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Frohes Neues Jahr! 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11-12: Model Checking 

 13: Conclusions 
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VCG in the Development Cycle 
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Introduction 

 In the last lecture, we introduced Hoare triples. They allow us 
to state and prove correctness assertions about programs, 
written as 𝑃  𝑝 {𝑄} 

We introduced two notions, namely: 

 Syntactic derivability, ⊢ 𝑃  𝑝 {𝑄} (the actual Floyd-Hoare 
calculus) 

 Semantic satisfaction, ⊨ 𝑃  𝑝 {𝑄} 

Question: how are the two related? 

The answer to that question also offers help with a practical 
problem: proofs with the Floyd-Hoare calculus are 
exceedingly long and tedious. Can we automate them, and 
how? 
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Correctness and Completeness 

 In general, given a syntactic calculus with a semantic 
meaning, correctness means the syntactic calculus implies 
the semantic meaning, and completeness means all 
semantic statements can be derived syntactically. 

 Cf. also Static Program Analysis 

 

Correctness should be a basic property of verification calculi. 

Completeness is elusive due to Gödel‘s first incompleteness 
theorem:  

 Any logics which is strong enough to encode the natural 
numbers and primitive recursion* is incomplete.** 

* Or any other notion of computation. 

** Or inconsistent, which is even worse. 
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Correctness of the Floyd-Hoare calculus 

Proof: by induction on the derivation of ⊢ 𝑃  𝑝 𝑄 . 

More precisely, for each rule we show that: 

 If the conclusion is ⊢ 𝑃  𝑝 𝑄 , we can show ⊨ 𝑃  𝑝 𝑄   

 For the premisses, this can be assumed. 

 Example: for the assignment rule, we show that 

Theorem (Correctness of the Floyd-Hoare calculus) 
If ⊢ 𝑃  𝑝 {𝑄}, then ⊨ 𝑃  𝑝 {𝑄}. 
 
 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -  

Completeness of the Floyd-Hoare calculus 

Predicate calculus is incomplete, so we cannot hope F/H is 
complete. But we get the following: 

 

 

 

 

To show this, we construct the weakest precondition. 

 

 

 

Theorem (Relative completeness) 
If ⊨ 𝑃  𝑝 {𝑄}, then ⊢ 𝑃  𝑝 𝑄  except for the proofs 
occuring in the weakenings. 

Weakest precondition 
Given a program c and an assertion P, the weakest 
precondition 𝑤𝑝(𝑐, 𝑃) is an assertion W such that 
1. 𝑊 is a valid precondition ⊨ 𝑊  𝑐 𝑃  
2. And it is the weakest such: for any other 𝑄 such 

that ⊨ 𝑄  𝑐 𝑃 ,𝑊 → 𝑄 
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Constructing the weakest precondition 

Consider a simple program and its verification: 

 

 

 

 

 

 

 

 

Note how proof is constructed backwards  systematically. 

The idea is to construct the weakest precondition inductively. 

This also gives us a methodology to automate proofs in the 
calculus. 

 𝑥 = 𝑋 ∧ 𝑦 = 𝑌  
↔ 
 𝑦 = 𝑌 ∧ 𝑥 = 𝑋  
z := y; 

 𝑧 = 𝑌 ∧ 𝑥 = 𝑋   
y := x; 

 𝑧 = 𝑌 ∧ 𝑦 = 𝑋  
x := z; 

 𝑥 = 𝑌 ∧ 𝑦 = 𝑋  
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Constructing the weakest precondition 

There are four straightforward cases: 

(1) 𝑤𝑝 𝐬𝐤𝐢𝐩, 𝑃 = 𝑃 

(2) 𝑤𝑝 𝑋 ≔ 𝑒, 𝑃 = 𝑃 [𝑒 / 𝑋] 

(3) 𝑤𝑝 𝑐0; 𝑐1, 𝑃 = 𝑤𝑝(𝑐0, 𝑤𝑝 𝑐1, 𝑃 ) 

(4) 𝑤𝑝 𝐢𝐟 𝑏 𝑐0  𝐞𝐥𝐬𝐞 𝑐1 , 𝑃 = (𝑏 ∧ 𝑤𝑝 𝑐0, 𝑝 ) ∨ (¬ 𝑏 ∧ 𝑤𝑝 𝑐1, 𝑃 ) 

The complicated one is iteration (unsurprisingly, since it is the 
source of the computational power and Turing-completeness 
of the language). It can be given recursively: 

(5) 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃 = ¬ 𝑏 ∧ 𝑃 ∨ 𝑤𝑝 𝑐, 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃  

A closed formula can be given, but it can be infinite and is not 
practical. It shows the relative completeness, but does not give 
us an effective way to automate proofs. 

Hence, 𝑤𝑝(𝑐, 𝑃) is not effective for proof automation, but it 
shows the right way: we just need something for iterations. 
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Verification Conditions: Annotations 

The idea is that we have to give the invariants manually by 
annotating them.  

We need a language for this: 

 Arithmetic expressions and boolean expressions stays as 
they are. 

 Statements are augmented to annotated statements: 

             S ::= x := a | skip | S1; S2 | if (b)  S1 else S2 
                    | assert P | while (b) inv P S 

 Each while loop needs to its invariant annotated. 

 This is for partial correctness, total correctness also 
needs a variant: an expression which is strictly 
decreasing in a well-founded order such as (<,ℕ) 
after the loop body. 

 The assert statement allows us to force a weakening. 
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Preconditions and Verification Conditions 

We are given an annotated statement 𝑐, a precondition P and 
a postcondition Q.  

 We want to know: when does ⊨ 𝑃  𝑐 {𝑄} hold? 

 

For this, we calculate a precondition 𝑝𝑟𝑒(𝑐, 𝑄) and a set of 
verification conditions 𝑣𝑐 𝑐, 𝑄 . 

 The idea is that if all the verification conditions hold, then 
the precondition holds: 

 𝑅

𝑅∈𝑣𝑐(𝑐, 𝑄)

⇒ ⊨ 𝑝𝑟𝑒 𝑐, 𝑄 𝑐 𝑄  

 For the precondition 𝑃, we get the additional weaking 
𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 . 
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Calculation Verification Conditions 

 Intuitively, we calculate the verification conditions by stepping 
through the program backwards, starting with the 
postcondition 𝑄. 

For each of the four simple cases (assignment, sequencing, 
case distinction and 𝒔𝒌𝒊𝒑), we calculate new current 
postcondition 𝑄 

At each iteration, we calculate the precondition 𝑅 of the loop 
body working backwards from the invariant 𝐼, and get two 
verification conditions: 

 The invariant 𝐼 and negated loop condition implies 𝑄. 

 The invariant 𝐼 and loop condition implies 𝑅. 

Asserting 𝑅 generates the verification condition 𝑅 ⇒ 𝑄. 

 

Let‘s try this. 
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Example: deriving VCs for the factorial. 

{ 0 <= n } 
{ 1 == (1-1)! && (1- 1) <= n } 
p := 1; 
{ p == (1-1)! && (1- 1) <= n } 
c := 1; 
{ p == (c-1)! && (c- 1) <= n } 
while (c <= n)  
  inv (p == (c-1)! && c-1 <= n) { 
  { p*c == ((c+1)-1)! && ((c+1)- 1) <= n }  
  p := p* c; 
  { p == ((c+1)-1)! && ((c+1)- 1) <= n }  
  c := c+1; 
  { p == (c-1)! && (c- 1) <= n }  
  } 
{ p == (c-1)! && (c- 1) <= n && ! (c <= n) }  
{ p = n! } 

VCs (unedited): 
1. p == (c-1)! && (c- 1) <= n && ! (c <= n) 

==> p= n! 
 

2. p == (c-1)! && c-1 <= n && c<= n  
==> p* c= ((c+1)-1)! && ((c+1)-1) <= n 
 

3. 0 <= n ==> 1= (1-1)! && 1-1 <= n 

VCs (simplified): 
1. p == (c-1)! && (c- 1) <= n && c> n  

==> p= n! 
 

2. p == (c-1)! && c-1 <= n && c<= n  
==> p* c= c!  

2. p == (c-1)! && c-1 <= n && c<= n  
==> c <= n 
 

3. 0 <= n ==> 1= 0! && 0 <= n 
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Formal Definition 

Calculating the precondition: 
𝑝𝑟𝑒 𝐬𝐤𝐢𝐩, 𝑄 = 𝑄 
𝑝𝑟𝑒 𝑋 ≔ 𝑒, 𝑄 = 𝑄 𝑒 / 𝑋  
𝑝𝑟𝑒(𝑐0; 𝑐1, 𝑄 = 𝑝𝑟𝑒(𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ) 
𝑝𝑟𝑒 𝐢𝐟 𝑏  𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑏 ∧ 𝑝𝑟𝑒 𝑐0, 𝑄 ∨ ¬ 𝑏 ∧ 𝑝𝑟𝑒 𝑐1, 𝑄  
𝑝𝑟𝑒 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 
𝑝𝑟𝑒 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝐼 

Calculating the verification conditions: 
𝑣𝑐 𝑠𝑘𝑖𝑝, 𝑄 = ∅ 
𝑣𝑐 𝑋 ≔ 𝑒, 𝑄 = ∅ 
𝑣𝑐 𝑐0; 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄  
𝑣𝑐 𝐢𝐟 𝑏  𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄  
𝑣𝑐 𝐰𝐡𝐢𝐥𝐞 𝑏  𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝑣𝑐 𝑐, 𝐼 ∪ {𝐼 ∧ 𝑏 ⇒ 𝑝𝑟𝑒 𝑐, 𝐼 , 𝐼 ∧ ¬𝑏 ⇒ 𝑄} 
𝑣𝑐 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 ⇒ 𝑄  

The main definition: 
𝑣𝑐𝑔 𝑃  𝑐 𝑄 = 𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 ∪ 𝑣𝑐(𝑐, 𝑄) 
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Correctness of VC 

The correctness calculus is correct: if we can prove all the 
verifcation conditons, the program is correct w.r.t to given 
pre- and postconditions. 

 

Formally: 

 

 

 

 

 

 

 

Proof: by induction on 𝑐. 

 

Theorem (Correctness of the VCG calculus) 
Given assertions 𝑃 and 𝑄 (with 𝑃 the precondition and 
𝑄 the postcondition), and  an annotated program, then 

 𝑅

𝑅∈𝑣𝑐𝑔(𝑐, 𝑄)

⇒ ⊨ 𝑃  𝑐 𝑄  
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Using VCG in Real Life 

We have just a toy language, but VCG can be used in real life. 
What features are missing? 

Modularity: the language must have modularity concepts, 
e.g. functions (as in C), or classes (as in Java), and we must be 
able to verify them separately.  

Framing: in our simple calculus, we need to specify which 
variables stay the same (e.g. when entering a loop). This 
becomes tedious when there are a lot of variables involved; it 
is more practical to specify which variables may change. 

References: languages such as C and Java use references, 
which allow aliasing. This has to be modelled semantically; 
specifically, the assignment rule has to be adapted. 

Machine arithmetic: programs work with machine words 
and floating point representations, not integers and real 
numbers. This can be the cause of insidious errors. 
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VCG Tools 

Often use an intermediate language for VCG and front-ends 
for concrete programming languages. 

 

The Why3 toolset (http://why3.lri.fr) 

 A verification condition generator 

 Front-ends for different languages:  
C (Frama-C), Java (defunct?) 

 

Boogie (Microsoft Research) 

 Frontends for programming languages such C, C#, Java. 

VCC – a verifying C compiler built on top of Boogie 

 Interactive demo:  
https://www.rise4fun.com/Vcc/ 
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VCC Example: Binary Search 

A correct (?) binary search implementation: 

 

 
#include <limits.h> 

 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

{     

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

 

  while (lo <= hi)  

     { 

      mid= (lo+ hi)/2; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

 

  return lo; 

} 
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VCC: Correctness Conditions? 

We need to annotate the program. 

Precondition: 

 a is an array of length a_len; 

 The array a is sorted. 

Postcondition: 

 Let r be the result, then: 

 if r is UINT_MAX, all elements of a are unequal to key; 

 if r is not UINT_MAX, then a[r] == key. 

Loop invariants: 

 hi is less-equal to a_len; 

 everything „left“ of lo is less then key; 

 everything „right“ of hi is larger-equal to key. 
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VCC Example: Binary Search 

Source code as annotated for VCC: 

#include <limits.h> 

#include <vcc.h> 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

  _(requires \thread_local_array(a, a_len)) 

  _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])  

  _(ensures \result != UINT_MAX ==> a[\result] == key)                 

  _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] !=  key)  

{ 

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

   

  while (lo <= hi)  

    _(invariant hi <= a_len) 

    _(invariant \forall unsigned int i; i < lo ==> a[i] <  key)  

    _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)  

    { 

      mid= (lo+ hi)/2; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

  return lo; 

} 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -  

Binary Search: the Corrected Program 

Corrected source code: 

 
#include <limits.h> 

#include <vcc.h> 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

  _(requires \thread_local_array(a, a_len)) 

  _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])  

  _(ensures \result != UINT_MAX ==> a[\result] == key)                 

  _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] !=  key)  

{ 

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

   

  while (lo < hi)  

    _(invariant hi <= a_len) 

    _(invariant \forall unsigned int i; i < lo ==> a[i] <  key)  

    _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)  

    { 

      mid= (hi-lo)/2+ lo; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

  return lo; 

} 
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Summary 

Starting from the relative completeness of the Floyd-Hoare 
calculus, we devised a verification condition generation (vcg) 
calculus which makes program verification viable. 

Verification condition generation reduces the question 
whether the given pre/postconditions hold for a program to 
the validity of a set of logical properties. 

 We do need to annotate the while loops with invariants. 

 Most of these logical properties can be discharged with 
automated theorem provers. 

To scale to real-world programs, we need to deal with 
framing,  modularity (each function/method needs to be 
verified independently), and machine arithmetic (integer 
word arithmetic and floating-points). 


