implicitly.

Consecutive assertions imply
weaking, which has to be proven
separately.

 In the example:
𝑃 ⟹ 𝑃1,
𝑃2⟹ 𝑃3,
𝑃3 ∧ 𝑥 < 𝑛 ⟹ 𝑃4,
𝑃3 ∧ ¬ 𝑥 < 𝑛 ⟹ 𝑄

// {P}

// {𝑃1}

x:= e;

// {𝑃2}

// {𝑃3}

while (x< n) {

 // {𝑃3 ∧ 𝑥 < 𝑛}

 // {𝑃4}

 z := a

 // {𝑃3}

 }

// {𝑃3 ∧ ¬(𝑥 < 𝑛)}

// {𝑄}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

More Examples

P ==

p ≔ 1;
c ≔ 1;
while c ≤ n {
 p ≔ p ∗ c;
 c ≔ c + 1
 }

R ==
r ≔ a;
q ≔ 0;
while b ≤ r {
 r ≔ r − b;
 q ≔ q + 1
 }

Specification:
⊢ 1 ≤ n
 P

 { p = n! }

Specification:
⊢ a ≥ 0 ∧ b ≥ 0
 R

 { a = b ∗ q + r ∧
 0 ≤ r ∧ r < b}

Q ==

p ≔ 1;
while 0 ≤ n {
 p ≔ p ∗ n;
 n ≔ n − 1
 }

Specification:
⊢ 1 ≤ n ∧ 𝑛 = 𝑁
 Q
 { p = N! }

Invariant:
p = c − 1 !

Invariant:

p = i

N

i=n+1

Invariant:
a = b ∗ q + r ∧ 0 ≤ r

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

How to find invariants

Going backwards: try to split/weaken postcondition 𝑄 into
negated loop-condition and „something else“ which becomes
the invariant.

Many while-loops are in fact for-loops, i.e. they count
uniformly:

i ≔ 0;
𝐰𝐡𝐢𝐥𝐞 𝑖 < 𝑛 {
 … ;
 𝑖 ≔ 𝑖 + 1
 }

 In this case:

 If post-condition is 𝑃(𝑛), invariant is 𝑃 𝑖 ∧ 𝑖 ≤ 𝑛.

 If post-condition is ∀𝑗. 0 ≤ 𝑗 < 𝑛. 𝑃(𝑗) (uses indexing,
typically with arrays), invariant is ∀𝑗. 𝑗 ≤ 0 < 𝑖. 𝑖 ≤ 𝑛 ∧ 𝑃 𝑗 .

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Summary

Floyd-Hoare-Logic allows us to prove properties of programs.

The proofs cover all possible inputs, all possible runs.

There is partial and total correctness:

 Total correctness = partial correctness + termination.

There is one rule for each construct of the programming
language.

Proofs can in part be constructed automatically, but iteration
needs an invariant (which cannot be derived mechanically).

Next lecture: correctness and completeness of the rules.

