

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 10:

Verification Condition Generation

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Frohes Neues Jahr!

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Correctness and Verification Condition Generation

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

VCG in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Introduction

 In the last lecture, we introduced Hoare triples. They allow us
to state and prove correctness assertions about programs,
written as 𝑃 𝑝 {𝑄}

We introduced two notions, namely:

 Syntactic derivability, ⊢ 𝑃 𝑝 {𝑄} (the actual Floyd-Hoare
calculus)

 Semantic satisfaction, ⊨ 𝑃 𝑝 {𝑄}

Question: how are the two related?

The answer to that question also offers help with a practical
problem: proofs with the Floyd-Hoare calculus are
exceedingly long and tedious. Can we automate them, and
how?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Correctness and Completeness

 In general, given a syntactic calculus with a semantic
meaning, correctness means the syntactic calculus implies
the semantic meaning, and completeness means all
semantic statements can be derived syntactically.

 Cf. also Static Program Analysis

Correctness should be a basic property of verification calculi.

Completeness is elusive due to Gödel‘s first incompleteness
theorem:

 Any logics which is strong enough to encode the natural
numbers and primitive recursion* is incomplete.**

* Or any other notion of computation.

** Or inconsistent, which is even worse.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Correctness of the Floyd-Hoare calculus

Proof: by induction on the derivation of ⊢ 𝑃 𝑝 𝑄 .

More precisely, for each rule we show that:

 If the conclusion is ⊢ 𝑃 𝑝 𝑄 , we can show ⊨ 𝑃 𝑝 𝑄

 For the premisses, this can be assumed.

 Example: for the assignment rule, we show that

Theorem (Correctness of the Floyd-Hoare calculus)
If ⊢ 𝑃 𝑝 {𝑄}, then ⊨ 𝑃 𝑝 {𝑄}.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Completeness of the Floyd-Hoare calculus

Predicate calculus is incomplete, so we cannot hope F/H is
complete. But we get the following:

To show this, we construct the weakest precondition.

Theorem (Relative completeness)
If ⊨ 𝑃 𝑝 {𝑄}, then ⊢ 𝑃 𝑝 𝑄 except for the proofs
occuring in the weakenings.

Weakest precondition
Given a program c and an assertion P, the weakest
precondition 𝑤𝑝(𝑐, 𝑃) is an assertion W such that
1. 𝑊 is a valid precondition ⊨ 𝑊 𝑐 𝑃
2. And it is the weakest such: for any other 𝑄 such

that ⊨ 𝑄 𝑐 𝑃 ,𝑊 → 𝑄

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Constructing the weakest precondition

Consider a simple program and its verification:

Note how proof is constructed backwards systematically.

The idea is to construct the weakest precondition inductively.

This also gives us a methodology to automate proofs in the
calculus.

 𝑥 = 𝑋 ∧ 𝑦 = 𝑌
↔
 𝑦 = 𝑌 ∧ 𝑥 = 𝑋
z := y;

 𝑧 = 𝑌 ∧ 𝑥 = 𝑋
y := x;

 𝑧 = 𝑌 ∧ 𝑦 = 𝑋
x := z;

 𝑥 = 𝑌 ∧ 𝑦 = 𝑋

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Constructing the weakest precondition

There are four straightforward cases:

(1) 𝑤𝑝 𝐬𝐤𝐢𝐩, 𝑃 = 𝑃

(2) 𝑤𝑝 𝑋 ≔ 𝑒, 𝑃 = 𝑃 [𝑒 / 𝑋]

(3) 𝑤𝑝 𝑐0; 𝑐1, 𝑃 = 𝑤𝑝(𝑐0, 𝑤𝑝 𝑐1, 𝑃)

(4) 𝑤𝑝 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1 , 𝑃 = (𝑏 ∧ 𝑤𝑝 𝑐0, 𝑝) ∨ (¬ 𝑏 ∧ 𝑤𝑝 𝑐1, 𝑃)

The complicated one is iteration (unsurprisingly, since it is the
source of the computational power and Turing-completeness
of the language). It can be given recursively:

(5) 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃 = ¬ 𝑏 ∧ 𝑃 ∨ 𝑤𝑝 𝑐, 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃

A closed formula can be given, but it can be infinite and is not
practical. It shows the relative completeness, but does not give
us an effective way to automate proofs.

Hence, 𝑤𝑝(𝑐, 𝑃) is not effective for proof automation, but it
shows the right way: we just need something for iterations.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Verification Conditions: Annotations

The idea is that we have to give the invariants manually by
annotating them.

We need a language for this:

 Arithmetic expressions and boolean expressions stays as
they are.

 Statements are augmented to annotated statements:

 S ::= x := a | skip | S1; S2 | if (b) S1 else S2
 | assert P | while (b) inv P S

 Each while loop needs to its invariant annotated.

 This is for partial correctness, total correctness also
needs a variant: an expression which is strictly
decreasing in a well-founded order such as (<,ℕ)
after the loop body.

 The assert statement allows us to force a weakening.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Preconditions and Verification Conditions

We are given an annotated statement 𝑐, a precondition P and
a postcondition Q.

 We want to know: when does ⊨ 𝑃 𝑐 {𝑄} hold?

For this, we calculate a precondition 𝑝𝑟𝑒(𝑐, 𝑄) and a set of
verification conditions 𝑣𝑐 𝑐, 𝑄 .

 The idea is that if all the verification conditions hold, then
the precondition holds:

 𝑅

𝑅∈𝑣𝑐(𝑐, 𝑄)

⇒ ⊨ 𝑝𝑟𝑒 𝑐, 𝑄 𝑐 𝑄

 For the precondition 𝑃, we get the additional weaking
𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 .

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Calculation Verification Conditions

 Intuitively, we calculate the verification conditions by stepping
through the program backwards, starting with the
postcondition 𝑄.

For each of the four simple cases (assignment, sequencing,
case distinction and 𝒔𝒌𝒊𝒑), we calculate new current
postcondition 𝑄

At each iteration, we calculate the precondition 𝑅 of the loop
body working backwards from the invariant 𝐼, and get two
verification conditions:

 The invariant 𝐼 and negated loop condition implies 𝑄.

 The invariant 𝐼 and loop condition implies 𝑅.

Asserting 𝑅 generates the verification condition 𝑅 ⇒ 𝑄.

Let‘s try this.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Example: deriving VCs for the factorial.

{ 0 <= n }
{ 1 == (1-1)! && (1- 1) <= n }
p := 1;
{ p == (1-1)! && (1- 1) <= n }
c := 1;
{ p == (c-1)! && (c- 1) <= n }
while (c <= n)
 inv (p == (c-1)! && c-1 <= n) {
 { p*c == ((c+1)-1)! && ((c+1)- 1) <= n }
 p := p* c;
 { p == ((c+1)-1)! && ((c+1)- 1) <= n }
 c := c+1;
 { p == (c-1)! && (c- 1) <= n }
 }
{ p == (c-1)! && (c- 1) <= n && ! (c <= n) }
{ p = n! }

VCs (unedited):
1. p == (c-1)! && (c- 1) <= n && ! (c <= n)

==> p= n!

2. p == (c-1)! && c-1 <= n && c<= n
==> p* c= ((c+1)-1)! && ((c+1)-1) <= n

3. 0 <= n ==> 1= (1-1)! && 1-1 <= n

VCs (simplified):
1. p == (c-1)! && (c- 1) <= n && c> n

==> p= n!

2. p == (c-1)! && c-1 <= n && c<= n
==> p* c= c!

2. p == (c-1)! && c-1 <= n && c<= n
==> c <= n

3. 0 <= n ==> 1= 0! && 0 <= n

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Formal Definition

Calculating the precondition:
𝑝𝑟𝑒 𝐬𝐤𝐢𝐩, 𝑄 = 𝑄
𝑝𝑟𝑒 𝑋 ≔ 𝑒, 𝑄 = 𝑄 𝑒 / 𝑋
𝑝𝑟𝑒(𝑐0; 𝑐1, 𝑄 = 𝑝𝑟𝑒(𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄)
𝑝𝑟𝑒 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑏 ∧ 𝑝𝑟𝑒 𝑐0, 𝑄 ∨ ¬ 𝑏 ∧ 𝑝𝑟𝑒 𝑐1, 𝑄
𝑝𝑟𝑒 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅
𝑝𝑟𝑒 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝐼

Calculating the verification conditions:
𝑣𝑐 𝑠𝑘𝑖𝑝, 𝑄 = ∅
𝑣𝑐 𝑋 ≔ 𝑒, 𝑄 = ∅
𝑣𝑐 𝑐0; 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄
𝑣𝑐 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄
𝑣𝑐 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝑣𝑐 𝑐, 𝐼 ∪ {𝐼 ∧ 𝑏 ⇒ 𝑝𝑟𝑒 𝑐, 𝐼 , 𝐼 ∧ ¬𝑏 ⇒ 𝑄}
𝑣𝑐 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 ⇒ 𝑄

The main definition:
𝑣𝑐𝑔 𝑃 𝑐 𝑄 = 𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 ∪ 𝑣𝑐(𝑐, 𝑄)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Correctness of VC

The correctness calculus is correct: if we can prove all the
verifcation conditons, the program is correct w.r.t to given
pre- and postconditions.

Formally:

Proof: by induction on 𝑐.

Theorem (Correctness of the VCG calculus)
Given assertions 𝑃 and 𝑄 (with 𝑃 the precondition and
𝑄 the postcondition), and an annotated program, then

 𝑅

𝑅∈𝑣𝑐𝑔(𝑐, 𝑄)

⇒ ⊨ 𝑃 𝑐 𝑄

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Using VCG in Real Life

We have just a toy language, but VCG can be used in real life.
What features are missing?

Modularity: the language must have modularity concepts,
e.g. functions (as in C), or classes (as in Java), and we must be
able to verify them separately.

Framing: in our simple calculus, we need to specify which
variables stay the same (e.g. when entering a loop). This
becomes tedious when there are a lot of variables involved; it
is more practical to specify which variables may change.

References: languages such as C and Java use references,
which allow aliasing. This has to be modelled semantically;
specifically, the assignment rule has to be adapted.

Machine arithmetic: programs work with machine words
and floating point representations, not integers and real
numbers. This can be the cause of insidious errors.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

VCG Tools

Often use an intermediate language for VCG and front-ends
for concrete programming languages.

The Why3 toolset (http://why3.lri.fr)

 A verification condition generator

 Front-ends for different languages:
C (Frama-C), Java (defunct?)

Boogie (Microsoft Research)

 Frontends for programming languages such C, C#, Java.

VCC – a verifying C compiler built on top of Boogie

 Interactive demo:
https://www.rise4fun.com/Vcc/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

VCC Example: Binary Search

A correct (?) binary search implementation:

#include <limits.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo <= hi)

 {

 mid= (lo+ hi)/2;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

VCC: Correctness Conditions?

We need to annotate the program.

Precondition:

 a is an array of length a_len;

 The array a is sorted.

Postcondition:

 Let r be the result, then:

 if r is UINT_MAX, all elements of a are unequal to key;

 if r is not UINT_MAX, then a[r] == key.

Loop invariants:

 hi is less-equal to a_len;

 everything „left“ of lo is less then key;

 everything „right“ of hi is larger-equal to key.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

VCC Example: Binary Search

Source code as annotated for VCC:

#include <limits.h>

#include <vcc.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

 _(requires \thread_local_array(a, a_len))

 _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])

 _(ensures \result != UINT_MAX ==> a[\result] == key)

 _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] != key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo <= hi)

 _(invariant hi <= a_len)

 _(invariant \forall unsigned int i; i < lo ==> a[i] < key)

 _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)

 {

 mid= (lo+ hi)/2;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Binary Search: the Corrected Program

Corrected source code:

#include <limits.h>

#include <vcc.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

 _(requires \thread_local_array(a, a_len))

 _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])

 _(ensures \result != UINT_MAX ==> a[\result] == key)

 _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] != key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo < hi)

 _(invariant hi <= a_len)

 _(invariant \forall unsigned int i; i < lo ==> a[i] < key)

 _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)

 {

 mid= (hi-lo)/2+ lo;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Summary

Starting from the relative completeness of the Floyd-Hoare
calculus, we devised a verification condition generation (vcg)
calculus which makes program verification viable.

Verification condition generation reduces the question
whether the given pre/postconditions hold for a program to
the validity of a set of logical properties.

 We do need to annotate the while loops with invariants.

 Most of these logical properties can be discharged with
automated theorem provers.

To scale to real-world programs, we need to deal with
framing, modularity (each function/method needs to be
verified independently), and machine arithmetic (integer
word arithmetic and floating-points).

