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Systeme hoher Sicherheit und Qualität 
Universität Bremen, WS 2017/2018 

Christoph Lüth, Dieter Hutter, Jan Peleska 

Lecture 1: 
Introduction  
and Notions of Quality 
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Organisatorisches 
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Generelles 

Einführungsvorlesung zum Masterprofil S & Q 

 

6 ETCS-Punkte 

 

Vorlesung: 

 Montag    12 – 14 Uhr (MZH 1110) 

Übung:  

 Dienstag  12 – 14 Uhr (MZH 1110) 

 

Material (Folien, Artikel, Übungsblätter) auf der Homepage: 
 
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws17 
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Vorlesung 
 
Foliensätze als Kernmaterial 

 Sind auf Englisch (Notationen!) 

 Nach der Vorlesung auf der Homepage verfügbar 

 

Ausgewählte Fachartikel als Zusatzmaterial 

 Auf der Homepage verlinkt (ggf. in  StudIP) 

Bücher nur für einzelne Teile der Vorlesung verfügbar: 
 Nancy Leveson: Engineering a Safer World 

 Ericson: Hazard Analysis Techniques for System Safety 

 Nilson, Nilson: Principles of Program Analysis 

 Winskel: The Formal Semantics of Programming Languages 

Zum weiteren Stöbern: 

 Wird im Verlauf der Vorlesung bekannt gegeben 

 

 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -  

Übungen 

Übungsblätter: 

 „Leichtgewichte“ Übungsblätter, die in der Übung 
bearbeitet und schnell korrigiert werden können. 

 Übungsblätter vertiefen Vorlesungsstoff. 

 Bewertung gibt schnell Feedback. 

 

Übungsbetrieb: 

 Gruppen bis zu 3 StudentInnen 

 Ausgabe der Übungsblätter Dienstag in der Übung 

 Zeitgleich auf der Homepage 

 Erstes Übungsblatt: nächste Woche (24.10.2017) 

 Bearbeitung: während der Übung 

 Abgabe: bis  Dienstag abend 
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Prüfungsform 

Bewertung der Übungen: 

 A (sehr gut (1.0) – nichts zu meckern, nur wenige Fehler) 

 B (gut (2.0) – kleine Fehler, im großen und ganzen gut) 

 C (befriedigend (3.0) – größere Fehler oder Mängel) 

 Nicht bearbeitet (oder zu viele Fehler) 

 

Prüfungsleistung: 

 Teilnahme am Übungsbetrieb (20%) 

 Übungen keine Voraussetzung 

 Mündliche Prüfung am Ende des Semesters (80%) 

 Einzelprüfung, ca. 20- 30 Minuten 
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Ziel der Vorlesung 

Methoden und Techniken zur Entwicklung 
sicherheitskritischer Systeme  

 

Überblick über verschiedene Mechanismen  
d.h. auch Überblick über vertiefende Veranstaltungen 
 Theorie reaktiver Systeme 

 Grundlagen der Sicherheitsanalyse und des Designs 

 Formale Methoden der Softwaretechnik 

 Einführung in die Kryptographie 

 Qualitätsorientierter Systementwurf 

 Test von Schaltungen und Systemen 

 Informationssicherheit -- Prozesse und Systeme 
 

Verschiedene Dimensionen 

 Hardware vs. Software 

 Security vs. Safety 

 Qualität der Garantien 
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Overview 
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Objectives 
 
 This is an introductory lecture for the topics 

 
                           Quality     –      Safety    –    Security                               
     

 Bird’s eye view of everything relevant related to the development of 
systems of high quality, high safety or high security. 

 

 The lecture reflects the fundamentals of the research focus quality, safety 
& security at the department of Mathematics and Computer Science (FB3) 
at the University of Bremen.  This is one of the three focal points of 
computer science at FB3, the other two being Digital Media and Artificial 
Intelligence, Robotics & Cognition. 

 

 This lecture is read jointly (and in turns) by Dieter Hutter, Christoph Lüth, 
and Jan Peleska. 

 

 The choice of material in each semester reflects personal preferences. 
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Ariane 5 

Stuxnet 

Chip & PIN 

Flight  AF 447 

Our car 

Friday October 7,2011  

By Daily Express Reporter  

 
AN accounting error yesterday forced outsourcing  

specialist Mouchel into a major profits warning and  

sparked the resignation of its chief executive.  

 

Why bother with  
Quality, Safety, and Security ? 
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Ariane 5 

11 

Ariane 5 exploded on its virgin flight (Ariane Flight 501) on 
4.6.1996. 

 

 

 

 

 

 

 

 

 

 

How could that happen? 
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What Went Wrong With Ariane Flight 501? 

(1) Self-destruction due to instability; 

(2) Instability due to wrong steering movements (rudder); 

(3) On-board computer tried to compensate for (assumed) wrong trajectory; 

(4) Trajectory was calculated wrongly because own position was wrong; 

(5) Own position was wrong because positioning system had crashed; 

(6) Positioning system had crashed because transmission of sensor data to 
ground control failed with integer overflow; 

(7) Integer overflow occurred because values were too high; 

(8) Values were too high because positioning system was integrated 
unchanged from predecessor model, Ariane-4; 

(9) This assumption was not documented because it was satisfied tacitly with 
Ariane-4. 

(10)Positioning system was redundant, but both systems failed (systematic 
error). 

(11)Transmission of data to ground control also not necessary. 
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Two trains collided on a single-track line close to Bad Aibling 

 

 

 

 

 

 

 

 

 

 

Human error ? 

 cf.  Nancy Leveson: Engineering a Safer World 

Railway Accident in Bad Aibling 2016 

13 
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from: c't 1/2003 (Heise Verlag) 

from: Daily Mail Aug. 2014 
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Frisch auf den Tisch, ein 
Evergreen zum Thema 
„Sicherheitslücken in 
täglich genutzten 
Protokollen…“ 

Heise Security, 17.10.2017 
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What is Safety and Security? 

Safety: 

 product achieves acceptable levels of risk or harm to 
people, business, software, property or the environment 
in a specified context of use 

 Threats from “inside” 

 Avoid malfunction of a system (e.g. planes, cars, 
railways…) 

 

Security: 

 Product is protected against potential attacks from 
people, environment etc.  

 Threats from “outside”  

 Analyze and counteract the abilities of an attacker 

 

 

 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -  

Software Development Models 

Definition of software development process and documents 

 

 

Examples: 

 Waterfall Model 

 V-Model 

 Model-Driven 
Architectures 

 Agile Development 
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mathematical notions 

Informal 
documents 

program 

formal specifications 

requirements 

proofs 

Formal Software Development 

Informal 
Notions 

refinement 
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Verification and Validation 

Verification: have we built the system right? 

 i.e. correct with respect to a reference artefact  

 specification document 

 reference system 

 Model 

 

Validation: have we built the right system  

 i.e. adequate for its intended operation? 
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V&V Methods 

 Testing 

 Test case generation, black- vs. white box 

 Hardware-in-the-loop testing: integrated HW/SW system is tested 

 Software-in-the-loop testing: only software is tested 

 Program runs using symbolic values 

 Simulation 

 An executable model is tested with respect to specific properties 

 This is also called Model-in-the-Loop Test 

 Static/dynamic program analysis 

 Dependency graphs, flow analysis 

 Symbolic evaluation 

 Model checking 

 Automatic proof by reduction to finite state problem 

 Formal Verification 

 Symbolic proof of program properties 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Concepts of Quality 
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What is Quality? 

Quality is the collection of its characteristic properties 

 

Quality model: decomposes the high-level definition by 
associating attributes (also called characteristics, factors, or 
criteria) to the quality conception 

 

Quality indicators associate metric values with quality 
criteria, expressing “how well” the criteria have been fulfilled 
by the process or product.  

 The idea is that to measure quality, with  
the aim of continuously improving it. 
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Quality Criteria: Different „Dimensions“ of Quality 

For the development of artifacts quality criteria can be 
measured with respect to the 

 development process (process quality) 

 final product (product quality) 

 

Another dimension for structuring quality conceptions is  

 Correctness: the consistency with the product and its 
associated requirements specifications 

 Effectiveness: the suitability of the product for its 
intended purpose 
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Quality Criteria (cont.) 

 

A third dimension structures quality according to product 
properties: 

 Functional properties: the specified services to be 
delivered to the users 

 Structural properties: architecture, interfaces, 
deployment, control structures 

 Non-functional properties: usability, safety, reliability, 
availability, security, maintainability, guaranteed worst-
case execution time (WCET), costs, absence of run-time 
errors, … 
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Quality (ISO/IEC 25010/12) 

 “Systems and software engineering — Systems and software 
Quality Requirements and Evaluation (SQuaRE) — System and 
software quality models” 

 Quality model framework (replaces the older ISO/IEC 
9126) 

Product quality model 

 Categorizes system/software product quality properties 

Quality in use model 

 Defines characteristics related to outcomes of interaction 
with a system 

Quality of data model 

 Categorizes data quality attributes 
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Product 
Quality 

Functional 
suitability 

Completeness 
Correctness 

Appropriateness 

Performance 
efficiency 

Time behavior 
Resource 
utilization 
Capacity 

Compatibility 

Co-existence 
Interoperability 

Usability 

Appropriateness 
recognizability 

Learnability 
Operability 
User error 
protection 

User interface 
aesthetics 

Accessibility 

Reliability 

Maturity 
Availability 

Fault tolerance 
Recoverability 

Security 

Confidentiality 
Integrity 

Non-repudiation 
Accountability 
Authenticity 

Maintainability 

Modularity 
Reusability 

Analysability 
Modifiability 
Testability 

Portability 

Adaptability 
Installability 

Replaceability 

Source:  ISO/IEC FDIS 25010 

Product Quality Model 
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Product 
Quality 

Functional 
suitability 

Completeness 
Correctness 

Appropriateness 

Performance 
efficiency 

Time behavior 
Resource 
utilization 
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Compatibility 

Co-existence 
Interoperability 

Usability 

Appropriateness 
recognizability 

Learnability 
Operability 
User error 
protection 

User interface 
asthetics 

Accessibility 

Reliability 

Maturity 
Availability 

Fault tolerance 
Recoverability 

Security 

Confidentiality 
Integrity 

Non-repudiation 
Accountability 
Authenticity 

Maintainability 

Modularity 
Reusability 

Analysability 
Modifiability 
Testability 

Portability 

Adaptability 
Installability 

Replaceability 

Source:  ISO/IEC FDIS 25010 

How can we „guarantee“ safety and security ? 

Our Focus of Interest 
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System 

Quality in Use 

Computer System 

Quality 

Software Product 

Quality 

System 

Quality in Use 

Requirements 

Computer System 

Quality  

Requirements 

Software Product 

Quality 

Requirements 

Implementation 

Quality in Use Needs 

Products Requirements 

Validation 

Verification 

Validation 

Verification 

Validation 

System 

Quality in 

Use Model 

System 

and 

Software 

Product 

Quality 

Model 

Source:  ISO/IEC FDIS 25010 

System Quality Life Cycle Model 
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Quality in Use Model 
 

Quality in use 

Effectiveness Efficiency Satisfaction 

Usefulness Trust Pleasure Comfort 

Freedom from 
risk 

Economic risk 
mitigation 

Health and 
safety risk 
mitigation 

Environmental 
risk 

Context 
coverage 

Content 
completeness 

Flexibility 
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Other Norms and Standards 

 ISO 9001 (DIN ISO 9000-4): 

 Standardizes definition and supporting principles 
necessary for a quality system to ensure products meet 
requirements 

 “Meta-Standard” 

 

CMM (Capability Maturity Model),  Spice (ISO 15504) 

 Standardizes maturity of development process 

 Level 1 (initial): Ad-hoc 

 Level 2 (repeatable): process dependent on individuals 

 Level 3 (defined): process defined & institutionalized 

 Level 4 (managed): measured process 

 Level 5 (optimizing): improvement feed back into process 
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Summary 
 
Quality 

 collection of characteristic properties 

 quality indicators measuring quality criteria 

 

Relevant aspects of quality here 

 Functional suitability 

 Reliability 

 Security 

 

Next week 

 Concepts of Safety, Legal Requirements, Certification 
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Systeme hoher Sicherheit und Qualität 
Universität Bremen, WS 2017/2018 

Christoph Lüth, Dieter Hutter, Jan Peleska 

Lecture 02: 
Legal Requirements -  
Norms and Standards 
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Organisatorisches 

 

 

 

Vorlesung und Übung nächste Woche (30.10.2017 und 
31.10.2017) fallen aus! 

 Reformationstag, Brückentag. 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Why bother with norms? 
  
 If you want (or need to) to write safety-criticial software 

then you need to adhere to state-of-the-art practice 
as encoded by the relevant norms & standards. 

 

The bad news: 

 As a qualified professional, you may become personally 
liable if you deliberately and intentionally (grob 
vorsätzlich) disregard the state of the art or do not comply 
to the rules (= norms, standards) that were to be applied. 

The good news: 

 Pay attention here and you will be delivered from these 
evils. 
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Because in case of failure… 

Whose fault is it?  Who pays for it? (“Produkthaftung”) 

 European practice: extensive regulation 

 American practice: judicial mitigation (lawsuits) 
 

Standards often put a lot of emphasis on process and 
traceability (auditable evidence).  
Who decided to do what, why, and how?  
 

What are norms relevant to safety and security? 
Examples: 

 Safety:  IEC 61508 – Functional safety 
• specialised norms for special domains 

 Security: IEC 15408 – Common criteria 
• In this context: “cybersecurity”, not “guns and gates” 

 

What is regulated by such norms? 
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Functional Safety: 
 
IEC 61508 and friends 
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What is Safety? 
 
Absolute definition: 

 

 „Safety is freedom from accidents or losses.“  
    Nancy Leveson, „Safeware: System safety and computers“ 

 

But is there such a thing as absolute safety?  

 

Technical definition: 
 

 „Sicherheit: Freiheit von unvertretbaren Risiken“ 

 IEC 61508-4:2001, §3.1.8 
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Legal Grounds 

The machinery directive:  The Directive 2006/42/EC of the 
European Parliament and of the Council of 17 May 2006 on 
machinery, and amending Directive 95/16/EC (recast) 

Scope: 

 Machineries (with a drive system and movable parts) 

Objective: 

 Market harmonization (not safety) 

Structure: 

 Sequence of whereas clauses (explanatory) 

 followed by 29 articles (main body) 

 and 12 subsequent annexes (detailed information about 
particular fields, e.g. health & safety) 

Some application areas have their own regulations: 

 Cars and motorcycles, railways, planes, nuclear plants … 
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The Norms and Standards Landscape 

The 

standards 

quagmire ? 

First-tier standards (A-Normen) 

 General, widely applicable, no specific area of application 

 Example: IEC 61508 

 

Second-tier standards (B-Normen) 

 Restriction to a particular area of application 

 Example: ISO 26262 (IEC 61508 for automotive) 

 

Third-tier standards (C-Normen) 

 Specific pieces of equipment 

 Example: IEC 61496-3 (“Berührungslos wirkende 
Schutzeinrichtungen”) 

 

Always use most specific norm. 

     
Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -  

  

Norms for the Working Programmer 

 IEC 61508: 

 “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES)” 

 Widely applicable, general, considered hard to understand  

 ISO 26262 

 Specialisation of 61508 to cars (automotive industry) 

DIN EN 50128:2011  

 Specialisation of 61508 to software for railway industry 

 RTCA DO 178-B and C (new developments require C): 

 “Software Considerations in Airborne Systems and Equipment 
Certification“ 

 Airplanes, NASA/ESA 

 ISO 15408:  

 “Common Criteria for Information Technology Security Evaluation” 

 Security, evolved from TCSEC (US), ITSEC (EU), CTCPEC (Canada)  
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What is regulated by IEC 61508? 

1. Risk analysis determines the safety integrity level (SIL) 

2. Hazard analysis leads to safety requirement specification. 

3. Safety requirements must be satisfied by product 

 Need to verify that this is achieved. 

 SIL determines amount of testing/proving etc. 

4. Life-cycle needs to be managed and organised 

 Planning: verification & validation plan 

 Note: personnel needs to be qualified. 

5. All of this needs to be independently assessed. 

 SIL determines independence of assessment body. 
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The Seven Parts of IEC 61508 

1. General requirements 

2. Requirements for E/E/PES safety-related systems 

 Hardware rather than software 

3. Software requirements 

4. Definitions and abbreviations 

5. Examples of methods for the determination of safety-
integrity levels 

 Mostly informative 

6. Guidelines on the application of Part 2 and 3 

 Mostly informative 

7. Overview of techniques and measures 
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The Safety Life Cycle (IEC 61508) 

Planning 

Realisation 

Operation 

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems 
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Safety Integrity Levels 

What is the risk by operating a system? 

 How likely is a failure ? 

 What is the damage caused by a failure? 

Risk not acceptable 

Risk acceptable 

F
re

q
u

e
n

cy
 

Extend of loss 
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Safety Integrity Levels 

Max. average probabilty of a dangerous failure (per 
hour/year) depending on how often it is used 

 

 

 

 

 

 

Examples: 

 High demand: car brakes 

 Low demand: airbag control 

Note: SIL only meaningful for specific safety functions. 

 

SIL High Demand 
(more than once a year) 

Low Demand 
(once a year or less)  

4 10-9 < P/hr < 10-8 10-5 < P/yr < 10-4 

3 10-8 < P/hr < 10-7 10-4 < P/yr < 10-3 

2 10-7 < P/hr < 10-6 10-3 < P/yr < 10-2 

1 10-6 < P/hr < 10-5 10-2 < P/yr < 10-1 
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Establishing target SIL (Quantitative)  

 IEC 61508 does not describe standard procedure to establish a SIL 
target, it allows for alternatives. 

 

Quantitative approach 

 Start with target risk level 

 Factor in fatality and  
frequency 

 

 Example: Safety system for a chemical plant  

 Max. tolerable risk exposure:  A=10-6    (per annum) 

 Ratio of hazardous events leading to fatality:  B= 10-2  

 Risk of failure of unprotected process: C= 1/5 (per annum) 

 Then failure on demand :  E = A/(B*C) = 5*10-4, so SIL 3 

 

More examples: airbag, safety system for a hydraulic press 

 

Maximum tolerable  

risk of fatality 

Individual risk  

(per annum) 

Employee 10-4 

Public 10-5 

Broadly acceptable 

(„Negligible“) 

10-6 
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Establishing Target SIL (Qualitative) 

Qualitative method: risk graph analysis (e.g. DIN 13849) 

DIN EN ISO 13849:1 determines the performance level  

PL SIL 

a - 

b 1 

c 2 

d 3 

e 4 

Severity of injury: 
S1 -  slight (reversible) injury 
S2 – severe (irreversible) injury 
 
Occurrence: 
F1 – rare occurrence 
F2 – frequent occurrence 
 
Possible avoidance: 
P1 – possible 
P2 – impossible Relation PL to SIL 

Source: Peter Wratil (Wikipedia) 
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What does the SIL mean for the 
development process? 

 In general:  

 „Competent“ personnel 

 Independent assessment („four eyes“) 

 SIL 1: 

 Basic quality assurance (e.g. ISO 9001) 

 SIL 2: 

 Safety-directed quality assurance, more tests 

 SIL 3: 

 Exhaustive testing, possibly formal methods 

 Assessment by separate department 

 SIL 4: 

 State-of-the-art practices, formal methods 

 Assessment by separate organization 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -  

  

Some Terminology 

Error handling: 

 Fail-safe (or fail-stop): terminate in a safe state 

 Fail operational systems: continue operation, even if their 
controllers fail 

 Fault tolerant systems: continue with a potentially degraded 
service (more general than fail operational systems) 

Safety-critical, safety-relevant (sicherheitskritisch) 

 General term --  failure may lead to risk  

  Safety function (Sicherheitsfunktion) 

 Technical term, that functionality which ensures safety 

Safety-related (sicherheitsgerichtet, sicherheitsbezogen) 

 Technical term, directly related to the safety function 
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Increasing SIL by redudancy 

One can achieve a higher SIL by combining independent 
systems with lower SIL („Mehrkanalsysteme“). 

  Given two systems A,  B with failure probabilities 𝑃𝐴, 𝑃𝐵, the 
chance for failure of both is (with 𝑃𝐶𝐶  probablity of common-
cause failures): 

𝑃𝐴𝐵 = 𝑃𝐶𝐶 + 𝑃𝐴𝑃𝐵 
 

Hence, combining two SIL 3 systems may give you a SIL 4 
system. 

However, be aware of systematic errors (and note  that IEC 
61508 considers all software errors to be systematic).  

Note also that for fail-operational systems you need three 
(not two) systems. 
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The Software Development Process   

61508 in principle allows any software lifecycle model, but: 

 No specific process model is given, illustrations use a V-
model, and no other process model is mentioned.  
 

Appx A, B give normative guidance on measures to apply: 

 Error detection needs to be taken into account (e.g. 
runtime assertions, error detection codes, dynamic 
supervision of data/control flow) 

 Use of strongly typed programming languages (see table) 

 Discouraged use of certain features:  

 recursion(!), dynamic memory, unrestricted pointers, 
unconditional jumps 

 Certified tools and compilers must be used or tools 
“proven in use“. 
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Proven in Use: Statistical Evaluation  
  
 
As an alternative to systematic development, statistics about 

usage may be employed. This is particularly relevant: 

 for development tools (compilers, verification tools etc), 

 and for re-used software (modules, libraries). 

The norm (61508-7 Appx. D)  is quite brief about this subject. 
It states these methods should only be applied by those 
“competent in statistical analysis”.  

The problem: proper statistical analysis is more than just 
“plugging in numbers”.  

 Previous use needs to be to the same specification as 
intended use (eg. compiler: same target platform).  

 Uniform distribution of   test data, indendent tests. 

 Perfect detection of failure. 

 

 

 

 

 

 

 

Proper statistical analysis requires uniform distribution of   
test data, indendent tests etc. ( 
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Proven in Use: Statistical Evaluation  
  
 
Statistical statements can only be given with respect to a 

confidence level (𝜆 = 1 − 𝑝), usually 𝜆 = 0.99 or 𝜆 = 0.9. 

With this and all other assumptions  satisfied, we get the 
following numbers from the norm:  

 For on-demand: observed demands without failure 
(𝑃1: accept. prob. of failure to perform per demand) 

 For continuously-operated: observed hours w/o failure 
(𝑃2: accept. prob. of failure to perform per hour of opn.)  

SIL On-Demand Continuously Operated 

𝑃1 𝜆 = 99% 𝜆 = 90% 𝑃2 𝜆 = 99% 𝜆 = 90% 

1 < 10−1  46 3 < 10−5 4.6 ⋅ 105 3 ⋅ 105 

2 < 10−2 460 30 < 10−6 4.6 ⋅ 106 3 ⋅ 106 

3 < 10−3  4600 3000 < 10−7 4.6 ⋅ 107 3 ⋅ 107 

4 < 10−4  46000 30000 < 10−8 4.6 ⋅ 108 3 ⋅ 108 

Source: Ladkin, Littlewood:  Practical Statistical Evaluation of Critical Software. 
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Table A.2 - Software Architecture 
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Table A.4 - Software Design & Development 
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Table A.9 – Software Verification 
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Table B.1 – Coding Guidelines 

 Table C.1, programming 
languages, mentions: 

 ADA, Modula-2, 
Pascal, FORTRAN 77, 
C, PL/M, Assembler, … 

 

 Example for a guideline: 

 MISRA-C: 2004, 
Guidelines for the use 
of the C language in 
critical systems. 
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Table B.5 - Modelling 
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Certification 

Certification is the process of showing conformance to a 
standard. 
 

Conformance to IEC 61508 can be shown in two ways: 

 either that an organization (company) has in principle the 
ability to produce a product conforming to the standard, 

 or that a specific product (or system design) conforms to 
the standard. 
 

Certification can be done by the developing company (self-
certification), but is typically done by an notified body. 

 In Germany, e.g. the TÜVs or Berufsgenossenschaften; 

 In Britain, professional role (ISA) supported by IET/BCS; 

 Also sometimes (e.g. DO-178B) called `qualification‘.  
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Security: 
 
IEC 15408  
The Common Criteria 
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Common Criteria (IEC 15408 ) 

Established in 1996 as a harmonization of various norms to 

evaluate security properties of IT products and systems 

(e.g.  ITSEC (Europe), TCSEC (US, “orange book”), CTCPEC 

(Canada) ) 

 

Basis for evaluation of security properties of IT products (or 

parts of) and systems (the Target of Evaluation TOE).  

 

The CC is useful as a guide for the development of products 

or systems with IT security functions and for the procurement 

of commercial products and systems with such functions.  
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General Model 

 Security is concerned with the 
protection of assets. Assets are 
entities that someone places 
value upon.  

 

 Threats give rise to risks to the 
assets, based on the likelihood 
of a threat being realized and its 
impact on the assets  

 

 (IT and non-IT) Counter-
measures are imposed to 
reduce the risks to assets. 



    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -  

  

Security Goals 

Protection of information from unauthorized disclosure, 
modification, or loss of use: 

 confidentiality, integrity, and availability 

 may also be applicable to aspects 

 

Focus on threats to that information arising from human 
activities, whether malicious or otherwise, but may be 
applicable to some non-human threats as well.  

 

 In addition, the CC may be applied in other areas of IT, but 
makes no claim of competence outside the strict domain of IT 
security.  
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Concept of Evaluation 
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Security Environment 

• Laws, organizational security policies, customs, expertise and 
knowledge relevant for TOE 

• Context in which the TOE is intended to be used.  

• Threats to security that are, or are held to be, present in the 
environment. 

 

A statement of applicable organizational security policies would 
identify relevant policies and rules.  

 

• Assumptions about the environment  
of the TOE are considered as axiomatic  
for the TOE evaluation. 
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Security Objectives 

 Identification of all of the security concerns  

 Aspects addressed directly by the TOE or by its environment.  

 Incorporating engineering judgment, security policy, economic 
factors and risk acceptance decisions. 

 

Analysis of the security environment results in security objectives 
that counter the identified threats and address identified 
organizational security policies and assumptions.  

 

 The security objectives for the environment would be implemented 
within the IT domain, and by non-technical or procedural means. 

 

Only the security objectives for the TOE and its IT environment are 
addressed by IT security requirements 
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Threats and Their Risks 

 

Threats to security of the assets relevant to the TOE.  

 in terms of a threat agent,  

 a presumed attack method,  

 any vulnerabilities that are the foundation for the 
attack, and  

 identification of the asset under attack. 

 
Risks to security. Assess each threat  

 by its likelihood developing into an actual attack,  

 its likelihood proving successful, and  

 the consequences of any damage that may result. 
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Security Requirements 

Refinement of security objectives into  

 Requirements for TOE and  

 Requirements for the environment 

 

Functional requirements 

 Functions in support for security of IT-system 

 E.g. identification & authentication, cryptography,… 

 

Assurance Requirements 

 Establishing confidence in security functions 

 Correctness of implementation 

 E.g. development, life cycle support, testing, … 
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Security Functions 

The statement of TOE security functions shall cover the IT 
security functions and shall specify how these functions satisfy 
the TOE security functional requirements. This statement shall 
include a bi-directional mapping between functions and 
requirements that clearly shows which functions satisfy which 
requirements and that all requirements are met. 

 

Starting point for design process. 
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Security Functional Components 

Class FAU: Security audit 

Class FCO: Communication  

Class FCS: Cryptographic support  

Class FDP: User data protection  

Class FIA: Identification and authentication  

Class FMT: Security management  

Class FPR: Privacy 

Class FPT: Protection of the TSF  

Class FRU: Resource utilisation  

Class FTA: TOE access  

Class FTP: Trusted path/channels  
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Security Functional Components  

Content and presentation of the functional requirements 

 

FDP: User Data Protection 

FDP_IFF: Information flow control functions 
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FDP – Information Flow Control 

FDP_IFC.1 Subset information flow control  

Hierarchical to:   No other components.  

Dependencies:   FDP_IFF.1 Simple security attributes  

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on 
[assignment: list of subjects, information, and operations that cause controlled information 
to flow to and from controlled subjects covered by the SFP].  

 

FDP_IFC.2 Complete information flow control  

Hierarchical to: FDP_IFC.1 Subset information flow control  

Dependencies: FDP_IFF.1 Simple security attributes  

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on 
[assignment: list of subjects and information] and all operations that cause that 
information to flow to and from subjects covered by the SFP.  

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the 
TOE to flow to and from any subject in the TOE are covered by an information flow 
control SFP.  
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Assurance Requirements 

 

Assurance Approach 
 

“The CC philosophy is to provide assurance based upon an 
evaluation (active investigation) of the IT product that is to be 
trusted. Evaluation has been the traditional means of providing 
assurance and is the basis for prior evaluation criteria 
documents. “ 

 

     

CC, Part 3, p.15 
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Assurance Requirements 

Concerning actions of the developer, evidence 
produced and actions of the evaluator.  

 Examples:  

 Rigor of the development process 

 Search for and analysis of the impact of 
potential security vulnerabilities. 

 

Degree of assurance  

 varies for a given set of functional 
requirements 

 typically expressed in terms of increasing 
levels of rigor built with assurance 
components. 

 

 Evaluation assurance levels (EALs) 
constructed using these components.  
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Assurance Components 

Class APE: Protection Profile evaluation  

Class ASE: Security Target evaluation  

Class ADV: Development  

Class AGD: Guidance documents   

Class ALC: Life-cycle support  

Class ATE: Tests  

Class AVA: Vulnerability assessment  

Class ACO: Composition  
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Evaluation Assurance Level  

EALs define levels of 
assurance (no guarantees) 

 
1. Functionally tested 

2. Structurally tested  

3. Methodically tested and checked  

4. Methodically designed, tested, and 
reviewed  

5. Semi-formally designed and tested  

6. Semi-formally verified design and 
tested  

7. Formally verified design and tested  

EAL5 – EAL7 require formal methods 
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Assurance Components  
Example: Development 

ADV_FSP.1 Basic functional specification 
 

EAL-1:   … The functional specification shall describe the purpose and method of use for  
 each SFR-enforcing and SFR-supporting TSFI.  

 

EAL-2:   … The functional specification shall completely represent the TSF.  

 

EAL-3:    + … The functional specification shall summarize the SFR-supporting and  
 SFR-non-interfering actions associated with each TSFI. 

 

EAL-4:   + … The functional specification shall describe all direct error messages that  
 may result from an invocation of each TSFI. 

 

EAL-5:  … The functional specification shall describe the TSFI using a semi-formal style.  

 

EAL-6:  … The developer shall provide a formal presentation of the functional  
 specification of the TSF. The formal presentation of the functional specification  
 of the TSF shall describe the TSFI using a formal style, supported by informal,  
 explanatory text where appropriate. 
 

(TSFI : Interface of the TOE Security Functionality (TSF),  SFR : Security Functional Requirement ) 

D
e
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Summary 

Norms and standards enforce the application of the state-of-
the-art when developing software which is safety-critical or 
security-critical. 

Wanton disregard of these norms may lead to personal 
liability. 

Norms typically place a lot of emphasis on process. 

Key question are traceability of decisions and design, and 
verification and validation. 

Different application fields have different norms: 

 IEC 61508 and its specializations, e.g. DO-178B. 

 IEC 15408 („Common Criteria“) 
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Further Reading 

Terminology for dependable systems: 

 J. C. Laprie et al.: Dependability:  Basic Concepts and 
Terminology. Springer-Verlag, Berlin Heidelberg New York 
(1992). 

 

Literature on safety-critical systems:  

 Storey, Neil: Safety-Critical Computer Systems. Addison 
Wesley Longman (1996). 

 Nancy Levenson: Safeware – System Safety and 
Computers. Addison-Wesley (1995). 

 

A readable introduction to IEC 61508: 

 David Smith and Kenneth Simpson: Functional Safety. 2nd 
Edition, Elsevier (2004). 
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Systeme hoher Sicherheit und Qualität 
Universität Bremen, WS 2017/2018 

Christoph Lüth, Dieter Hutter, Jan Peleska 

Lecture 3: 

The Software Development Process 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Software Development 
Models 
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Software Development Process 

A software development process is the structure imposed on 
the development of a software product. 

We classify processes according to models which specify 

  the artefacts of the development, such as  

 the software product itself, specifications, test 
documents, reports, reviews, proofs, plans etc; 

 the different stages of the development; 

 and the artefacts associated to each stage. 

Different models have a different focus: 

 Correctness, development time, flexibility. 

What does quality mean in this context? 

 What is the output? Just the software product, or more? 
(specifications, test runs, documents, proofs…) 
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Artefacts in the Development Process 
Planning: 
• Document plan 
• V&V plan 
• QM plan 
• Test plan 
• Project manual 

Specifications: 

• Requirements 
• System specification 
• Module specification 
• User documents 

Implementation: 

• Source code 
• Models 
• Documentation 

 
 

Possible formats: 
• Documents: 

• Word documents 
• Excel sheets 
• Wiki text 
• Database (Doors) 

• Models: 
• UML/SysML 

diagrams 
• Formal languages: Z, 

HOL, etc. 
• Matlab/Simulink or 

similar diagrams 
• Source code 

Verification & validation: 

• Code review protocols 
• Test cases, procedures, 

and test results 
• Proofs 
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Waterfall Model (Royce 1970) 

Classical top-down sequential workflow with strictly 
separated phases. 

 

 

 

 

 

 

 

Unpractical as actual workflow (no feedback between 
phases), but even the original paper did not really suggest 
this.  

 

 

 

 

 

 

Requirement 

Implementation 

Design 

Maintenance 

Verification 
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Spiral Model (Böhm, 1986) 

 Incremental development guided by risk factors 

Four phases: 

 Determine objectives 

 Analyse risks 

 Development and test 

 Review, plan next iteration 

See e.g.  

 Rational Unified Process (RUP) 

 

Drawbacks: 

 Risk identification is the key, and can be quite difficult 
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Model-Driven Development (MDD, MDE) 

Describe problems on abstract level using a modeling language 
(often a domain-specific language), and derive implementation by 
model transformation or run-time interpretation.  

Often used with UML (or its DSLs, eg. SysML) 

 

 

 

 Variety of tools: 

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus, 
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow* 

 EMF (Eclipse Modelling Framework) 

 Strictly sequential development 

Drawbacks: high initial investment, limited flexibility 

* Proprietary DSL – not related to UML 
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Agile Methods 

Prototype-driven development  

 E.g. Rapid Application Development 

 Development as a sequence of prototypes 

 Ever-changing safety and security requirements 

Agile programming 

 E.g. Scrum, extreme programming 

 Development guided by functional requirements  

 Process structured by rules of conduct for developers 

 Rules capture best practice 

 Less support for non-functional requirements 

Test-driven development 

 Tests as executable specifications: write tests first 

 Often used together with the other two 
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V-Model 

Evolution of the waterfall model: 

 Each phase is supported by a corresponding testing 
phase (verification & validation) 

 Feedback between next and previous phase 

Standard model for public projects in Germany 

 … but also a general term  for models of this „shape“ 
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Software Development Models 

Structure 

F
le

x
ib
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y
 

from S. Paulus: Sichere Software 

Spiral model 

Prototype-based 
developments 

Agile 

Methods 

Waterfall 

model 

V-model 

Model-driven 

developement 
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Development Models for 
Safety-Critical Systems 
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Development Models for Critical Systems 

Ensuring safety/security needs structure. 

 …but too much structure makes developments 
bureaucratic, which is in itself a safety risk. 

 Cautionary tale: Ariane-5 

Standards put emphasis on process. 

 Everything needs to be planned and documented. 

 Key issues: auditability, accountability, traceability. 

Best suited development models are variations of the V-
model or spiral model. 

A new trend? 

 V-Model for initial developments of a new product 

 Agile models (e.g. Scrum) for maintenance and product 
extensions 
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Auditability and Accountability 

Version control and configuration management is mandatory 
in safety-critical development (auditability). 

Keeping track of all artifacts contributing to a particular 
instance (build) of the system (configuration), and their 
versions. 

Repository keeps all artifacts in all versions. 

 Centralised: one repository vs. distributed (every developer 
keeps own repository) 

 General model: check out – modify – commit 

 Concurrency: enforced lock, or merge after commit. 

Well-known systems: 

 Commercial: ClearCase, Perforce, Bitkeeper… 

 Open Source: Subversion (centr.); Git, Mercurial (distr.) 
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Traceability 

The idea of being able to follow requirements (in particular, 
safety requirements) from requirement spec to the code (and 
possibly back). 

 
 

On the simplest level, an Excel sheet with (manual) links to 
the program. 

 
 

More sophisticated tools include DOORS. 

 Decompose requirements, hierarchical requirements 

 Two-way traceability: from code, test cases, test 
procedures, and test results back to requirements 

 E.g. DO-178B requires all code derives from requirements 
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Development Model in IEC 61508 

 IEC 61508 in principle allows any development model, but:  

 It requires safety-directed activities in each phase of the 
life cycle (safety life cycle). 

 Development is one part of the life cycle.  

The only development model mentioned is a V-model: 
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The Safety Life Cycle (IEC 61508) 

Planning 

Realisation 

Operation 

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems 
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Development Model in DO-178B 
 
DO-178B defines different processes in the SW life cycle: 

 Planning process 

 Development process, structured in turn into 

 Requirements process 

 Design process 

 Coding process 

 Integration process 

 Verification process 

 Quality assurance process 

 Configuration management process 

 Certification liaison process 

 There is no conspicuous diagram, but the Development Process has 
sub-processes suggesting the phases found in the V-model as well. 

 Implicit recommendation of the V-model. 
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Development Model for Hardware 

Specification 

System Model 

RTL Model 

Gate Level 

Layout 

Transistor Level 

Silicone 

always @(posedge clk) 

  if (rst) out <= 0; 

  else 

   if (! ctrl)   out <= s0 | in;  

   else        out <= s0 & in; 

Register-Transfer-Ebene: Verilog 

Gate Level 

Textual description 

of the electric 

connections 

(“Schaltplan”) 

During chip design: 

Description of the 

connections between 

different modules, such 

as logic gates and 

memory blocks 
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Development Model for Hardware 

Equivalence Check 

Test 

Property Check 
Specification 

System Model 

RTL Model 

Gate Level 

Layout 

Transistor Level 

Silicone 

Simulation 

Emulation 
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Basic Notions of Formal 
Software Development 
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Formal Software Development 

 In a formal development, properties are stated in a rigorous way 
with a precise mathematical semantics. 

 Formal specification requirements can be proven.  

Advantages: 

 Errors can be found early in the development process. 

 High degree of confidence into the system. 

 Recommend use of formal methods for high SILs/EALs. 

Drawbacks:  

 Requires a lot of effort and is thus expensive. 

 Requires qualified personnel (that would be you). 

 There are tools which can help us by 

 finding (simple) proofs for us (model checkers), or 

 checking our (more complicated) proofs (theorem provers). 
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Formal Semantics 

States and transitions between them: 

 

 

 

 

Operational semantics describes relation between states 
and transitions: 

 

 

 

Formal proofs;  e.g. proving 

 x := y + 4; z := y - 2   yields the same final state as  
 z := y - 2; x := y + 4 

x 5 

y 3 

z 8 

x 7 

y 3 

z 8 

x := y + 4 z := y - 2 
x 7 

y 3 

z 1 

s0 s1 s2 

s ` e  n 

s ` x := e    s[x / n] 

s0 ` y + 4  7 

s0 ` x := y + 4   s1 
hence: 

System run 
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Semantics of Programs and Requirements 

Set of all possible system runs 

 

 

 

 

 

 

Requirements related to safety and security: 

 Requirements on single states ? 

 Requirements on system runs ? 

 Requirements on sets of system runs ? 

 

x 5 

y 3 

z 8 

x 7 

y 3 

z 8 

x := y + 4 z := y - 2 
x 7 

y 3 

z 1 

s0 s1 s2 

… 

Alpern & Schneider (1985, 1987) 
Clarkson & Schneider (2008) 
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Some Notions 

 Let b, t be two traces then 

 b ≤ t  iff  ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′   i.e.  b is a finite prefix of t 

 

A property is a set of infinite execution traces  (like a program) 

 Trace t satisfies property P, written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃  

 

A hyperproperty is a set of sets of infinite execution traces (like a 

set of programs) 

 A system (set of traces) S satisfies H iff S  H 

 An observation Obs is a finite set of finite traces 

 Obs ≤  S (Obs is a prefix of S) iff Obs is an observation and  

   m  Obs.   t  S.  m ≤ t 
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Requirements on States: Safety Properties 

Safety property S:   „Nothing bad happens“ 

 i.e. the system will never enter a bad state 

 E.g. “Lights of crossing streets do not go 
green at the same time”  

A bad state: 

 can be immediately recognized; 

 cannot be sanitized by following states. 

S is a safety property iff 

  ∀𝑡.  𝑡 ∉ 𝑆 → ∃ 𝑡1, 𝑡2.  𝑡 =  𝑡1⋅ 𝑡2  → ∀ 𝑡3.  𝑡1⋅ 𝑡3 ∉ 𝑆  

𝑡1 𝑡2 
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Satisfying Safety Properties 

Safety properties are typically proven by induction 

 Base case:  initial states are good (= not bad) 

 Step case: each transition transforms a good state again 
in a good state 

 

Safety properties can be enforced by run-time monitors 

 Monitor checks following state in advance 
and allows execution only if it is a good state 
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Requirements on Runs: Liveness Properties 

Liveness property L:   

 „Good things will happen eventually“ 

 E.g. “my traffic light will go green 
eventually * ” 

 

A good thing is always possible and possibly infinite. 
 

L is a liveness property iff 

 ∀ 𝑡.  finite(𝑡)  → ∃ 𝑡1.   𝑡 ⋅ 𝑡1 ∈ 𝐿 
 

 i.e. all finite traces t can be extended to a trace in L. 

 
* Achtung:   “eventually” bedeutet  “irgendwann” oder “schlussendlich” 
         aber nicht “eventuell” ! 
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Satisfying Liveness Properties 

Liveness properties cannot (!) be enforced by run-time 
monitors. 

 

Liveness properties are typically proven by the help of 
well-founded orderings 

 Measure function m on states s 

 Each transition decreases m  
 t 2 L  if we reach a state with minimal m 

 

E.g. measure denotes the number of transitions for the light 
to go green 
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Requirements on Sets of Runs:  
Safety Hyperproperties 

 Safety hyperproperty:   „System never behaves bad“ 

 No bad thing happens in a finite set of finite traces 

 (the prefixes of) different system runs do not exclude each other 

 E.g. “the traffic light cycle is always the same” 

 

A bad system can be recognized by a bad observation (set of finite 
runs) 

 A bad observation cannot be sanitized regards less how we 
continue it or add additional system runs 

 E.g. two system runs having different traffic light cycles 

 

 S is a safety hyperproperty iff  
   T  S .  (  Obs ≤ T.  T‘.  Obs ≤ T‘  ) T‘  S ) 
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Requirements on Sets of Runs: 
Liveness Hyperproperties 

 Liveness hyperproperty S:   
„The system will eventually develop to a good system“ 

 Considering any finite part of a system behavior, the system 
eventually develops into a “good” system (by continuing 
appropriately the system runs or adding new system runs) 

 E.g. “Green light for pedestrians can always be omitted” 

 

 L is liveness hyperproperty  iff   T .  (  G.  T ≤ G  G  L ) 

 T is a finite set of finite traces (observation) 

 Each observation can be explained by a system G satisfying L 

 

 Example:  

 Average response time 

 Closure operations in information flow control 
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Landscape of (Hyper)Properties 

 Each (hyper-) property can be represented as a combination of  
safety and liveness (hyper-) properties. 

 

Safety  

Hyperproperties 
Liveness  

Hyperproperties 

Safety  

Properties 
Liveness 

Properties 

Invariants 
Guaranteed  

Service 

Average  

Response 
Non- 

Interference 

Closure 

 Predicates Observational 

determinism 
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Structuring the  
Formal Development 
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The Global Picture 

Informal Specification 

Safety/Security 

Requirements 

Composite Specification 

Abstract Specification 

Refined Specification 

Decomposition 

Refinement / 
Decomposition 

Safety/Security 

Requirements 

Satisfies 

Satisfies 

Satisfies 

Satisfies 

Test 
Program analysis 
Model checking 
Formal proof 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -  

  

Structuring the Development 

Horizontal structuring: 

 Modularization into components 

 Composition and Decomposition 

 Aggregation 
 

 Vertical structuring: 

 Abstraction and refinement 
from design specification to implementation 

 Declarative vs. imparative specification 

 Inheritance of properties  
 

 Views: 

 Addresses multiple aspects of a system 

 Behavioral model, performance model, structural model, 
analysis model(e.g. UML, SysML) 
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Horizontal Structuring (informal) 

Composition of components  

 Dependent on the individual layer of abstraction 

 E.g. modules, procedures, functions,… 

Example: 

 

 

 

 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 37 -  

  

Modular Structuring of Requirements 

System Requirements 

Component 1 

Requirement 

Component n 

Requirement 

Component 1 

Guarantees 

Component n 

Guarantees 

System Guarantees 

… 

… 

Decomposition of requirements 

Composition of guarantees 

Verification of requirements 
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Mutual Dependencies: Assume/Guarantee 

Safety requirement:  Queue does not loose any items. 

 

 

 

 

 

 

 

 

 

Components depend on each other! 

 Initialization ? 

Loop:  
  if s1 = a1 {  
   send(x, in);  s1 = not s1 } 

Loop:  
  if s1 != a1 and |q| < max  { 
       enq(q, in);  a1 = not a1; } 
  if s2 = a2 and |q| > 0  { 
       deq(q, out);  s2 != not s2 } 
 

Loop:  
  if s2 != a2 then { 
     read(y, out); a2 = not a2; 
     consume(y) } 

in out 

s1 s2 

a2 a1 

q 

Producer Queue Consumer 

Fixed capacity 
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Composition of Security Guarantees 

Only complete bicycles are allowed to pass the gate.   

Secure ! Secure ! 
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Composition of Security Guarantees 

Insecure ! 

Only complete bicycles are allowed to pass the gate.   
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Vertical Structuring - Refinement 

 Idea:   start at an abstract description and add        
details step by step 

 

     From abstract specification to an implementation 

 

What shall be refined? 

 Algorithm: algebraic refinement 

 Data:  data refinement 

 Process:  process refinement 

 Events:  action refinement 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 42 -  

  

Algebraic Refinement 

nil: list  cons(int, list):list 
first(list):int tail(list):int 
… 
 
first(nil) = -1 first(cons(x, y)) = x 
tail(nil) = nil tail(cons(x, y)) = y 

List 

empty: stack;        push(int, stack):stack 
pop(stack):stack 
 
pop(empty) = empty;     pop(push(x, y)) = y 

Stack 

li_empty = nil 
li_push(x, y) = cons(x, y) 
li_pop(x) = tail(x) 

Implementing  
stacks by lists 

li_pop(li_empty) = li_empty 
Li_pop(li_push(x, y)) = y 

To prove: 

Refinement preserves  
properties of stack by 
transitivity of the logic ! 

Refinement Satisfies 
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Even More Refinements 

Data refinement 

 Abstract datatype is „implemented“ in terms of the 
more concrete datatype 

 Simple example: define stack with lists 

Process refinement 

 Process is refined by excluding certain runs 

 Refinement as a reduction of underspecification by 
eliminating possible behaviours 

Action refinement 

 Action is refined by a sequence of actions 

 E.g.  a stub for a procedure is refined to an executable 
procedure 
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Conclusion & Summary 

Software development models: structure vs. flexibility 

Safety standards such as IEC 61508, DO-178B suggest 
development according to V-model. 

 Specification and implementation linked by verification 
and validation. 

 Variety of artefacts produced at each stage, which have to 
be subjected to external review. 

Safety / Security Requirements 

 Properties:  sets of traces 

 Hyperproperties:  sets of properties 

Structuring of the development: 

 Horizontal – e.g. composition 

 Vertical – refinement (e.g. algebraic, data, process…) 
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Christoph Lüth, Dieter Hutter, Jan Peleska 

Lecture 4: 

Hazard Analysis 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Hazard Analysis in the Development Cycle 
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The Purpose of Hazard Analysis 

System Safety 

Hazard 
Analysis 

Safety 
Requirements 

Validated 
Software 

Hazard Analysis  
systematically 
determines a list of 
safety requirements. 
 
The realization of the 
safety requirements by 
the software product 
must be verified. 
 
The product must be 
validated wrt. the 
safety requirements. 

Software Development  
(V-Model) 

V
a

li
d

a
ti

o
n

 

Verification 
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Hazard Analysis…  

provides the basic foundations for system safety. 

 is performed to identify hazards, hazard effects, and hazard 
causal factors. 

 is used to determine system risk, to determine the 
significance of hazards, and to establish design measures 
that will eliminate or mitigate the identified hazards. 

 is used to systematically examine systems, subsystems, 
facilities, components, software, personnel, and their 
interrelationships. 

 
Clifton Ericson: Hazard Analysis Techniques for System Safety. 

 Wiley-Interscience, 2005. 
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Form and Output of Hazard Analysis 

 

 

 

 

Because the process is informal, it can only be checked by 
reviewing. 

 

 It is therefore critical that 

 standard forms of analysis are used, 

 documents have a standardized form, and 

 all assumptions are documented. 

The output of hazard analysis is a list of safety 

requirements and documents detailing how these were 

derived. 
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Classification of Requirements 

Requirements to ensure: 

 Safety 

 Security 

 

Requirements for: 

 Hardware 

 Software 

 

Characteristics / classification of requirements: 

 according to the type of a property 
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Classification of Hazard Analysis 

Top-down methods start with an anticipated hazard and 
work backwards from the hazard event to potential causes 
for the hazard. 

 Good for finding causes for hazard; 

 good for avoiding the investigation of “non-relevant” 
errors;  

 bad for detection of missing hazards. 

 

Bottom-up methods consider “arbitrary” faults and resulting 
errors of the system, and investigate whether they may finally 
cause a hazard. 

 Properties are complementary to top-down properties; 

 Not easy with software where the structure emerges 
during development.  
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Hazard Analysis Methods 

Fault Tree Analysis (FTA) – top-down  

Event Tree Analysis (ETA) – bottom-up  

Failure Modes and Effects Analysis (FMEA) – bottom up  

Cause Consequence Analysis – bottom up  

HAZOP Analysis – bottom up  
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Fault Tree Analysis 
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Fault Tree Analysis (FTA) 

Top-down deductive failure analysis (of undesired states) 

 Define undesired top-level event (UE); 

 Analyze all causes affecting an event  to construct fault 
(sub)tree; 

 Evaluate fault tree. 
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FTA: Cut Sets 

A cut set is a set of events that cause the top UE to occur 
(also called a fault path). 

Cut sets reveal critical and weak links in a system. 

Extension- probabilistic fault trees: 

 Annotate events with probabilities; 

 Calculate probabilities for cut sets. 

 We do not pursue this further here, as it is mainly useful 
for hardware faults. 

Cut sets can be calculated top down or bottom up. 

 MOCUS algorithm (Ericson, 2005) 

 Corresponds to the DNF of underlying formula. 

 What happens to priority AND, conditioning and 
inhibiting events (modelled as implication?). 
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Fault-Tree Analysis: Process Overview 

1. Understand system design 

2. Define top undesired event 

3. Establish boundaries (scope) 

4. Construct fault tree 

5. Evaluate fault tree (cut sets, probabilities) 

6. Validate fault tree (check if correct and complete) 

7. Modify fault tree (if required) 

8. Document analysis 
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Fault Tree Analysis: First Simple Example 

Consider a simple fire protection system connected to 
smoke/heat detectors. 

Smoke detection  

failed. 

Heat detection  

failed. 

Fire was not 

detected. 

Pump failed. Nozzles blocked. 

Deluge water was 

not released 

Fire protection system fails: 

Fire, but no deluge water 

 

E1 

E2 E3 

E4 E5 E6 E7 
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Fault Tree Analysis: Another Example 
 

Battery 

Fuse 

Float switch  

Lamp 

• A lamp warning about low 
level of brake fluid. 

• Top undesired event: 
warning lamp off despite 
low level of fluid.  

Source: N. Storey, Safety-Critical Computer Systems. 

E1 

P1 

E2 

S1 E3 E4 

P3 P4 

P2 

S2 S3 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -  

Fault Tree Analysis: Final Example 
A laser is operated from a control computer 
system. 
 The laser is connected via a relay and a 

power driver, and protected by a cover 
switch. 

 Top Undesired Event: 
Laser activated without explicit command 
from computer system.  

Source: N. Storey, Safety-Critical Computer Systems. 

E1 

S1 

E2 

E3 

E4 

P2 

E6 

E7 

E8 

P3 

P4 

P5 

P7 

P6 

P1 

S2 
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FTA - Conclusions 

Advantages: 

 Structured, rigorous, methodical approach; 

 Can be effectively performed and computerized, 
commercial tool support; 

 Easy to learn, do, and follow; 

 Combines hardware, software, environment, human 
interaction. 

Disadvantages: 

 Can easily become time-consuming and a goal in itself 
rather than a tool if not careful; 

 Modelling sequential timing and multiple phases is 
difficult. 
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Event Tree Analysis 
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Event Tree Analysis (ETA) 

Bottom-up method 

Applies to a chain of cooperating activities 

 Investigates the effect of activities failing while the chain is 
processed 

Depicted as binary tree; each node has two leaving edges: 

 Activity operates correctly 

 Activity fails 

Useful for calculating risks by assigning probabilities to edges 

Complexity: 𝒪(2𝑛)  
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Event Tree Analysis - Overview 

Input: 
 

• Design knowledge 
• Accident histories 

ETA Process: 
 

1. Identify Accident Scenarios 
2. Identify IEs (Initiating Events) 
3. Identify pivotal events 
4. Construct event  tree diagrams 
5. Evaluate risk paths 
6. Document process 

Output: 
 

• Mishap outcomes 
• Outcome risks 
• Causal sources 
• Safety Requirements 
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Event Tree Analysis - Example 

Cooling System for a Nuclear Power Plant 

    IE             Pivotal Events                                                                                            Outcome  
    Electricity       Emergency       Fission Product   Containment          Fission Release 
                                             Core Cooling    Removal 

Pipe 
Breaks 

Fails 

Available 

Available 

Available 
Available 

Fails 

Available 

Fails 
Fails 

Fails 
Available 

Fails 

Very Small 

Small 

Small 

Medium 

Large 

Very Large 

Very Large 
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Event Tree Analysis - Another Example 

Fire Detection/Suppression System for Office Building 

Fire Starts 
P= 0.01 

YES (P= 0.9) 

NO (P= 0.1) 

YES (P= 0.7) 

NO  (P= 0.3) 

YES (P= 0.8) 

NO  (P= 0.2) 

YES (P= 0.8) 

NO  (P= 0.2) 

Limited damage 

Extensive damage, 
People escape 

Limited damage, 
Wet people 

Death/injury, 
Extensive damage 

Death/injury, 
Extensive damage 

0.00504 

0.00126 

0.00216 

0.00054 

0.001 

IE                   Pivotal Events                                            Outcomes                     Prob. 
                      Fire Detection      Fire Alarms        Fire Sprinkler 
                      Working                Working              Working 
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ETA - Conclusions 

Advantages: 

 Structured, rigorous and metodical; 

 Can be effectively computerized, tool support is available; 

 Easy to learn, do, and follow; 

 Combines hardware, software, environment and human 
interaction; 

 Can be effectively performed on varying levels of system 
detail. 

Disadvantages: 

 An ETA can only have one IE; 

 Can overlook subtle system dependencies; 

 Partial success/failure not distinguishable. 
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Failure Mode and  
Effects Analysis 
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Failure Modes and Effects Analysis (FMEA) 

Analytic approach to review potential failure modes and their 
causes. 

Three approaches: functional, structural or hybrid. 

Typically performed on hardware, but useful for software as 
well.  

 It analyzes  

 the failure mode, 

 the failure cause, 

 the failure effect, 

 its criticality, 

 and the recommended action, 

  and presents them in a standardized table. 
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Software Failure Modes 

Guide word Deviation Example Interpretation 

omission The system produces no output 
when it should. Applies to a 
single instance of a service, but 
may be repeated. 

No output in response to change 
in input; periodic output missing. 

commission The system produces an output, 
when a perfect system would 
have produced none. One must 
consider cases with both, correct 
and incorrect data. 

Same value sent twice in series; 
spurious output, when inputs 
have not changed. 

early Output produced before it 
should be. 

Really only applies to periodic 
events; Output before input is 
meaningless in most systems. 

late Output produced after it should 
be. 

Excessive latency (end-to-end 
delay) through the system; late 
periodic events. 

value 
(detectable) 

Value output is incorrect, but in a 
way, which can be detected by 
the recipient. 

Out of range. 

value 
(undetectable) 

Value output is incorrect, but in a 
way, which cannot be detected. 

Correct in range; but wrong 
value 
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Criticality Classes 

  Risk as given by the risk mishap index (MIL-STD-882): 

 

 

 

 

 

 

 

 

Names vary, principle remains: 

 Catastrophic – single failure 

 Critical – two failures 

 Marginal – multiple failures/may contribute 

 

 

 

 

 

 

 

 

 

Severity Probability 

1. Catastrophic A. Frequent 

2. Critical B. Probable 

3. Marginal  C. Occasional 

4. Negligible D. Remote 

E. Improbable 
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Source:MIL-STD-822E, www.system-safety.org/Documents/MIL-STD-882E.pdf 
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FMEA Example: Airbag Control 

Consider an airbag control system, consisting of 

 the airbag with gas cartridge; 

 a control unit with  

 Output: Release airbag 

 Input: Accelerometer, impact sensors, seat sensors, … 

FMEA: 

 Structural: what can be broken? 

 Mostly hardware faults. 

 Functional: how can it fail to perform its intended 
function?  

 Also applicable for software. 
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Airbag Control (Structural FMEA) 

ID  Mode Cause Effect Crit. Appraisal 

1 Omission Gas cartridge 
empty 

Airbag not released in 
emergency situation 

C1 SR-56.3 

2 Omission Cover does not 
detach 

Airbag not released fully in 
emergency situation 

C1 SR-57.9 

3 Omission Trigger signal 
not present in 
emergency. 

Airbag not released in 
emergency situation 
 

C1 Ref. To SW-
FMEA 

4 Comm. Trigger signal 
present in non-
emergency 

Airbag released during 
normal vehicle operation 

C2 Ref. To SW-
FMEA 
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Airbag Control (Functional FMEA) 
ID Mode Cause Effect Crit. Appraisal 

5-1 Omission Software 
terminates 
abnormally 

Airbag not 
released in 
emergency. 

C1 See 5-1.1, 5-1.2. 

5-1.1 Omission - Division by 0 See 5-1 C1 SR-47.3 
Static Analysis 

5-1.2 Omission - Memory fault See 5-1 C1 SR-47.4 
Static Analysis 

5-2 Omission Software does not 
terminate 

Airbag not 
released in 
emergency. 

C1 SR-47.5 
Termination Proof 

5-3 Late Computation takes 
too long. 

Airbag not 
released in 
emergency. 

C1 SR-47.6 
WCET Analysis 

5-4 Comm. Spurious signal 
generated 

Airbag released 
in non-
emergency 

C2 SR-49.3 
 

5-5 Value (u) Software computes 
wrong result 

Either of 5-1 or 
5-4. 

C1 SR-12.1 
Formal Verification 
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FMEA - Conclusions 

Advantages: 

 Easily understood and performed; 

 Inexpensive to perform, yet meaningful results; 

 Provides rigour to focus analysis; 

 Tool support available. 

Disadvantages: 

 Focuses on single failure modes rather than combination; 

 Not designed to identify hazard outside of failure modes; 

 Limited examination of human error, external influences 
or interfaces. 
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Conclusions 
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The Seven Principles of Hazard Analysis 
 

Ericson (2005) 

1) Hazards, mishaps and risk are not chance events. 

2) Hazards are created during design. 

3) Hazards are comprised of three components. 

4) Hazards and mishap risk is the core safety process. 

5) Hazard analysis is the key element of hazard and mishap 
risk management. 

6) Hazard management involves seven key hazard analysis 
types. 

7) Hazard analysis primarily encompasses seven hazard 
analysis techniques.  
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Summary 

Hazard Analysis is the start of the formal development. 

 Its most important output are safety requirements. 

Adherence to safety requirements has to be verified during 
development, and validated at the end. 

We distinguish different types of analysis: 

 Top-Down analysis (Fault Trees) 

 Bottom-up (FMEAs, Event Trees) 

 It makes sense to combine different types of analyses, as 
their results are complementary. 
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Conclusions 

Hazard Analysis is a creative process, as it takes an informal 
input („system safety“) and produces a formal output (safety 
requirements). Its results cannot be formally proven, merely 
checked and reviewed. 
 

Review plays a key role. Therefore, 

 documents must be readable, understandable, auditable; 

 analysis must be in well-defined and well-documented 
format; 

 all assumptions must be well documented. 
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Systeme hoher Sicherheit und Qualität 
Universität Bremen, WS 2017/2018 

Christoph Lüth, Dieter Hutter, Jan Peleska 

Lecture 05: 
 
High-Level Design with SysML 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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High-Level Design in the Development Cycle 
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What is a model? 

Different notions of models 
in physics, philosophy or  
computer science 

 

Here: an abstraction of a system / a software / a development 

 

Purposes of models: 

 Understanding, communicating and capturing the design 

 Organizing decisions / information about a system 

 Analyzing design decisions early in the development process 

 Analyzing requirements 

 

 

 

A model is a representation in a certain medium of 

something in the same or another medium.  

The model captures the important aspects of the 

thing being modelled from a certain point of view 

and simplifies or omits the rest. 

             Rumbaugh, Jacobson, 

Booch: UML Reference Manual. 
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An Introduction to SysML 
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The Unified Modeling Language (UML) 

Grew out of a wealth of modelling languages in the 1990s 
(James Rumbaugh, Grady Booch and Ivar Jacobson at Rational) 

Adopted by the Object Management Group (OMG) in 1997, and 
approved as ISO standard in 2005. 

UML 2 consists of  

 the superstructure to define diagrams, 

 a core meta-model, 

 the object constraint language (OCL), 

 an interchange format  

UML 2 is not a fixed language, it can be extended and customized 
using profiles. 

 SysML is a modeling language for systems engineering 

 Standardized in 2007 by the OMG (May 2017 at Ver 1.5) 

 Standard available at: http://www.omg.org/spec/SysML/About-SysML/ 
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What for SysML? 

Serving as a standardized notation allowing all stakeholders 
to understand and communicate the salient aspects of the 
system under development 

 the requirements, 

 the structure (static aspects), and 

 the behavior (dynamic aspects) 

 

Certain aspects (diagrams) of the SysML are formal, others 
are informal 

  Important distinction when developing critical systems 

 

All diagrams are views of one underlying model 
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Different Views in SysML 

Structure: 

 How is the system constructed?  
How does it decompose? 

Behaviour: 

 What can we observe?   Does it have a state? 

Requirements: 

 What are the requirements?   Are they met? 

Parametrization: 

 What are the constraints (physical/design)? 

… and possibly more. 
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Example: A Cleaning Robot (HooverBot) 

Structure: 

 Has an engine, wheels (or tracks?), a vacuum cleaner, a 
control computer, a battery… 

Behaviour: 

 General: starts, then cleans until battery runs out, returns 
to charging station 

 Cleaning: moves in irregular pattern, avoids obstacle 

Requirements: 

 Must cover floor when possible, battery must last at least 
six hours, should never run out of battery, … 

Constraints: 

 Can only clean up to 5 g, can not drive faster than 1m/s, 
laws concerning movement and trajectory, … 
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SysML Diagrams 
 

Structural Diagrams 

Package Diagram 

Internal Block Diagram Parametric Diagram 

Block Definition Diagram 

Behavioural Diagrams 

Use Case Diagram * 

State Machine Diagram Sequence Diagram 

Activity Diagram 

Requirement Diagram * 

* Not considered further. 
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Structural Diagrams in SysML 
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Block Definition Diagram 

Blocks are the basic building elements of a model 

 Models are instances of blocks 

 

Block definition diagrams model blocks and their relations: 

 Inheritance 

 Association 

 

Blocks can also model interface definitions. 

 

Corresponds to class diagrams in the UML. 
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BDD – Summary of Notation 

Quelle: Holt, Perry. SysML for Systems Engineering. 
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Example 1: Vehicles 

A vehicle can be a car, or a 
bicycle. 

A car has an engine 

A car has 4 wheels,  
a bicycle has 2 wheels 

Engines and wheels have 
operations and values 

 

 In SysML, engine and wheel 
are parts of car and bicycle. 
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Example 2: HooverBots 

The hoover bots have a control computer, and a vacuum 
cleaner (v/c). 

 HooverBot 100 has one v/c, Hoover 1000 has two. 

 Two ways to model this (i.e. two views): 
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Internal Block Diagrams 

 Internal block diagrams decribe instances of blocks 

 

Here, instances for HooverBots 

 

On this level, we can describe connections between ports 
(flow specifications) 

 Flow specifications have directions. 
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Example: HooverBot 100 and 1000  
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Package Diagrams 

Packages are used to group 
diagrams, much like 
directories in the file system. 

 

Not considered much in the 
following 
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Parametric Diagrams 

Parametric diagrams describe constraints between 
properties and their parameters. 

 It can be seen as a restricted form of an internal block 
diagram, or as equational modeling as in Simulink. 

 

fuelflow : FuelFlow 
 
 
{ flowrate = press / (4*injectorDemand) } 

ice.fi.FuelDemand:Real 

ice.fi.FuelFlowRate:Real ice.fi.fuel.FuelPressure::Real 

injectorDemand:Real 

flowrate:Real press:Real 

Relation of fuel flowrate to FuelDemand and FuelPressure value properties  (Source: OMG SysML v1.2)  
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SysML Diagrams Overview 
 

Structural Diagrams 

Package Diagram 

Internal Block Diagram Parametric Diagram 

Block Definition Diagram 

Behavioral Diagrams 

Use Case Diagram * 

State Machine Diagram Sequence Diagram 

Activity Diagram 

Requirement Diagram * 

* Not considered further. 
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Detailed Specification in the Development Cycle 
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Why detailed Specification? 

Detailed specification is the specification of single modules 
making up our system.  

This is the „last“ level both in abstraction and detail before we 
get down to the code – in fact, some specifications at this 
level can be automatically translated into code. 

Why not write code straight away?  

 We want to stay platform-independent. 

 We may not want to get distracted by details of our target 
platform.  

 At this level, we have a better chance of finding errors or 
proving safety properties. 
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Levels of Detailed Specification 

We can specify the basic modules  

By their (external) behavior 

 Operations defined by their pre/post-conditions and 
effects (e.g. in OCL) 

 Modeling the system‘s internal states by a state machine 
(i.e. states and guarded transitions) 

By their (internal) structure 

 Modeling the control flow by flow charts  
(aka. activity charts) 

 By action languages (platform-independent programming 
languages) for UML 
(but these are not standard for SysML) 
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State diagrams are a particular form of (hierarchical) FSMs: 

 

 

 

 

 

 

 

Example: a simple coffee machine. 

We will explore FSMs in detail later. 

 In hierarchical state machines, a state may contain another 
FSM (with initial/final states). 

State Diagrams in SysML are taken unchanged from UML. 

State Diagrams: Basics 

Definition: Finite State Machine (FSM) 

A FSM is given by ℳ = Σ, 𝐼, →  where 

• Σ is a finite set of states,  

• 𝐼 ⊆ Σ is a set of initial states, and 
• →⊆ Σ × Σ   is a transition relation, s.t. → is left-total: 

∀𝑠 ∈ Σ. ∃𝑠′ ∈ Σ. 𝑠 → 𝑠′ 
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Basic Elements of State Diagrams 

States 

 Initial/Final 

Transitions 

Events (Triggers) 

Guards  

Actions (Effects) 
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What is an Event? 

„The specification of a noteworthy occurence which has a 
location in time and space.“                           (UML Reference Manual) 

 

SysML knows: 

 Signal events            event name/ 

 Call events                operation name/ 

 Time events              after(t)/ 

 Change event            when(e)/ 

 Entry events              Entry/ 

 Exit events                 Exit/ 
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SMDs – Summary of Notation  

Quelle: Holt, Perry. SysML for Systems Engineering. 
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State Diagram Elements (SysML Ref. §13.2) 

Choice pseudo state 

Composite state 

Entry point 

Exit point 

Final state 

History pseudo states 

 Initial pseudo state 

 Junction pseudo state 

Receive signal action 

Send signal action 

Action 

Region 

Simple state 

State list 

State machine 

Terminate node 

Submachine state 
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Activity Charts: Foundations 

The activity charts of SysML (UML) are a variation of good old-
fashioned flow charts. 

 Those were standardized as DIN 66001 
 (ISO 5807). 
 

Flow charts can describe  
programs (right example)  
or non-computational 
activities (left example)  
 

SysML activity charts 
are extensions of 
UML activity charts. 

Quelle: Erik Streb, via Wikipedia 

Quelle: Wikipedia 
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Basics of Activity Diagrams 

Activities model the work flow of low-level behaviours:  
“An activity is  the specification of parameterized behaviour as 
the coordinated sequencing of subordinate unites whose 
individual elements are actions.”                    (UML Ref. §12.3.4) 

 

Diagram comprises of actions, decisions, joining and forking 
activities, start/end of work flow. 

 

Control flow allows to disable and enable (sub-) activities. 

 

An activity execution results in the execution of a set of 
actions in some specific order. 
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What is an Action? 

A terminating basic behaviour, such as 

 Changing variable values                  [UML Ref. §11.3.6] 

 Calling operations                              [UML Ref. §11.3.10] 

 Calling activities                                  [UML Ref. §12.3.4] 

 Creating and destroying objects, links, associations 

 Sending or receiving signals 

 Raising exceptions . 

Actions are part of a (potentially larger, more complex) behaviour. 

 Inputs to actions are provided by ordered sets of pins: 

 A pin is a typed element, associated with a multiplicity 

 Input pins transport typed elements to an action 

 Actions deliver outputs consisting of typed elements on output 
pins 
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Elements of Activity Diagrams 

Paths (arrows): 

 Control flow 

 Object flow 

 Probability and rates 

 

Activities in BDDs 

Partitions 

 Interruptible Regions 

Structured activities 

 

Nodes:  

 Action nodes 

 Activities 

 Decision nodes 

 Final nodes 

 Fork nodes 

 Initial nodes 

 Local pre/post-conditions 

 Merge nodes 

 Object nodes 

 Probabilities and rates 
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Activity Diagrams – Summary of Notation 
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Behavioural Semantics 

Semantics is based on token flow – similar to Petri Nets, see 
[UML Ref. pp. 326] 

 A token can be an input signal, timing condition, 
interrupt, object node (representing data), control 
command (call, enable) communicated via input pin, 
… 

 An executable node (action or sub-activity) in the 
activity diagram begins its execution, when the 
required tokens are available on their input edges. 

 On termination, each executable node places tokens 
on certain output edges, and this may activate the 
next executable nodes linked to these edges. 
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Activity Diagrams – Links With BDDs 

Block definition diagrams may show 

 Blocks representing activities 

 

 

 

 

 

 One activity may be composed of other activities – 
composition indicates parallel execution threads of the 
activities at the “part end”. 

 One activity may contain several blocks representing 
object nodes (which represent data flowing through the 
activity diagram). 
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Sequence Diagrams 

Sequence Diagrams describe the flow of messages between 
actors. 

Extremely useful, but also extremely limited. 

 

 

 

 

 

 

 

 

 

We may consider concurrency further later on. 

 

 

 

 

 

 

 

 

Quelle:  
IBM developerWorks 
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Summary 
 
High-level modeling describes the structure of the system at 

an abstract level 

SysML is a standardized modeling language for systems 
engineering, based on the UML 

 We disregard certain aspects of SysML in this lecture 

SysML  structural diagrams describe this structure. 

 Block definition diagrams 

 Internal block definition diagrams 

 Package diagrams 

We may also need to describe formal constraints, or 
invariants. 
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Summary (cont.) 

Detailed specification means we specify the internal structure 
of the modules in our systems. 
 

Detailed specification in SysML: 

 State diagrams are hierarchical finite state machines 
which specify states and transitions. 

 Activity charts model the control flow of the program. 
 

More behavioral diagrams in SysML: 

 Sequence charts model the exchange of messages 
between actors. 

 Use case diagrams describe particular uses of the system. 
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Formal Modeling with OCL 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Formal Modeling in the Development Cycle 
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What is OCL? 

OCL is the Object Constraint Language. 

 

What is OCL? 

 „A formal language used to describe expressions on UML 
models. These expressions typically specify invariant 
conditions that must hold for the system being modeled or 
queries over objects described in a model.”    (OCL standard, §7) 

 

Why OCL?  

 „A UML diagram, such as a class diagram, is typically not 
refined enough to provide all the relevant aspects of a 
specification. There is, among other things, a need to 
describe additional constraints about the objects in the 
model. “                                                            (OCL standard, §7.1) 
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Characteristics of the OCL 

OCL is a pure specification language 

 OCL expressions do not have side effects 

 

OCL is not a programming language. 

 Expressions are not executable (though some may be) 

 

OCL is typed language 

 Each expression has  type; all expressions must be well-
typed 

 Types are classes, defined by class diagrams 
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as a query language 

to specify invariants on classes and types in the class  

to specify type invariant for Stereotypes 

to describe pre- and post conditions on Operations and 
Methods 

to describe guards 

to specify target (sets) for messages and actions 

to specify constraints on operations 

to specify derivation rules for attributes for any expression 
over a UML model.  

                                                                                                      (OCL standard, §7.1.1) 

 

 

Usage of the OCL 
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OCL by Example 
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Why is SysML not enough? 

What about requirements like: 

The minimal age of car owners 

The maximal number of cars (of a specific color) owned 

The maximal number of owners of a car 

 

Person 

name: string 
age: Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

Bdd VehicleOwners 
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OCL Basics  

The language is typed: each expression has a type. 

Multiple-valued logic (true, false, undefined). 

 

Expressions always live in a context: 

 Invariants on classes, interfaces, types. 

 

 

 

 Pre/postconditions on operations or methods 

context Class 

  inv Name: expr 

context Type :: op(a1: Type, …, an: Type) : Type 

  pre Name: expr 

  post Name: expr 
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OCL Types 

Basic types: 

 

 Boolean, Integer, Real, String 

 OclAny, OclType, OclVoid, OclInvalid 

 

Collection types: 

 

 Sequences, Bag, OrderedSet, Set 

 

Model types 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -  

Invariants of Classes 

“A vehicle owner must be at least 18 years old” 

 

  

Person 

name: string 
age: Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

context   Vehicle 

inv:  self.owner.age >= 18 

 

Bdd VehicleOwners 
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Basic types and operations 

 Integer (ℤ)                                                     OCL-Std. §11.5.2 
 

Real (ℝ)                                                         OCL-Std. §11.5.1 

 Integer is a subclass of Real 

 round, floor from Real to Integer 
 

String (Zeichenketten)                                OCL-Std. §11.5.3 

 substring, toReal, toInteger, characters, etc. 
 

Boolean (Wahrheitswerte)                         OCL-Std. §11.5.4              

 or, xor, and, implies 

 Relationen auf Real, Integer, String 
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Collection Types 

Sequence, Bag, OrderedSet, Set                  OCL-Std. §11.6, §11.7 

 

Operations on all collections:  

 size, includes, count, isEmpty, flatten 

 Collections are always „flattened“ 

Set 

 union, intersection 

Bag 

 union, intersection, count 

Sequence 

 first, last, reverse, prepend, append 
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Collections 

“Nobody has more than 3 vehicles” 

context  Person 

Inv:  self.fleet->size <= 3 

Person 

name: string 
age: Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

Bdd VehicleOwners 
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Collection Types: Quantification 

We can quantify over collections:                     OCL-Std. §11.9.1 

 

Universal quantification : 

 coll->forAll(elem: Type| expr[elem]) : Boolean  

Existential quantification: 
 coll->exists(elem: Type| expr[elem]) : Boolean 

Comprehension operator: 
         coll->select(elem: Type| expr[elem]) : Coll[Type] 

 

where expr is an expression of type Boolean. 
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Universal Quantification 

“All vehicles of a person are black” 

 context  Person 

inv:  self.fleet->forAll(v | v.color = #black) 

“No person has more than three black vehicles” 

 context  Person 

inv:  self.fleet->select(v | v.color = #black)->size <= 3 

Person 

name: string 
age: Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

Bdd VehicleOwners 
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Universal Quantification 

“A person younger than 18 owns no cars” 

 
context  Person 

inv:   self.age < 18 implies  

  self.fleet -> forAll(v | not v.ocllsKindOf(Car)) 

Person 

name: string 
age: Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

Bdd VehicleOwners 
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Existential Quantification 

  

 
context   Car 

inv:   Car.allInstances()->exists(c | c.color=#red) 

“There is a red car” 

Person 

name: string 
age: Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

Bdd VehicleOwners 
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Pre/Post Conditions 

“If setAge(a) is called with a non-negative argument a, then a 
becomes the new value of the attribute age.” 

 
context   Person::setAge(a:int) 

pre:     a >= 0 

post:     self.age = a 

Person 

name: string 
age: Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

Bdd VehicleOwners 
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Pre/Post Conditions 

“Calling birthday() increments the age of a person by 1.” 

context   Person::birthday() 

post:     self.age = self.age@pre + 1 

Person 

name: string 
age: Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

Bdd VehicleOwners 
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Modelling Dynamic Aspects 

Block diagrams model the static structure of the system: 
classes, attributes and the type of the operations. The pos-
sible system states are all instances of these model types.  

 

 Invariants and pre/post conditions can be used to model the 
dynamic aspects of the system. In particular, they model all 
possible state transitions between the system states. 

 

An operation can become active (there is a state transition 
emanting from it) if the invariant holds, and  the precondition 
holds. If there are no active state transitions, the system is 
deadlocked. 

 Deadlocks must be avoided.  
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Example: The Traffic Light 
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pedLight: False 
carLight: True 
request: False 
counter: 0 

Example: The Traffic Light 
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pedLight: False 
carLight: True 
request: True 
counter: 1 

Example: The Traffic Light 
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pedLight: False 
carLight: False 
request: True 
counter: 1 

Example: The Traffic Light 
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Deadlock 

pedLight: True 
carLight: False 
request: False 
counter: 1 

Example: The Traffic Light 
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OCL Details 
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Model types 

Model types are given by 

 Attributes,  

 Operations, and 

 Associations of the model 

 

Navigation along the association 

 If cardinality is 1, type is of target type T 

 Otherwise, it is Set(T) 

 

User-defined operations in expressions have to be  stateless 
(stereotype <<query>>) 
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Collection Types: Iterators 

Quantifiers are a special case of iterators. 

 Think of all/any in Haskell defined via foldr 

 

All iterators defined via iterate                        OCL-Std. §7.6.6 

      coll->iterate(elem: Type, acc: T = initial_expr  

                   | expr[elem, acc]) : Coll[T] 

where expr of type T denotes a function on elem and acc 
 

c.iterate(e: T, acc: T = v) = { 

  acc= v; 

  for (Enumeration e= c.elements(); e.hasMoreElements();) { 

  acc= expr[e, acc]; 

        e= e.nextElement(); 

} 

  return acc; 

} 
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Collection Types: Iterators 

“A person owns at most 3 black vehicles” 

 

Person 

name: string 
age: Integer 

<<query>> 
getName(): string 
birthday() 
setAge(newAge: Integer):Integer 

Vehicle 

Color: Color 

Car Bike 

<<enumeration>> 
Color 

#black 
#white 
#red 

owner 
 

1 

fleet 
 

0 .. * 

context   Person 

inv:    self.fleet->iterate(v; acc:Integer = 0  

                                 | if (v.color = #black) 

                                    then acc + 1 else acc  

         endif ) <= 3 
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Undefinedness in OCL  

Each domain of a basic type has two values denoting 
“undefinedness”:                                                 OCL-Std §A.2.1.1 

 

 null or 𝜀 stands for “undefined”, e.g. if an attribute value 
has not been set or is not defined (Type OclVoid) 

 invalid or ⊥ stands for “invalid” and signals an error in the 
evaluation of an expression (e.g. division by 0, or 
application of a partial function) (Type OclInvalid) 

 As subtypes: OclInvalid ⊆ OclVoid ⊆ all other types 

 

Undefinedness is propagated. 

 In other words, all operations are strict: „an invalid or null 
operand causes an invalid result“. 
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The OCL Logic 

Exceptions to strictness: 

 Boolean operators (see below) 

 Case distinction 

 Test on definedness: oclIsUndefined with 

𝑜𝑐𝑙𝐼𝑠𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑒 =   
𝑡𝑟𝑢𝑒        𝑖𝑓 𝑒 = ⊥ ∨ 𝑒 = 𝑛𝑢𝑙𝑙
𝑓𝑎𝑙𝑠𝑒      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

  

 

The domain type for Boolean also contains null and invalid. 

 The resulting logic is four-valued. 

 It is a Kleene-Logic:     𝐴 → 𝐵 ≡  ¬ 𝐴 ∨ 𝐵  

 Boolean operators (and, or, implies, xor) are non-
strict on both sides. 

 But equality (like all other relations) is strict: ⊥ = ⊥ is ⊥ 
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OCL Boolean Operators: Truth Table 

 Legend: ⊥ is invalid, 𝜀 is null.                                           OCL-Std §A .2.1.3, Table A.2 
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OCL Style Guide 

Avoid complex navigation („Loose coupling“). 

 Otherwise changes in models break OCL constraints. 

 

Always choose adequate context. 

 

„Use of allInstances()is discouraged“ 

 

Split up invariants if possible. 

 

Consider defining auxiliary operations if expressions 
become too complex. 
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Summary 

OCL is a typed, state-free specification language which allows 
us to denote constraints on models. 

We can define or models much more precise. 

 Ideally: no more natural language needed. 

OCL is part of the more „academic“ side of UML/SysML.  

 Tool support is not great, some tools ignore OCL, most 
tools at least type-check OCL, hardly any do proofs. 

However, in critical system development, the kind of 
specification that OCL allows is essential. 
 

Try yourself:  USE – Tool  http://useocl.sourceforge.net 
Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-Based Specification 
Environment for Validating UML and OCL. Science of Computer Programming, 69:27-
34, 2007. 
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Universität Bremen, WS 2017/2018 

Christoph Lüth, Dieter Hutter, Jan Peleska 

Lecture 07: 
 
Testing 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Testing in the Development Cycle 
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What is Testing? 

 In our sense, testing is selected, controlled program execution 

 The aim of testing is to detect bugs, such as 

 derivation of occurring characteristics of quality properties 
compared to the specified ones 

 inconsistency between specification and implementation 

 structural features of a program that cause a faulty behavior of 
a program 

 

Testing is the process of executing a program or system with the 
intent of finding errors. 

G.J. Myers, 1979 

Program testing can be used to show the presence of bugs, but 
never to show their absence. 

E.W. Dijkstra, 1972 
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The Testing Process 

Test cases, test plan, etc. 

System-under-test (s.u.t.)  (cf. TOE in CC) 

Warning -- test literature is quite expansive 

 

Testing is any activity aimed at evaluating an attribute or 
capability of a program or system and determining that it meets 
its required results. 

Hetzel, 1983 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -  

Test Levels 

Component and unit tests 

  test at the interface level of single components (modules, 
classes) 
 

Integration test 

 testing interfaces of components fit together 
 

System test 

 functional and non-functional test of the complete 
system from the user’s perspective 
 

Acceptance test 

 testing if system implements contract details 
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Test Methods 

Static vs. dynamic 

 With static tests, the code is analyzed without being run. 
We cover these methods as static program analysis later 

 With dynamic tests, we run the code under controlled 
conditions, and check the results against a given 
specification 

Central question: where do the test cases come from? 

 Black-box: the inner structure of the s.u.t. is opaque, test 
cases are derived from specification only. 

 Grey-box: some inner structure of the s.u.t. is known, e.g. 
module architecture. 

 White-box: the inner structure of the s.u.t. is known, and 
tests cases are derived from the source code. 
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Black-Box Tests 

Limit analysis: 

 If the specification limits input parameters, then values 
close to these limits should be chosen 

 Idea is that programs behave continuously, and errors 
occur at these limits 
 

Equivalence classes: 

 If the input parameter values can be decomposed into 
classes which are treated equivalently, test cases have to 
cover all classes 
 

Smoke test: 

 “Run it, and check it does not go up in smoke.” 
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Example: Black-Box Testing 

Equivalence classes or limits? 

 

 

 

 

 

 

 

Equivalence classes or limits? 

Example: A Company Bonus System 

The loyalty bonus shall be computed depending on the time of 
employment. For employees of more than three years, it shall be 
50% of the monthly salary, for employees of more than five 
years, 75%, and for employees of more than eight years, it shall 
be 100%. 

Example: Air Bag 

The air bag shall be released if the vertical acceleration 𝑎𝑣  equals 
or exceeds  15 𝑚 𝑠2 . The vertical acceleration will never be less 

than zero, or more than 40 𝑚 𝑠2 . 
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Black-Box Tests 

Quite typical for GUI tests, or functional testing 

 

Testing invalid input: depends on programming language  
the stronger the typing, the less testing for invalid input is 
required 
 

 Example: consider lists in C, Java, Haskell 

 Example: consider object-relational mappings1 (ORM) in 
Python, Java 

 

 

 

 
1) Translating e.g. SQL-entries to objects 
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Property- based Testing 

 In property-based testing (or random testing), we generate 
random input values, and check the results against a given 
executable specification. 

Attention needs to be paid to the distribution values. 

Works better with high-level languages, where the datatypes 
represent more information on an abstract level and where 
the language is powerful enough to write comprehensive 
executable specifications (i.e. Boolean expressions). 

 Implementations for e.g. Haskell, Scala, Java 

Example: consider list reversal in C, Java, Haskell 

 Executable spec: reversal is idempotent and distributes 
over concatenation. 

 Question: how to generate random lists? 
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White-Box Tests 

 In white-box tests, we derive test cases based on the 
structure of the program (structural testing) 

 To abstract from the source code (which is a purely 
syntactic artefact), we consider the control flow graph of 
the program. 

 

 

 

 

 

 

Hence, paths in the CFG correspond to runs of the program. 

Def: Control Flow Graph (CFG) 

• nodes as elementary statements (e.g. assignments, return, 

break, . . . ), as well as control expressions (e.g. in conditionals 

and loops), and 

• vertices from n to m if the control flow can reach a node m 

coming from a node n. 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -  

Example: Control-Flow Graph 

if (x < 0)  /*1*/  { 

   x:= – x /*2*/ 

} 

z = 1;  /*3*/ 
 

while (x > 0)  /*4*/ { 

  z = z * y;  /*5*/ 

  x = x – 1   /*6*/ 

} 

return z  /*7*/ 

1 

2 

3 

4 

5 

6 

7 

An execution path is 
a path though the 
cfg. 

 
Examples: 
• [1,3,4,7, E] 

• [1,2,3,4,7, E] 

• [1,2,3,4,5,6,4,7, E] 

• [1,3,4,5,6,4,5,6,4,7, E] 

• … 

E 
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Coverage 

Statement coverage:  
Each node in the CFG is visited at least once. 

 

Branch coverage:  
Each vertex in the CFG is traversed at least once. 

 

Decision coverage:  
Like branch coverage, but specifies how often conditions 
(branching points) must be evaluated. 

 

Path coverage:  
Each path in the CFG is executed at least once. 
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Example: Statement Coverage 

Which (minimal) path 
covers all statements? 
 
 p = [1,2,3,4,5,6,4,7,E] 

 

Which state generates p? 
 
  x = -1 
  y any 
  z any 
  

 

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0)  /*1*/  { 

   x:= – x /*2*/ 

} 

z = 1;  /*3*/ 
 

while (x > 0)  /*4*/ { 

  z = z * y;  /*5*/ 

  x = x – 1   /*6*/ 

} 

return z  /*7*/ 
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Example: Branch Coverage 

Which (minimal) path covers 
all vertices? 
              𝑝1= 1,2,3, 4,5,6, 4,7, 𝐸  

𝑝2 = [1,3, 4, 7, 𝐸] 

 

Which states generate 𝑝1, 𝑝2? 

             𝑝1         𝑝2   
    x   -1    0 
  y  any   any 
  z  any   any 

 

Note 𝑝3 (x= 1) does not add 
coverage.   

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0)  /*1*/  { 

   x:= – x /*2*/ 

} 

z = 1;  /*3*/ 
 

while (x > 0)  /*4*/ { 

  z = z * y;  /*5*/ 

  x = x – 1   /*6*/ 

} 

return z  /*7*/ 
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Example: Path Coverage 

How many paths are there? 
 

Let     𝑞1 = 1,2,3   
             𝑞2 = 1,3  

                𝑝 = 4,5,6  

                𝑟 = [4,7, 𝐸] 

   then all paths are  
𝑃 = 𝑞1 𝑞2) 𝑝

∗ 𝑟 

 

Number of possible paths: 

      𝑃 = 2 ⋅ 𝑀𝑎𝑥𝐼𝑛𝑡 − 1   

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0)  /*1*/  { 

   x:= – x /*2*/ 

} 

z = 1;  /*3*/ 
 

while (x > 0)  /*4*/ { 

  z = z * y;  /*5*/ 

  x = x – 1   /*6*/ 

} 

return z  /*7*/ 
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Statement, Branch and Path Coverage 

 Statement Coverage: 

 Necessary but not sufficient, not suitable as only test approach. 

 Detects dead code (code which is never executed). 

 About 18% of all defects are identified. 
 

Branch coverage: 

 Least possible single approach. 

 Detects dead code, but also frequently executed program 
parts. 

 About 34% of all defects are identified. 
 

Path Coverage: 

 Most powerful structural approach; 

 Highest defect identification rate (100%); 

 But no practical relevance. 
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Decision Coverage 

Decision coverage is more then branch coverage, but less 
then full path coverage. 

Decision coverage requires that for all decisions in the 
program, each possible outcome is considered once. 

Problem: cannot sufficiently distinguish Boolean expressions. 

 For A || B, the following are sufficient:  
     A         B        Result 

     false  false   false 

     true    false   true 

 But this does not distinguish A || B from A;   
B is effectively not tested. 
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Decomposing Boolean Expressions 

The binary Boolean operators include conjunction 𝑥 ∧ 𝑦, 
disjunction 𝑥 ∨ 𝑦, or anything expressible by these (e.g. 
exclusive disjunction, implication) 

 

 

 

 

An elementary term is a variable, a Boolean-valued function, a 
relation (equality =, orders <,≤,>,≥,  etc.), or a negation of 
these. 

This is a fairly syntactic view, e.g. 𝑥 ≤ 𝑦 is elementary, but 
𝑥 < 𝑦 ∨ 𝑥 = 𝑦 is not, even though they are equivalent. 

 In formal logic, these are called literals. 

 

Elementary Boolean Terms 

An elementary Boolean term does not contain binary 

Boolean operators, and cannot be further decomposed. 
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Simple Condition Coverage 

For each condition in the program, each elementary Boolean 
term evaluates to True and False at least once 

Note that this does not say much about the possible value of 
the condition 

Examples and possible solutions: 

 

if (temperature > 90 && pressure > 120) {… } 
 
         C1 C2 Result 
        True True  True 
        True False False 
        False True False 
        False  False   False 
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Modified Condition Coverage 

 It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3 <= x  &&  x < 5. 

 In modified (or minimal) condition coverage, all possible 
combinations of those elementary terms the value of which 
determines the value of the whole condition need to be 
considered. 

Example: 

 

 

 

 

 

Another example: (x > 1 && ! p) || p 

 

 

3 <= x && x < 5 
 
False False False  ← not needed  
False True  False 
True False False 
True True True 
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Modified Condition/Decision Coverage 

Modified Condition/Decision Coverage (MC/DC) is required by 
DO-178B for Level A software. 

 It is a combination of the previous coverage criteria defined 
as follows: 

 Every point of entry and exit in the program has been 
invoked at least once; 

 Every decision in the program has taken all possible 
outcomes at least once; 

 Every condition in a decision in the program has taken all 
possible outcomes at least once; 

 Every condition in a decision has been shown to 
independently affect that decision’s outcome. 
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How to achieve MC/DC 

Not: Here is the source code, what is the minimal set of test 
cases? 

Rather: From requirements we get test cases, do they 
achieve MC/DC? 

Example: 

 Test cases:                                        Source Code: 
                                                       Z := (A || B) && (C || D) 

 

 

Test case 1 2 3 4 5 

Input A F F T F  T 

Input B F T F T F 

Input C T F F T T 

Input D F T F F F 

Result Z F T F T T 

Question: do test cases 
achieve MC/DC? 

Source:  Hayhurst et al, A Practical Tutorial  
on MC/DC. NASA/TM2001-210876 
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Summary 

 (Dynamic) Testing is the controlled execution of code, and 
comparing the result against an expected outcome 

Testing is (traditionally) the main way for verification. 

Depending on how the test cases are derived, we distinguish 
white-box and black-box tests 

 In black-box tests, we can consider limits and equivalence 
classes for input values to obtain test cases 

 In white-box tests, we have different notions of coverage: 
statement coverage, path coverage, condition coverage, etc. 

Next week: Static testing aka. static program analysis 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Program Analysis in the Development Cycle 
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Static Program Analysis 

Analysis of run-time behaviour of programs without 
executing them (sometimes called static testing). 

Analysis is done for all possible runs of a program 
(i.e. considering all possible inputs). 

Typical questions answered: 

 Does the variable x have a constant value ? 

 Is the value of the variable x always positive ? 

 Are all pointer dereferences valid (or NULL)? 

 Are all arithmetic operations well-defined? 

These tasks can be used for verification or for optimization 
when compiling. 
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Usage of Program Analysis 

Optimizing compilers 

Detection of sub-expressions that are evaluated multiple times 

Detection of unused local variables 

 Pipeline optimizations 

Program verification 

Search for runtime errors in programs (program safety): 

Null pointer or other illegal pointer dereferences 

Array access out of bounds 

 Exceptions which are thrown and not caught 

Division by zero 

Over/underflow of integers, rounding errors with floating point 
numbers 

 Runtime estimation (worst-caste executing time, wcet) 

In other words, specific verification aspects. 
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Program Analysis: The Basic Problem 

Given a property P and a program p:   𝑝 ⊨ 𝑃 iff P holds for p 
 

Wanted: a terminating algorithm 𝜙(𝑝, 𝑃) which computes 𝑝 ⊨ 𝑃  

 𝜙 is sound if 𝜙(𝑝, 𝑃)implies  𝑝 ⊨ 𝑃 

 𝜙 is complete if  ¬𝜙(𝑝, 𝑃) implies  ¬ 𝑝 ⊨ 𝑃  

 If 𝜙 is sound and complete then 𝜙 is a decision procedure 
 

 

 

 

 From the basic problem it follows that there are no sound and 
complete tools for interesting properties. 
 

 Tools for interesting properties are either  

 sound (under-approximating) or  

 complete (over-approximating). 

The basic problem of static program analysis:  virtually all interesting 

program properties are undecidable!  (cf. Gödel, Turing) 
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Program Analysis: Approximation 

Correct Errors 

Overapproximation 

Underapproximation 

 

Not 
computable 

Computable 

All programs 

Under-approximation is sound but not 
complete. It only finds correct programs 
but may miss out some. 

 Useful in optimizing compilers; 

 Optimization must preserve 
semantics of program, but is 
optional. 

 

Over-approximation is complete but 
not sound. It finds all errors but may find 
non-errors (false positives). 

 Useful in verification; 

 Safety analysis must find all errors, 
but may report some more. 

 Too high rate of false positives may 
hinder acceptance of tool. 
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Program Analysis Approach 

Provides approximate answers 

 yes / no / don’t know or  

 superset or subset of values 

  Uses an abstraction of program’s behavior 

 Abstract data values (e.g. sign abstraction) 

 Summarization of information from  
execution paths e.g. branches of the if-else statement 

Worst-case assumptions about environment’s behavior 

 e.g. any value of a method parameter is possible. 

Sufficient precision with good performance. 
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Analysis Properties: Flow Sensitivity 

Flow-insensitive analysis 

Program is seen as an unordered collection of statements 

Results are valid for any order of statements 
e.g.  S1 ; S2 vs. S2 ; S1 

Example: type analysis (inference) 

 

Flow-sensitive analysis 

Considers program's flow of control 

Uses control-flow graph as a representation of the source 

Example: available expressions analysis 
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Analysis Properties: Context Sensitivity 

Context-sensitive analysis 

Stack of procedure invocations and return values of method 
parameters 

Results of analysis of the method M depend on the caller of M 

 

Context-insensitive analysis 

Produces the same results for all possible invocations of M 
independent of possible callers and parameter values. 
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Intra- vs. Inter-procedural Analysis 

 

Intra-procedural analysis 

Single function is analyzed in isolation. 

Maximally pessimistic assumptions about parameter values 
and results of procedure calls. 

 

Inter-procedural analysis 

Procedure calls are considered. 

Whole program is analyzed at once. 
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Data-Flow Analysis 

Focus on questions related to values of variables and their lifetime 
 

Selected analyses: 

Available expressions (forward analysis) 

 Which expressions have been computed already without 
change of the occurring variables (optimization) ? 

Reaching definitions (forward analysis) 

 Which assignments contribute to a state in a program point? 
(verification) 

Very busy expressions (backward analysis) 

 Which expressions are executed in a block regardless which 
path the program takes (verification) ? 

 Live variables (backward analysis) 

 Is the value of a variable in a program point used in a later part 
of the program (optimization) ? 
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A Simple Programming Language 

Arithmetic expressions: 

𝑎 ∷= 𝑥  𝑛  𝑎1 𝑜𝑝𝑎 𝑎2 

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/} 

Boolean expressions: 

𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏 𝑏2  𝑎1𝑜𝑝𝑟  𝑎2 

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟  

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠  

Statements: 

 S ::= [x := a]l | [skip]l | S1; S2 | if [b]l  S1 else S2 | while [b]l S 

Note this abstract syntax, operator precedence and grouping 
statements is not covered.  We can use { and } to group 
statements, and ( and ) to group expressions. 
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Computing the Control Flow Graph 

 To calculate the CFG, we define some functions on the abstract 
syntax 𝑆 : 

 The initial label (entry point)  
init: 𝑆 → 𝐿𝑎𝑏  
 
 

 The final labels (exit points) 

 final: 𝑆 →  ℙ 𝐿𝑎𝑏  
 
 

 
 

 The elementary blocks   
𝑏𝑙𝑜𝑐𝑘𝑠: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠  where  
an elementary block is an  
assignment [x:= a], or  
[skip], or a test [b]  

𝑏𝑙𝑜𝑐𝑘𝑠 𝑥 ≔ 𝑎 𝑙 = 𝑥 ≔ 𝑎 𝑙  

𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑘𝑖𝑝 𝑙 =  𝑠𝑘𝑖𝑝 𝑙  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1; 𝑆2 = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑓 𝑏 𝑙 𝑆1  𝑒𝑙𝑠𝑒 𝑆2

= 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

𝑖𝑛𝑖𝑡 𝑥 ≔ 𝑎 𝑙 = 𝑙 

𝑖𝑛𝑖𝑡 𝑠𝑘𝑖𝑝 𝑙 = 𝑙 
𝑖𝑛𝑖𝑡 𝑆1; 𝑆2 = 𝑖𝑛𝑖𝑡 𝑆1  
𝑖𝑛𝑖𝑡 (𝑖𝑓 𝑏 𝑙 𝑆1  𝑒𝑙𝑠𝑒 𝑆2 = 𝑙 
𝑖𝑛𝑖𝑡 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙  𝑆 = 𝑙  

𝑓𝑖𝑛𝑎𝑙 𝑥 ≔ 𝑎 𝑙 = 𝑙  

𝑓𝑖𝑛𝑎𝑙 𝑠𝑘𝑖𝑝 𝑙 = 𝑙  
𝑓𝑖𝑛𝑎𝑙 𝑆1; 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆2  
𝑓𝑖𝑛𝑎𝑙 𝑖𝑓 𝑏 𝑙  𝑆1 𝑒𝑙𝑠𝑒 {𝑆2}  
 = 𝑓𝑖𝑛𝑎𝑙 𝑆1 ∪ 𝑓𝑖𝑛𝑎𝑙 𝑆2  
𝑓𝑖𝑛𝑎𝑙 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆  = {𝑙} 
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Computing the Control Flow Graph 

 The control flow         flow: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏   
and reverse control   flowR: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏   

 

 

 

 

 

 

 The control flow graph of a program S  is given by  

 elementary blocks 𝑏𝑙𝑜𝑐𝑘 𝑆  as nodes, and 

 flow(S) as vertices.  
 

Additional useful definitions 

𝑓𝑙𝑜𝑤 𝑥 ≔ 𝑎 𝑙 = ∅ 

𝑓𝑙𝑜𝑤 𝑠𝑘𝑖𝑝 𝑙 = ∅ 
𝑓𝑙𝑜𝑤 𝑆1; 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 )  𝑙 ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆1  
𝑓𝑙𝑜𝑤 𝑖𝑓 𝑏 𝑙 𝑆1  𝑒𝑙𝑠𝑒 {𝑆2 } = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ {(𝑙, 𝑖𝑛𝑖𝑡 𝑆1 ), 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 )  

𝑓𝑙𝑜𝑤 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆  = 𝑓𝑙𝑜𝑤 𝑆 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆 ∪ { 𝑙′, 𝑙 |𝑙′ ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆 } 

𝑓𝑙𝑜𝑤𝑅 𝑆 = 𝑙′, 𝑙  𝑙, 𝑙′ ∈ 𝑓𝑙𝑜𝑤(𝑆)} 

𝑙𝑎𝑏𝑒𝑙𝑠 𝑆 = 𝑙  𝐵 𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)}  
𝐹𝑉 𝑎     = free variables in 𝑎 
𝐴𝑒𝑥𝑝 𝑆 = non-trival subexpressions in 𝑆  (variables and constants are trivial) 
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An Example Program 

init(P)  = 1 

final(P)  = {3} 
 

blocks(P) = 

     { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b]5} 
 

flow(P)  = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} 

flowR(P)  = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} 
 

labels(P) = {1, 2, 3, 4, 5) 

 

FV(a+b)  = {a, b} 

FV(P)  = {a, b, x, y} 

Aexp(P)  = {a+b, a*b, a+1} 

  

x := a + b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

P =  [x := a+b]1; [y := a*b]2; while [y > a+b]3 { [a:=a+1]4; [x:= a+b]5 } 
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Program Analysis CFG : General Idea 

Statement  F 

Pout 

Pin 

Locally for each statement: 
 
Relationship between Pin and Pout : 
 
• kill : part of Pin that is invalidated by F 
• gen : additional part that is generated by F  

 
Pout = ( Pin \  kill ) [ gen     

We obtain constrains for the Pout  and  Pin for all statements and links! 
Solve CSP by a constraint solver. 
  

kill 
 
gen 

P’in 

Statement  F’ 

Globally for each link: 
 
P ’in  = [ Pout   (or  \ Pout ) 
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Available Expression Analysis 

The available expression analysis will 
determine for each program point: 

 

which non-trivial expressions have been 
already computed in prior statements 
(and are still valid) 

 

„Caching of expressions“   

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

S : 
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Available Expression Analysis 

  

kill( [x :=a]l )  =   { exp 2 Aexp(S) | x 2 FV(exp) }  
kill( [skip]l )  =   ∅ 
kill( [b]l )   =   ∅  

gen( [x :=a]l )  =   { exp 2 Aexp(a) | x  FV(exp) } 
gen( [skip]l )  =   ∅ 
gen( [b]l )  =   Aexp(b) 

AEin( l ) =   

 ∅,  if l ∈  init(S)

   𝐴𝐸𝑜𝑢𝑡 𝑙
′   𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤(𝑆) ,  otherwise   

 

 

AEout ( l ) = 𝐴𝐸𝑖𝑛 𝑙   \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 ,  where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

 

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

S : 

l kill(Bl) gen(Bl) 

1 ∅ {a+b} 

2 ∅ {a*b} 

3 ∅ {a+b} 

4 {a+b, a*b, a+1} ∅ 

5 ∅ {a+b} 

l AEin AEout 

1 ∅ {a+b} 

2 {a+b} {a+b, a*b} 

3 {a+b} {a+b} 

4 {a+b} ∅ 

5 ∅ {a+b} 
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Reaching Definitions Analysis 

Reaching definitions (assignment)  
analysis determines if: 

 

 An assignment of the form [x := a]l  

reaches a program point k  
 

if there is an execution path where  
x was last assigned at l when the  
program reaches k 

 

  

x := 5 

x > 1 

y := x * y 

x := x - 1 

1 

5 

4 

3 

y := 1 
2 

S : 
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Reaching Definitions Analysis 

  

kill( [skip]l ) = ∅ 
kill( [b]l ) = ∅ 
kill( [x :=a]l ) =  

𝑥, ? ∪  𝑥, 𝑘  𝐵𝑘  𝑖𝑠 𝑎𝑛 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆} 

gen( [x :=a]l ) = { 𝑥, 𝑙 } 
gen( [skip]l ) = ∅ 
gen( [b]l ) = ∅ 

RDin( l ) =  

 𝑥, ?   𝑥 ∈ 𝐹𝑉 𝑆 }  if l ∈  init(S) 

    𝑅𝐷𝑜𝑢𝑡 𝑙
′ 𝑙′, 𝑙 }  ∈ 𝑓𝑙𝑜𝑤 𝑆   otherwise 

 

 

RDout ( l ) = 𝑅𝐷𝑖𝑛 𝑙  \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙   where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

x := 5 

x > 1 

y := x * y 

x := x - 1 

1 

5 

4 

3 

y := 1 
2 

l kill(Bl) gen(Bl) 

 

1 

 

{(x,?), (x,1),(x,5)} 

 

{(x, 1)} 

2 {(y,?), (y,2),(y,4)} {(y, 2)} 

3 ∅ ∅ 

4 {(y,?), (y,2),(y,4)} {(y, 4)} 

5 {(x,?), (x,1),(x,5)} {(x, 5)} 

 

S : 

l RDin RDout 

1 {(x,?), (y,?)} {(x,1), (y,?)} 

2 {(x,1), (y,?)} {(x,1), (y,2)} 

3 {(x,1), (x,5), 

(y,2), (y,4)} 

{(x,1), (x,5), 

(y,2), (y,4)} 

4 {(x,1), (x,5), 

(y,2), (y,4)} 

{(x,1), 

(x,5),(y,4)} 

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)} 
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Live Variables Analysis 

A variable x is live at some program point 
(label l) if there exists if there exists a path 
from l to an exit point that does not 
change the variable 

 

Live Variables Analysis determines: 

 for each program point, which 
variables may be still live at the  
exit from that point. 

 

Application: dead code elemination. 

  

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

S : 

z := y*y 
6 

x := z 

7 
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Live Variables Analysis 

  

kill( [x :=a] l) = {𝑥}  
kill( [skip] l) = ∅ 
kill( [b] l) = ∅ 

gen( [x :=a] l) = 𝐹𝑉(𝑎) 
gen( [skip] l) = ∅ 
gen( [b] l) = 𝐹𝑉(𝑏)  

LVout( l ) =  

∅     if l ∈ final(S)

   𝐿𝑉𝑖𝑛 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅 𝑆  otherwise 
  

 

LVin ( l ) = 𝐿𝑉𝑜𝑢𝑡 𝑙  \ 𝑘𝑖𝑙𝑙 𝐵
𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙    where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

l kill(Bl) gen(Bl) 

1 {x} ∅ 

2 {y} ∅ 

3 {x} ∅ 

4 ∅ {x, y} 

5 {z} {y} 

6 {z} {y} 

7 {x} {z} 

l LVin LVout 

1 ∅ ∅ 

2 ∅ {y} 

3 {y} {x, y} 

4 {x, y} {y} 

5 {y} {z} 

6 {y} {z} 

7 {z} ∅ 

S : 

z := y*y 
6 

x := z 

7 
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First Generalized Schema 

Analysis ( l ) =   
  𝐄𝐕   if 𝑙 ∈ 𝐄

□ Analysis ( l‘ ) 𝑙′, 𝑙 ∈ 𝐅𝐥𝐨𝐰 𝑆 }  otherwise
 

 

Analysis ( l ) = 𝑓l ( Analysis ( l ) ) 

 

With: 

 𝐄𝐕  is the initial / final analysis information 

 𝐄    is either  {init(S)}  or  final(S) 
 

□    is either  or  

 𝐅𝐥𝐨𝐰 is either flow or flowR 

 𝑓𝑙      is the transfer function associated with 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 
 

Forward analysis:  𝐅𝐥𝐨𝐰 = flow,   = OUT,   = IN 

Backward analysis:  𝐅𝐥𝐨𝐰 = flowR,   = IN,      = OUT 

 

fl 

Analysis ( l ) 

Analysis ( l ) 

Analysis ( l‘ ) 

fl 
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Partial Order 

 𝐿 =  𝑀,⊑  is a partial order iff 
 

 Reflexivity:  ∀𝑥 ∈ 𝑀. 𝑥 ⊑ 𝑥 

 Transitivity:  ∀𝑥, 𝑦, 𝑧 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧 

 Anti-symmetry:   ∀𝑥, 𝑦 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦 

 

 Let 𝐿 =  𝑀,⊑  be a partial order,  𝑆 ⊆ 𝑀 
 

 𝑦 ∈ 𝑀 is upper bound for 𝑆 𝑆 ⊑ 𝑦  iff  ∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑦 

 𝑦 ∈ 𝑀 is lower bound  for S (𝑦 ⊑ 𝑆)  iff  ∀𝑥 ∈ 𝑆. 𝑦 ⊑ 𝑥 
 

 Least upper bound  ⨆𝑋 ∈ 𝑀 of 𝑋 ⊆ 𝑀:  

 𝑋 ⊑ ⨆𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑋 ⊑ 𝑦 ⇒  ⨆𝑋 ⊑ 𝑦 

 Greatest lower bound ⊓ 𝑋 of 𝑋 ⊆ 𝑀: 

 ⊓ 𝑋 ⊑ 𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑦 ⊑ 𝑋 ⇒ 𝑦 ⊑  ⊓ 𝑋 
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Lattice 

A lattice (“Verband”) is a partial order L = (M, ⊑) such that 

 

(1) ⊔X and ⊓X exist for all 𝑋 ⊆ 𝐿 

 

(2) Unique greatest element  ⊤ = ⨆𝐿  

(3) Unique least element        ⊥ = ⊓ 𝐿  

 

(1) Alternatively (for finite M), binary operators ⊔ and ⊓  (“meet” 
and “join”) such that  

  𝑥, 𝑦 ⊑ 𝑥 ⊔ 𝑦 and 𝑥 ⊓ 𝑦 ⊑ 𝑥, 𝑦 
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Transfer Functions 

 Transfer functions to propagate information along the execution 
path (i.e. from input to output, or vice versa) 

 

 Let 𝐿 = 𝑀, ⊑  be a lattice. Let 𝐹 be the set of transfer functions of 
the form   
 fl :  M  M with l being a label  

 

 Knowledge transfer is monotone 

 ∀ 𝑥, 𝑦.   𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦   

 

 Space F of transfer functions 

 F   contains all transfer functions       fl 

 F   contains the identity function id   ∀𝑥 ∈ 𝑀.  𝑖𝑑 𝑥 = 𝑥  

 F   is closed under composition           ∀ 𝑓, 𝑔 ∈ F.  𝑔 ∘ 𝑓 ∈ F 
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The Generalized Analysis 

Analysis ( l ) = ⊔ Analysis ( l‘ ) | (l′, l) ∈ F ⊔ { 𝜄𝐸
′  }    

                

     with  𝜄𝐸
′ =  

𝜄              if 𝑙 ∈ 𝐸
⊥        otherwise 

 

Analysis ( l ) = 𝑓𝑙( Analysis ( l ) ) 

 

With: 
 

M property space representing data flow information 
with 𝑀,⊑  being a lattice 

A space 𝐹  of transfer functions 𝑓𝑙 
and a mapping f from labels to transfer functions in 𝐹 

 F is a finite flow  (i.e. 𝑓𝑙𝑜𝑤 or 𝑓𝑙𝑜𝑤𝑅  ) 

 𝜄  is an extremal value  
for the extremal labels 𝐸 (i.e.  𝑖𝑛𝑖𝑡 𝑆  or 𝑓𝑖𝑛𝑎𝑙(𝑆) ) 
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Instances of Framework 

Available Expr. Reaching Def. Live Vars. 

M P (AExpr) P (Var x L) P (Var) 

⊑ ¶ µ µ 

⊔ Å [ [ 

⊥ AExpr ; ; 

𝜄 ; {(x, ?) | x 2 FV(S)} ; 

E { init(S) } { init(S) } final(S) 

F flow(S) flow(S) flowR(S) 

F { f : M  M |  9 mk, mg. f(m) = (m \ mk) [ mg } 

fl fl (m) = ( m \ kill(Bl) ) [ gen(Bl)   where Bl 2 blocks(S) 
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Limitations of Data Flow Analysis 

The general framework of data flow analysis treats all 
outgoing edges uniformly. This can be a problem if 
conditions influence the property we want to analyse. 

Example:  show no division by 0 can occur. 

Property space:  

 𝑀0 =  ⊥, 0 , 1 , 0,1  (ordered by inclusion) 

 𝑀 = 𝐿𝑜𝑐 → 𝑀0  (ordered pointwise) 

 𝑎𝑝𝑝𝜎 𝑡 ∈ 𝑀0   „approximate evaluation“ of t under 𝜎 ∈ 𝑀 

 𝑐𝑜𝑛𝑑𝜎(𝑏) ∈ 𝑀  strengthening of 𝜎 ∈ 𝑀 under condition b 

 𝑔𝑒𝑛 𝑥 = 𝑎 = 𝜎 𝑥 ↦ 𝑎𝑝𝑝𝜎 𝑎  

 Kill needs to distinguish wether cond‘n holds: 

𝑘𝑖𝑙𝑙 𝑏 𝜎
𝑖𝑓
= 𝑐𝑜𝑛𝑑𝜎(𝑏)               𝑘𝑖𝑙𝑙 𝑏 𝜎

𝑡ℎ𝑒𝑛 = 𝑐𝑜𝑛𝑑𝜎(!  𝑏)     

This leads us to abstract interpretation. 
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Program Analysis for Information Flow 
Control 
Confidentiality as a  

property of dependencies: 

 

 

 The GPS data 53:06:23 N 8:51:08 O is confidential. 

 The information on the GPS data must not leave Bob‘s mobile phone 

 First idea: 53:06:23 N 8:51:08 O does not appear (explicitly) on the output 
line. 

 too strong, too weak  

 Instead: The output of Bob‘s smart phone does not depend on the GPS 
setting 

 Changing the location (e.g. to 53:06:29 N 8:51:04 O ) will not change the 
observed output of Bob‘s smart phone 

 
Note: Confidentiality is formalized as a notion of dependability. 

 

... 53:06:23... 
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Confidentiality as Dependability 

Confidential action: 
 

change location (from 53:06:23 N 8:51:08 O) to 53:06:29 N 8:51:04 O 

Insecure system:  
output 53:06:29 depends  

on GPS data 

Secure System:  
output 53:06:23 does not depend  

on GPS data 

... 53:06:23... 

... 53:06:29... 
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Program Slicing 

Which parts of the program compute the message ? 

Do these parts contain GPS data ? 

 If yes:  GPS data influence message (data leak) 

 If no:  message is independent of GPS data  

 

Program Dependence Graph 

 Nodes are statements and conditions of a program 

 Links are either 

 Control dependences (similar to CFG) 

 Data flow dependences  
(connecting assignment with usage of variables) 
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Control dependences  
Data flow dependences  

Example 

 sum := 0;  
 i := 1;  
 while  i · 10 { 
     sum := sum + i;  
     i := i + 1 
 }  

entry 

exit(sum) 

sum := 0 i := 1 while  i · 10 

sum := sum + i i := i + 1 
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Backward Slice 

Let G be a program dependency graph and 

S be subset of nodes in G 

Let  n ) m :=  n       m  Ç  n        m 

Then, the backward slice BS(G, S) is a graph G’ with 

 N(G’) = { n | n 2 N(G) Æ 9 m 2 S. n )* m } 

 E(G’) = {n       m | n       m 2 E(G) Æ n, m 2 N(G’) } [  
            {n       m | n       m 2 E(G) Æ n, m 2 N(G’) } 

 

Backward slice BS(G, S) computes same values for variables 
occurring in S as G itself 
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Control dependences  
Data flow dependences  

Example 

 sum := 0;  
 i := 1;  
 while  i · 10 { 
     sum := sum + i;  
     i := i + 1 
 }  

entry 

exit(i) 

sum := 0 i := 1 while  i · 10 

sum := sum + i i := i + 1 

BS: 
 

i := 1;  
 while  i · 10 { 
    i := i + 1 
 }  
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Summary 
 
 Static Program Analysis is the analysis of run-time behavior of 

programs without executing them (sometimes called static testing) 

Approximations of program behaviors by analyzing the program‘s 
CFG 

Analysis include 

 available expressions analysis 

 reaching definitions 

 live variables analysis 

 program slicing 

 These are instances of a more general framework 

 These techniques are used commercially, e.g. 

 AbsInt aiT (WCET) 

 Astrée Static Analyzer (C program safety) 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11-12: Model Checking 

 13: Conclusions 

 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -  

Software Verification in the Development Cycle 
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Software Verification 

Software Verification proves properties of programs. That is, 
given the basic problem of program 𝑃 satisyfing a property 𝑝 
we want to show that for all possible inputs and runs of 𝑃 , 
the property 𝑝 holds. 

Software verification is far more powerful than static 
analysis. For the same reasons, it cannot be fully automatic 
and thus requires user interaction. Hence, it is complex to 
use. 

Software verification does not have false negatives, only 
failed proof attempts. If we can prove a property, it holds. 

Software verification is used in highly critical systems. 
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The Basic Idea 

What does this program compute? 

 The index of the maximal element 
of the array 𝑎 if it is non-empty. 

 

How to prove it? 

(1) We need a language in which to 
formalise such assertions. 

(2) We need a notion of meaning 
(semantics) for the program. 

(3) We need to way to deduce valid 
assertions. 

 

Floyd-Hoare logic provides us with (1) 
and (3). 

i: =  0; 
x:=  0; 
while (i <  n) { 
    if a i ≥ a x  { 
       x ≔ i; 
       } 
     i ≔ i + 1; 
     } 

Formalizing correctness: 
 
array a, n ∧ n > 0 ⟹ 
   a x = max a, n  
 
∀i. 0 ≤ i < n ⟹ 
       a[i] ≤ max (a, n) 
∃j. 0 ≤ j < n ⟹ 
                a[j] = max (a, n) 
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Recall our simple programming language 

Arithmetic expressions: 

𝑎 ∷= 𝑥  𝑛  𝑎1 𝑎2  | 𝑎1 𝑜𝑝𝑎 𝑎2 

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/} 

Boolean expressions: 

𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏 𝑏2  𝑎1𝑜𝑝𝑟  𝑎2 

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟  

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠  

Statements: 

 S ::= x := a | skip | S1; S2 | if (b)  S1 else S2 | while (b) S 

 Labels from basic blocks omitted, only used in static 
analysis to derive cfg. 

 Note this abstract syntax, operator precedence and 
grouping statements is not covered.  
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Semantics of our simple language 

The semantics of an imperative language is state transition: 
the program has an ambient state, which is changed by 
assigning values to certain locations. 

Example:  

 

 

 

 

 

Semantics in a nutshell: 

x ? 

y 12 

z ? 

x 5 

y 12 

z ? 

x 5 

y 12 

z 17 

x 6 

y 12 

z 17 

z := x + y x := 5 x := x + 1 

𝜎 𝜎1 = 𝜎[x/5] 𝜎2 = 𝜎1[z/17] 
     = 𝜎[x/5, z/17] 

𝜎3 = 𝜎2[x/6] 
     = 𝜎[x/6, z/17] 

Expressions evaluate to values 𝑉𝑎𝑙 (for our language integers). 

Locations 𝐿𝑜𝑐 are variable names. 

A program state maps locations to values: Σ = 𝐿𝑜𝑐 ⇀ 𝑉𝑎𝑙 
A program maps an initial state to a final state, if it terminates.  

Assertions are predicates over program states. 
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Semantics in a nutshell 

There are three major ways to denote semantics. 

 

(1) As a relation between program states, described by an 
abstract machine (operational semantics). 

(2) As a function between program states, defined for each 
statement of the programming langauge (denotational 
semantics). 

(3) As the set of all assertions which hold for a program 
(axiomatic semantics). 

 

Floyd-Hoare logic covers the third aspect, but it is important 
that all three semantics agree.  

 We will not cover semantics in detail here, but will 
concentrate on how to use Floyd-Hoare logic to prove 
correctness.  
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Extending our simple language 
We introduce a set 𝑉𝑎𝑟 of logical variables. 

Assertions are boolean expressions, which may not be 
executable, and arithmetic expressions containing logical 
variables. 

 

  Arithmetic assertions 
𝑎𝑒 ∷= 𝑥  𝑋  𝑛  𝑎𝑒1 𝑎𝑒2  | 𝑎𝑒1 𝑜𝑝𝑎 𝑎𝑒2   𝑓(𝑎𝑒1, … , 𝑎𝑒𝑛) 

 where 𝑥 ∈ 𝐿𝑜𝑐, 𝑋 ∈ 𝑉𝑎𝑟, 𝑜𝑝𝑎 ∈ {+,−,∗,/} 

 

Boolean assertions: 
𝑏𝑒 ≔ true  false not 𝑏𝑒  𝑏𝑒1𝑜𝑝𝑏 𝑏𝑒2  𝑎𝑒1𝑜𝑝𝑟  𝑎𝑒2  

                          𝑝 𝑎𝑒1, … , 𝑎𝑒𝑛 | ∀𝑋. 𝑏𝑒  ∃𝑋. 𝑏𝑒 

 Boolean operators: 𝑜𝑝𝑏 ∈ ∧,∨,⟹  

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠  
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Floyd-Hoare Triples 

The basic build blocks of Floyd-Hoare logic are 
Hoare triples of the form  𝑃 𝑐 𝑄 . 

 

P, Q are assertions using variables in 𝐿𝑜𝑐 and 𝑉𝑎𝑟  

 e.g.  x < 5 + y,  Odd(x),  … 

 

A state 𝜎 satisfies P (written 𝜎 ⊨ 𝑃) iff  𝑃[𝜎 𝑥 𝑥 ] is true for all 
𝑥 ∈ 𝐿𝑜𝑐 and all possible values for  X ∈ 𝑉𝑎𝑟: 

 e.g.  let 

 

 

A formula P describes a set of states, i.e. all states that satisfy 
the formula P. 
 

 

x 5 

y 12 

z 17 

𝜎 =   then 𝜎 satisfies x < 5 + y,  Odd(x)  
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Partial and Total Correctness 
 

  Partial correctness: ⊨ 𝑃 𝑐{𝑄} 

 𝑐 is partial correct with precondition 𝑃 and postcondition 
𝑄 iff, for all states 𝜎 which satisfy P and for which the 
execution of 𝑐 terminates in some state 𝜎′ then it holds 
that 𝜎′ satisfies 𝑄. 
∀𝜎. 𝜎 ⊨ 𝑃 ∧ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ⟹ 𝜎′ ⊨ 𝑄 

 

  Total correctness: ⊨ 𝑃 𝑐[𝑄] 

 𝑐 is total correct with precondition 𝑃 and postcondition 𝑄 
iff, for all states 𝜎 which satisfy 𝑃 the execution of c 
terminates in some state 𝜎′ which satisfies 𝑄. 
i.e  ∀𝜎. 𝜎 ⊨ 𝑃 ⟹ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ∧ 𝜎′ ⊨ 𝑄 

 

Examples: ⊨ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒  𝑠𝑘𝑖𝑝 𝑡𝑟𝑢𝑒 ,   
                       ⊭ 𝑡𝑟𝑢𝑒  𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝  [𝑡𝑟𝑢𝑒]  
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Reasoning with Floyd-Hoare Triples 

How do we know that ⊨ 𝑃 𝑐 𝑄  in practice ? 
 

Calculus to derive triples, written as ⊢ 𝑃 𝑐{𝑄} 

 Rules operate along the constructs of the programming 
language (cf. operational semantics) 

 Only one rule is applicable for each construct (!) 

 Rules are of the form 
 

⊢ 𝑃1 𝑐1 𝑄1 , … , ⊢ 𝑃𝑛 𝑐𝑛{𝑄𝑛} 

⊢ 𝑃 𝑐 {𝑄}
 

 

meaning we can derive ⊢ 𝑃 𝑐 𝑄  if all ⊢ 𝑃𝑖 𝑐𝑖 𝑄𝑖  are 
derivable. 
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Floyd-Hoare Rules:  Assignment 

Assignment rule: 

⊢ {𝑃[𝑒 𝑥 ]}  𝑥 ∶=  𝑒  {𝑃}  
 

 

𝑃[𝑒 𝑥 ] replaces all occurrences of the program variable 𝑥 by 
the arithmetic expression 𝑒. 

 

Examples:  

 ⊢  {0 <  10} 𝑥 ∶=  0 {𝑥 <  10} 

 ⊢ 𝑥 –  1 <  10  𝑥 ∶=  𝑥 − 1 𝑥 <  10  

 
 

 ⊢ {𝑥 +  1 +  𝑥 +  1 <  10}  𝑥 ∶=  𝑥 +  1 {𝑥 +  𝑥 <  10} 

x < 11 

x + x < 8 
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Rules: Sequencing and Conditional 

Sequence:  
⊢ 𝑃  𝑐1 𝑄  ⊢ 𝑄  𝑐2 {𝑅}  

⊢ 𝑃  𝑐1; 𝑐2 {𝑅}
 

 

 Needs an intermediate state predicate 𝑄. 

 

Conditional: 
⊢ 𝑃 ∧ 𝑏  𝑐1 𝑄  ⊢ 𝑃 ∧ ¬𝑏  𝑐2 {𝑄}  

⊢ 𝑃  if b  𝑐1else 𝑐2 {𝑄}
 

 

 Two preconditions capture both cases of 𝑏 and ¬ 𝑏. 

 Both branches end in the same postcondition Q. 
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Rules: Iteration and Skip 

⊢ 𝑃 ∧ 𝑏  𝑐 {𝑃}

⊢ 𝑃  while (𝑏) 𝑐 {𝑃 ∧ ¬ 𝑏}
 

𝑃 is called the loop invariant. It has to hold both before and 
after the loop (but not necessarily in the whole body).  

Before the loop, we can assume the loop condition 𝑏 holds. 

After the loop, we know the loop condition 𝑏 does not hold. 

 In practice, the loop invariant has to be  given– this is the 
creative and difficult part of working with the Floyd-Hoare 
calculus.  

 

⊢ 𝑃  𝐬𝐤𝐢𝐩 {𝑃}
 

skip has no effect: pre- and postcondition are the same.  
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𝑃1 

Final Rule: Weakening 

Weakening is crucial, because it allows us to change pre- or 
postconditions by applying rules of logic. 
 

𝑃2⟹ 𝑃1       ⊢ 𝑃1  𝑐 𝑄1        𝑄1⟹ 𝑄2
⊢ 𝑃2  𝑐 𝑄2

 

We can weaken the precondition and strengthen the 
postcondition: 

 ⊨ 𝑃 𝑐 𝑄  means whenever 𝑐 starts in a state in which 𝑃 
holds, it ends in a state in which 𝑄 holds. So, we can 
reduce the starting set, and enlarge the target set. 

𝑄2 𝑃2 𝑄1 
c 
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How to derive and denote proofs 

 The example shows ⊢ 𝑃 𝑐 𝑄  

We annotate the program with valid 
assertions: the precondition in the 
preceding line, the postcondition in 
the following line. 

 The sequencing rule is applied 
implicitly. 

Consecutive assertions imply 
weaking, which has to be proven 
separately.  

 In the example: 
𝑃 ⟹ 𝑃1,  
𝑃2⟹ 𝑃3,  
𝑃3 ∧ 𝑥 < 𝑛 ⟹ 𝑃4, 
𝑃3 ∧ ¬ 𝑥 < 𝑛 ⟹ 𝑄 

 

 

// {P} 

// {𝑃1} 

x:= e; 

// {𝑃2} 

// {𝑃3} 

while (x< n) { 

     // {𝑃3 ∧ 𝑥 < 𝑛} 

     // {𝑃4} 

     z := a 

     // {𝑃3} 

    } 

// {𝑃3 ∧ ¬(𝑥 < 𝑛)} 

// {𝑄} 
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More Examples 

P == 

p ≔ 1; 
c ≔ 1; 
while c ≤ n  { 
  p ≔ p ∗ c; 
  c ≔ c + 1 
  } 

R == 
r ≔ a; 
q ≔ 0; 
while b ≤ r { 
   r ≔ r − b; 
   q ≔ q + 1 
   } 

Specification: 
⊢  1 ≤ n  
     P 

            { p = n! }  

Specification: 
⊢  a ≥ 0 ∧ b ≥ 0  
     R 

        { a = b ∗ q + r ∧ 
            0 ≤ r ∧ r < b} 

 
      

Q == 

p ≔ 1; 
while 0 ≤ n  { 
  p ≔ p ∗ n; 
  n ≔ n − 1 
  } 

Specification: 
⊢  1 ≤ n ∧ 𝑛 = 𝑁  
    Q 
       { p = N! }  

Invariant: 
p = c − 1 ! 

Invariant: 

p =   i

N

i=n+1

 

Invariant: 
a = b ∗ q + r ∧ 0 ≤ r 
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How to find invariants 

Going backwards: try to split/weaken postcondition 𝑄 into 
negated loop-condition and „something else“ which becomes 
the invariant. 

Many while-loops are in fact for-loops, i.e. they count 
uniformly: 

i ≔ 0; 
𝐰𝐡𝐢𝐥𝐞 𝑖 < 𝑛  { 
   … ; 
    𝑖 ≔ 𝑖 + 1 
   } 

  In this case: 

 If post-condition is 𝑃(𝑛), invariant is 𝑃 𝑖 ∧ 𝑖 ≤ 𝑛. 

 If post-condition is ∀𝑗. 0 ≤ 𝑗 < 𝑛. 𝑃(𝑗) (uses indexing, 
typically with arrays), invariant is ∀𝑗. 𝑗 ≤ 0 < 𝑖. 𝑖 ≤ 𝑛 ∧  𝑃 𝑗 . 
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Summary 

Floyd-Hoare-Logic allows us to prove properties of programs. 

The proofs cover all possible inputs, all possible runs. 

There is partial and total correctness: 

 Total correctness = partial correctness + termination. 

There is one rule for each construct of the programming 
language.  

Proofs can in part be constructed automatically, but iteration 
needs an invariant (which cannot be derived mechanically). 

Next lecture: correctness and completeness of the rules. 
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Frohes Neues Jahr! 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -  

Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11-12: Model Checking 

 13: Conclusions 
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VCG in the Development Cycle 
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Introduction 

 In the last lecture, we introduced Hoare triples. They allow us 
to state and prove correctness assertions about programs, 
written as 𝑃  𝑝 {𝑄} 

We introduced two notions, namely: 

 Syntactic derivability, ⊢ 𝑃  𝑝 {𝑄} (the actual Floyd-Hoare 
calculus) 

 Semantic satisfaction, ⊨ 𝑃  𝑝 {𝑄} 

Question: how are the two related? 

The answer to that question also offers help with a practical 
problem: proofs with the Floyd-Hoare calculus are 
exceedingly long and tedious. Can we automate them, and 
how? 
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Correctness and Completeness 

 In general, given a syntactic calculus with a semantic 
meaning, correctness means the syntactic calculus implies 
the semantic meaning, and completeness means all 
semantic statements can be derived syntactically. 

 Cf. also Static Program Analysis 

 

Correctness should be a basic property of verification calculi. 

Completeness is elusive due to Gödel‘s first incompleteness 
theorem:  

 Any logics which is strong enough to encode the natural 
numbers and primitive recursion* is incomplete.** 

* Or any other notion of computation. 

** Or inconsistent, which is even worse. 
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Correctness of the Floyd-Hoare calculus 

Proof: by induction on the derivation of ⊢ 𝑃  𝑝 𝑄 . 

More precisely, for each rule we show that: 

 If the conclusion is ⊢ 𝑃  𝑝 𝑄 , we can show ⊨ 𝑃  𝑝 𝑄   

 For the premisses, this can be assumed. 

 Example: for the assignment rule, we show that 

Theorem (Correctness of the Floyd-Hoare calculus) 
If ⊢ 𝑃  𝑝 {𝑄}, then ⊨ 𝑃  𝑝 {𝑄}. 
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Completeness of the Floyd-Hoare calculus 

Predicate calculus is incomplete, so we cannot hope F/H is 
complete. But we get the following: 

 

 

 

 

To show this, we construct the weakest precondition. 

 

 

 

Theorem (Relative completeness) 
If ⊨ 𝑃  𝑝 {𝑄}, then ⊢ 𝑃  𝑝 𝑄  except for the proofs 
occuring in the weakenings. 

Weakest precondition 
Given a program c and an assertion P, the weakest 
precondition 𝑤𝑝(𝑐, 𝑃) is an assertion W such that 
1. 𝑊 is a valid precondition ⊨ 𝑊  𝑐 𝑃  
2. And it is the weakest such: for any other 𝑄 such 

that ⊨ 𝑄  𝑐 𝑃 ,𝑊 → 𝑄 
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Constructing the weakest precondition 

Consider a simple program and its verification: 

 

 

 

 

 

 

 

 

Note how proof is constructed backwards  systematically. 

The idea is to construct the weakest precondition inductively. 

This also gives us a methodology to automate proofs in the 
calculus. 

 𝑥 = 𝑋 ∧ 𝑦 = 𝑌  
↔ 
 𝑦 = 𝑌 ∧ 𝑥 = 𝑋  
z := y; 

 𝑧 = 𝑌 ∧ 𝑥 = 𝑋   
y := x; 

 𝑧 = 𝑌 ∧ 𝑦 = 𝑋  
x := z; 

 𝑥 = 𝑌 ∧ 𝑦 = 𝑋  
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Constructing the weakest precondition 

There are four straightforward cases: 

(1) 𝑤𝑝 𝐬𝐤𝐢𝐩, 𝑃 = 𝑃 

(2) 𝑤𝑝 𝑋 ≔ 𝑒, 𝑃 = 𝑃 [𝑒 / 𝑋] 

(3) 𝑤𝑝 𝑐0; 𝑐1, 𝑃 = 𝑤𝑝(𝑐0, 𝑤𝑝 𝑐1, 𝑃 ) 

(4) 𝑤𝑝 𝐢𝐟 𝑏 𝑐0  𝐞𝐥𝐬𝐞 𝑐1 , 𝑃 = (𝑏 ∧ 𝑤𝑝 𝑐0, 𝑝 ) ∨ (¬ 𝑏 ∧ 𝑤𝑝 𝑐1, 𝑃 ) 

The complicated one is iteration (unsurprisingly, since it is the 
source of the computational power and Turing-completeness 
of the language). It can be given recursively: 

(5) 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃 = ¬ 𝑏 ∧ 𝑃 ∨ 𝑤𝑝 𝑐, 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃  

A closed formula can be given, but it can be infinite and is not 
practical. It shows the relative completeness, but does not give 
us an effective way to automate proofs. 

Hence, 𝑤𝑝(𝑐, 𝑃) is not effective for proof automation, but it 
shows the right way: we just need something for iterations. 
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Verification Conditions: Annotations 

The idea is that we have to give the invariants manually by 
annotating them.  

We need a language for this: 

 Arithmetic expressions and boolean expressions stays as 
they are. 

 Statements are augmented to annotated statements: 

             S ::= x := a | skip | S1; S2 | if (b)  S1 else S2 
                    | assert P | while (b) inv P S 

 Each while loop needs to its invariant annotated. 

 This is for partial correctness, total correctness also 
needs a variant: an expression which is strictly 
decreasing in a well-founded order such as (<,ℕ) 
after the loop body. 

 The assert statement allows us to force a weakening. 
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Preconditions and Verification Conditions 

We are given an annotated statement 𝑐, a precondition P and 
a postcondition Q.  

 We want to know: when does ⊨ 𝑃  𝑐 {𝑄} hold? 

 

For this, we calculate a precondition 𝑝𝑟𝑒(𝑐, 𝑄) and a set of 
verification conditions 𝑣𝑐 𝑐, 𝑄 . 

 The idea is that if all the verification conditions hold, then 
the precondition holds: 

 𝑅

𝑅∈𝑣𝑐(𝑐, 𝑄)

⇒ ⊨ 𝑝𝑟𝑒 𝑐, 𝑄 𝑐 𝑄  

 For the precondition 𝑃, we get the additional weaking 
𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 . 
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Calculation Verification Conditions 

 Intuitively, we calculate the verification conditions by stepping 
through the program backwards, starting with the 
postcondition 𝑄. 

For each of the four simple cases (assignment, sequencing, 
case distinction and 𝒔𝒌𝒊𝒑), we calculate new current 
postcondition 𝑄 

At each iteration, we calculate the precondition 𝑅 of the loop 
body working backwards from the invariant 𝐼, and get two 
verification conditions: 

 The invariant 𝐼 and negated loop condition implies 𝑄. 

 The invariant 𝐼 and loop condition implies 𝑅. 

Asserting 𝑅 generates the verification condition 𝑅 ⇒ 𝑄. 

 

Let‘s try this. 
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Example: deriving VCs for the factorial. 

{ 0 <= n } 
{ 1 == (1-1)! && (1- 1) <= n } 
p := 1; 
{ p == (1-1)! && (1- 1) <= n } 
c := 1; 
{ p == (c-1)! && (c- 1) <= n } 
while (c <= n)  
  inv (p == (c-1)! && c-1 <= n) { 
  { p*c == ((c+1)-1)! && ((c+1)- 1) <= n }  
  p := p* c; 
  { p == ((c+1)-1)! && ((c+1)- 1) <= n }  
  c := c+1; 
  { p == (c-1)! && (c- 1) <= n }  
  } 
{ p == (c-1)! && (c- 1) <= n && ! (c <= n) }  
{ p = n! } 

VCs (unedited): 
1. p == (c-1)! && (c- 1) <= n && ! (c <= n) 

==> p= n! 
 

2. p == (c-1)! && c-1 <= n && c<= n  
==> p* c= ((c+1)-1)! && ((c+1)-1) <= n 
 

3. 0 <= n ==> 1= (1-1)! && 1-1 <= n 

VCs (simplified): 
1. p == (c-1)! && (c- 1) <= n && c> n  

==> p= n! 
 

2. p == (c-1)! && c-1 <= n && c<= n  
==> p* c= c!  

2. p == (c-1)! && c-1 <= n && c<= n  
==> c <= n 
 

3. 0 <= n ==> 1= 0! && 0 <= n 
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Formal Definition 

Calculating the precondition: 
𝑝𝑟𝑒 𝐬𝐤𝐢𝐩, 𝑄 = 𝑄 
𝑝𝑟𝑒 𝑋 ≔ 𝑒, 𝑄 = 𝑄 𝑒 / 𝑋  
𝑝𝑟𝑒(𝑐0; 𝑐1, 𝑄 = 𝑝𝑟𝑒(𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ) 
𝑝𝑟𝑒 𝐢𝐟 𝑏  𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑏 ∧ 𝑝𝑟𝑒 𝑐0, 𝑄 ∨ ¬ 𝑏 ∧ 𝑝𝑟𝑒 𝑐1, 𝑄  
𝑝𝑟𝑒 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 
𝑝𝑟𝑒 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝐼 

Calculating the verification conditions: 
𝑣𝑐 𝑠𝑘𝑖𝑝, 𝑄 = ∅ 
𝑣𝑐 𝑋 ≔ 𝑒, 𝑄 = ∅ 
𝑣𝑐 𝑐0; 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄  
𝑣𝑐 𝐢𝐟 𝑏  𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄  
𝑣𝑐 𝐰𝐡𝐢𝐥𝐞 𝑏  𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝑣𝑐 𝑐, 𝐼 ∪ {𝐼 ∧ 𝑏 ⇒ 𝑝𝑟𝑒 𝑐, 𝐼 , 𝐼 ∧ ¬𝑏 ⇒ 𝑄} 
𝑣𝑐 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 ⇒ 𝑄  

The main definition: 
𝑣𝑐𝑔 𝑃  𝑐 𝑄 = 𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 ∪ 𝑣𝑐(𝑐, 𝑄) 
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Correctness of VC 

The correctness calculus is correct: if we can prove all the 
verifcation conditons, the program is correct w.r.t to given 
pre- and postconditions. 

 

Formally: 

 

 

 

 

 

 

 

Proof: by induction on 𝑐. 

 

Theorem (Correctness of the VCG calculus) 
Given assertions 𝑃 and 𝑄 (with 𝑃 the precondition and 
𝑄 the postcondition), and  an annotated program, then 

 𝑅

𝑅∈𝑣𝑐𝑔(𝑐, 𝑄)

⇒ ⊨ 𝑃  𝑐 𝑄  
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Using VCG in Real Life 

We have just a toy language, but VCG can be used in real life. 
What features are missing? 

Modularity: the language must have modularity concepts, 
e.g. functions (as in C), or classes (as in Java), and we must be 
able to verify them separately.  

Framing: in our simple calculus, we need to specify which 
variables stay the same (e.g. when entering a loop). This 
becomes tedious when there are a lot of variables involved; it 
is more practical to specify which variables may change. 

References: languages such as C and Java use references, 
which allow aliasing. This has to be modelled semantically; 
specifically, the assignment rule has to be adapted. 

Machine arithmetic: programs work with machine words 
and floating point representations, not integers and real 
numbers. This can be the cause of insidious errors. 
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VCG Tools 

Often use an intermediate language for VCG and front-ends 
for concrete programming languages. 

 

The Why3 toolset (http://why3.lri.fr) 

 A verification condition generator 

 Front-ends for different languages:  
C (Frama-C), Java (defunct?) 

 

Boogie (Microsoft Research) 

 Frontends for programming languages such C, C#, Java. 

VCC – a verifying C compiler built on top of Boogie 

 Interactive demo:  
https://www.rise4fun.com/Vcc/ 
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VCC Example: Binary Search 

A correct (?) binary search implementation: 

 

 
#include <limits.h> 

 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

{     

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

 

  while (lo <= hi)  

     { 

      mid= (lo+ hi)/2; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

 

  return lo; 

} 
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VCC: Correctness Conditions? 

We need to annotate the program. 

Precondition: 

 a is an array of length a_len; 

 The array a is sorted. 

Postcondition: 

 Let r be the result, then: 

 if r is UINT_MAX, all elements of a are unequal to key; 

 if r is not UINT_MAX, then a[r] == key. 

Loop invariants: 

 hi is less-equal to a_len; 

 everything „left“ of lo is less then key; 

 everything „right“ of hi is larger-equal to key. 
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VCC Example: Binary Search 

Source code as annotated for VCC: 

#include <limits.h> 

#include <vcc.h> 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

  _(requires \thread_local_array(a, a_len)) 

  _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])  

  _(ensures \result != UINT_MAX ==> a[\result] == key)                 

  _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] !=  key)  

{ 

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

   

  while (lo <= hi)  

    _(invariant hi <= a_len) 

    _(invariant \forall unsigned int i; i < lo ==> a[i] <  key)  

    _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)  

    { 

      mid= (lo+ hi)/2; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

  return lo; 

} 
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Binary Search: the Corrected Program 

Corrected source code: 

 
#include <limits.h> 

#include <vcc.h> 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

  _(requires \thread_local_array(a, a_len)) 

  _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])  

  _(ensures \result != UINT_MAX ==> a[\result] == key)                 

  _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] !=  key)  

{ 

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

   

  while (lo < hi)  

    _(invariant hi <= a_len) 

    _(invariant \forall unsigned int i; i < lo ==> a[i] <  key)  

    _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)  

    { 

      mid= (hi-lo)/2+ lo; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

  return lo; 

} 
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Summary 

Starting from the relative completeness of the Floyd-Hoare 
calculus, we devised a verification condition generation (vcg) 
calculus which makes program verification viable. 

Verification condition generation reduces the question 
whether the given pre/postconditions hold for a program to 
the validity of a set of logical properties. 

 We do need to annotate the while loops with invariants. 

 Most of these logical properties can be discharged with 
automated theorem provers. 

To scale to real-world programs, we need to deal with 
framing,  modularity (each function/method needs to be 
verified independently), and machine arithmetic (integer 
word arithmetic and floating-points). 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11: Model Checking 

 12: Tools for Model Checking 

 13: Conclusions 
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Introduction 

 In the last lectures, we were verifying program properties with the 
Floyd-Hoare calculus (or verification condition generation). Program 
verification translates the question of program correctness into a 
proof in program logic (the Floyd-Hoare logic),  turning it into a 
deductive problem. 

 

Model-checking takes a different approach: instead of directly 
working with the (source code) of the program, we work with an 
abstraction of the system (the system model). Because we build an 
abstraction, this approach is also applicable at higher verification 
levels. (It is also complimentary to deductive verification.) 

 

 The key questions are: how do these models look like? What 
properties do we want to express, and how do we express and 
prove them? 
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Model Checking in the Development Cycle 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -  

Introduction 

Model checking operates on (abstract) state machines 

 Does an abstract system satisfy some behavioral property 
e.g. liveness (deadlock) or safety properties  

 consider traffic lights in Requirement Engineering 

 Example: “green must always follow red” 

 

Automatic analysis if state machine is finite 

 Push-button technology 

 User does not need to know logic (at least not for the 
proof) 

 

Basis is satisfiability of boolean formula in a finite domain (SAT). 
However, finiteness does not imply efficiency – all interesting 
problems are at least NP-complete, and SAT is no exception (Cook’s 
theorem). 

 

 

 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -  

The Model-Checking Problem 

What is ℳ?    A finite-state machine or Kripke structure. 

What is 𝜙?     Temporal logic 

How to prove it? 

 By enumerating the states and thus construct a model 

(hence model checking) 

 The basic problem: state explosion 

The Basic Question:  
Given a model ℳ and property 𝜙, we want to know if 

 ℳ ⊨ 𝜙 
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Finite State Machine (FSM) 

Variations of this definition exists, e.g. no initial states. 

 

Note there is no final state, and no input or output (this is the 
key difference to automata). 

 

 If  is a function, the FSM is deterministic, otherwise it is non-
deterministic. 

Definition: Finite State Machine (FSM) 

A FSM is given by ℳ = Σ, 𝐼, →  where 

• Σ is a finite set of states,  

• 𝐼 ⊆ Σ is a set of initial states, and 
• →⊆ Σ × Σ   is a transition relation, s.t. → is left-total: 

∀𝑠 ∈ Σ. ∃𝑠′ ∈ Σ. 𝑠 → 𝑠′ 
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Example: A Simple Oven 

The oven has states and operations: 
open and close door, turn oven on 
and off, warm up, cook, …  

 Operation names are for 
decoration purposes only. 

FSM: 

cook 

start 
oven 

open  
door 

open  
door 

close  
door 

start 
oven 

close  
door 

open  
door 

warmup 

done 

s1 

s6 s5 

s4 s3 s2 
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Questions to ask 

We want to answer questions about the system behaviour like 
 

 If the cooker heats, then is the door closed? 

When the start button is pushed, will the cooker eventually 
heat up? 

When the cooker is correctly started, will the cooker 
eventually heat up? 

When an error occurs, will it be still possible to cook? 

 

We are interested in questions on the development of the 
system over time, i.e. possible traces of the system given by a 
succession of states. 
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Temporal Logic 

Expresses properties of possible succession of states 

Linear Time 
 
 Every moment in time has a 

unique successor 
 Infinite sequences of moments 
 Linear Temporal Logic  LTL 

Branching Time 
 
 Every moment in time has several 

successors 
 Infinite tree 
 Computational Tree Logic  CTL 

s1 

s3 s2 

s1 

s1 s6 

s3 

s1 

s5 

s1 

s3 s2 

s6 s1 s5 
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Kripke Structures 
 

 In order to talk about propositions, we label the states of a FSM with 
propositions which hold there. This is called a Kripke structure. 

 

 

 

 

 

 

 

 

 

 

 Equivalent formulation: for each state, set of propositions which 
hold in this state, i.e. 𝑉′: Σ → 2𝑃𝑟𝑜𝑝  

 

Definition: Kripke structure 
Given a set 𝑃𝑟𝑜𝑝 of propositions, then a Kripke structure 
is given by K =  〈Σ, 𝐼, →, 𝑉〉 where 
• Σ is a finite set of states,  
• 𝐼 ⊆ Σ is a set of initial states, 
• →⊆ Σ × Σ is a left-total transition relation, and 
• 𝑉: 𝑃𝑟𝑜𝑝 → 2Σ is a valuation function mapping 

propositions to the set of states in which they hold 
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Kripke Structure: Example 

 

 Example: Cooker 

 Propositions: 

 Cooker is starting: S 

 Door is closed:       C 

 Cooker is heated:  H 

 Error occurred:      E 

 

 Kripke structure: 
 Σ = {𝑠1, … , 𝑠6} 

 𝐼 = 𝑠1  

 → = { 𝑠1, 𝑠2 , 𝑠2, 𝑠5 , 𝑠5, 𝑠2 , (𝑠1, 𝑠3) 

            𝑠3, 𝑠1 , 𝑠3, 𝑠6 , 𝑠6, 𝑠4 , 𝑠4, 𝑠4 ,  
            𝑠4, 𝑠3 , (𝑠4, 𝑠1)}  

 V S =  {𝑠2, 𝑠5, 𝑠6},  
V C =  {𝑠3, 𝑠4, 𝑠5, 𝑠6}, 
V H =  {𝑠4}, V E =  {𝑠2} 

 

cook 

start 
oven 

open  
door 

open  
door 

close  
door 

start 
oven 

close  
door 

open  
door 

warmup 

done 

:S, : C,  
: H, : E 

S, C,  
: H, : E 

:S, C,  
: H, : E 

S, C,  
: H, :E 

S, : C,  
: H,  E 

:S, C,  
H, : E 

s1 

s6 s5 

s4 s3 s2 
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Semantics of Kripke Structures (Prop) 

We now want to define a logic in which we can formalize 
temporal statements, i.e. statements about the behaviour of 
the system and its changes over time. 

The basis is open propositional logic (PL): negation, 
conjunction, disjunction, implication*. 

With that, we define how a PL-formula 𝜙 holds in a Kripke 
structure 𝐾 at state 𝑠 , written as 𝐾, 𝑠 ⊨ 𝑝. 

Let 𝐾 = 〈Σ, 𝐼, →, 𝑉〉 be a Kripke structure,  𝑠 ∈ Σ, and  
𝜙 a formula of propositional logic, then 

 𝐾, 𝑠 ⊨ 𝑝   if 𝑝 ∈ 𝑃𝑟𝑜𝑝 and 𝑠 ∈ 𝑉(𝑝) 

 𝐾, 𝑠 ⊨ ¬𝜙    if not 𝐾, 𝑠 ⊨ 𝜙  

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2 

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2 

* Note implication is derived: 𝜙1 → 𝜙2= ¬𝜙1 ∨ 𝜙2 
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Linear Temporal Logic 

 The formulae of LTL are given as 

      𝜙 ∷=  𝑝  ¬ 𝜙  𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2            Propositional formulae 
                  𝑋 𝜙   𝐺 𝜙   𝐹  𝜙  𝜙1 𝑈 𝜙2           Temporal operators 

 X p:  in the next moment p holds 

 

 

G p: p holds in all moments 

 

 

 F p:  there is a moment in the future when p will hold 

 

 

 p U q:  p holds in all moments until q holds 

p 

p 

p p p p p p 

p p p q 
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Examples of LTL formulae 

 If the cooker heats, then is the door closed? 

   𝐺(𝐻 → 𝐶) 

 Is it possible to cook (first starting up, then 
heating)? 

𝐹 (𝑆 ∧ 𝑋 𝐻) 

Whenever an error occurs, will it still 
be possible to cook? 

𝐺 (𝐸 → 𝐹 𝑆 ∧ 𝑋 𝐻 ) 

 

No, need to add 
a transition. 

cook 

start 
oven 

open  
door 

open  
door 

close  
door 

start 
oven 

close  
door 

open  
door 

warmup 

done 

:S, : C,  
: H, : E 

S, C,  
: H, : E 

:S, C,  
: H, : E 

S, :C,  
: H, :E 

S, : C,  
: H,  E 

:S, C,  
H, : E 

s1 

s6 s5 

s4 s3 s2 

reset 
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Paths in an FSM/Kripke Structure 

A path in an FSM (or Kripke structure) is a sequence of states 
starting in one of the initial states and connected by the 
transition relation (essentially, a run of the system). 

 

Formally: for an FSM 𝑀 = Σ, 𝐼, →  or a Kripke structure 
𝐾 = Σ, 𝐼, →, 𝑉 , a path is given by a sequence 𝑠1𝑠2𝑠3 … ∈ Σ∗ 
such that 𝑠1 ∈ 𝐼 and 𝑠𝑖 → 𝑠𝑖+1. 

 

For a path p = 𝑠1𝑠2𝑠3 …, we write  

 𝑝𝑖 for selecting the 𝑖-th element 𝑠𝑖 and  

 𝑝𝑖 for the suffix starting at position i, 𝑠𝑖𝑠𝑖+1𝑠𝑖+2 … 
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Semantics of LTL in Kripke Structures 

Let 𝐾 = 〈Σ, 𝐼, →, 𝑉〉 be a Kripke Structure and 𝜙 an LTL formula, 
then we say 𝐾 ⊨ 𝜙 (𝝓 holds in 𝑲),  if 𝐾, 𝑠 ⊨ 𝜙 for all paths  
𝑠 = 𝑠1𝑠2𝑠3 … in 𝐾, where: 

 𝐾, 𝑠 ⊨ 𝑝    if 𝑝 ∈ 𝑃𝑟𝑜𝑝, 𝑠1 ∈ 𝑉(𝑝) 

 𝐾, 𝑠 ⊨ ¬𝜙    if not 𝐾, 𝑠 ⊨ 𝜙  

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2 

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2 

 

 𝐾, 𝑠 ⊨ 𝑋 𝜙    if 𝐾, 𝑠2 ⊨ 𝜙 

 𝐾, 𝑠 ⊨ 𝐺 𝜙    if 𝐾, 𝑠𝑛 ⊨ 𝜙 for all 𝑛 > 0 

 𝐾, 𝑠 ⊨ 𝐹 𝜙    if 𝐾, 𝑠𝑛 ⊨ 𝜙 for some 𝑛 > 0 

 𝐾, 𝑠 ⊨ 𝜙 𝑈 𝜓     if 𝐾, 𝑠𝑛 ⊨ 𝜓 for some 𝑛 > 0,  
                               and for all 𝑖, 0 < 𝑖 < 𝑛, we have 𝐾, 𝑠𝑖 ⊨ 𝜙 
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More examples in the cooker 

Question: does the cooker work? 

Specifically, cooking means that first the door is open, then the 
oven heats up, cooks, then the door is open again, and all 
without an error. 

 𝑐 = ¬𝐶 ∧ 𝑋 𝑆 ∧ 𝑋(𝐻 ∧ 𝐹¬𝐶) ∧ 𝐺 ¬𝐸 – not quite. 

 𝑐 = ¬𝐶 ∧  ¬𝐸 ∧  𝑋 𝑆 ∧ ¬𝐸 ∧ 𝑋(𝐻 ∧ ¬𝐸 ∧ 𝐹(¬𝐶 ∧ ¬𝐸 )) – 
better 

 

So, does the cooker work? 

 There is at least one path s.t. 𝑐 holds eventually. 

 This is not 𝐹 𝑐, which says that all paths must eventually 
cook (which might be too strong). 

 We cannot express this in LTL; this is a principal limitation.  
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Computational Tree Logic (CTL) 

LTL does not allow us the quantify over paths, e.g. assert the 
existence of a path satisfying a particular property. 

To a limited degree, we can solve this problem by negation: 
instead of asserting a property 𝜙, we check whether  ¬𝜙 is 
satisfied; if that is not the case,  𝜙 holds. But this does not 
work for mixtures of universal and existential quantifiers.  

Computational Tree Logic (CTL) is an extension of LTL which 
allows this by adding universal and existential quantifiers to 
the modal operators. 

The name comes from considering paths in the computa-
tional tree obtained by unwinding the transition relation of 
the FSM/Kripke structure.  
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Computational Tree Logic (CTL) 

The formulae of CTL are given as 
      𝜙 ∷= 𝑝  ¬ 𝜙  𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2                             Propositional formulae 

                𝐴𝑋 𝜙  𝐸𝑋 𝜙  𝐴𝐺 𝜙  𝐸𝐺 𝜙 
                   𝐴𝐹 𝜙  𝐸𝐹 𝜙  𝜙1 𝐴𝑈 𝜙2  𝜙1𝐸𝑈 𝜙2           Temporal operators 

 

Note that CTL formulae can be considered to be a LTL 
formulae with a modality (A or E) added to each temporal 
operator. 

 Generally speaking, the A modality says the temporal 
operator holds for all paths, and the E modality says it 
only holds for all least one path. 

Hence, we do not define a satisfaction for a single path p, 
but with respect to a specific state in an FSM. 
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Computational Tree Logic CTL 
 
Specifying possible paths by combination 

 Branching behavior 
All paths:  A,  exists path: E 

 Succession of states in a path 
Temporal operators X, G, F, U 

 

For example: 

 AX p :   in all paths the next state satisfies p 

 EX p :    there is an path in which the next state satisfies p 

 p AU q :  in all paths p holds as long as q does not hold 

 EF p :    there is an path in which eventually p holds  
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Semantics of CTL in Kripke Structures 

For a Kripke structure 𝐾 = Σ, 𝐼, →, 𝑉  and a CTL-formula 𝜙, we 
say 𝐾 ⊨ 𝜙 (𝝓 holds in 𝑲) if 𝐾, 𝑠 ⊨ 𝜙 for all 𝑠 ∈ 𝐼, where 𝐾, 𝑠 ⊨ 𝜙 is 
defined inductively as follows (omitting the clauses for 
propositional operators 𝑝,¬,  ∧, ∨): 

 

 𝐾, 𝑠 ⊨ 𝐴𝑋 𝜙   iff for all 𝑠′ with 𝑠 → 𝑠′,  we have  𝐾, 𝑠′ ⊨ 𝜙 

 𝐾, 𝑠 ⊨ 𝐸𝑋 𝜙   iff for some 𝑠′ with 𝑠 → 𝑠′,  we have  𝐾, 𝑠′ ⊨ 𝜙 

 𝐾, 𝑠 ⊨ 𝐴𝐺 𝜙   iff for all paths 𝑝 with 𝑝1 = 𝑠,  
                                           we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.  

 𝐾, 𝑠 ⊨ 𝐸𝐺 𝜙   iff for some path 𝑝 with 𝑝1 = 𝑠,  
                                           we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.  

(continued on next slide) 

 

 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -  

Semantics of Kripke Structures (CTL) 

Given a Kripke structure 𝐾 = 〈Σ, 𝐼, →, 𝑉〉, 𝑠 ∈ Σ,  𝜙 a CTL-formula, 
then: 

 

 𝐾, 𝑠 ⊨ 𝐴𝐹 𝜙      iff for all paths 𝑝 with 𝑝1 = 𝑠,  
                                                we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖 

 𝐾, 𝑠 ⊨ 𝐸𝐹 𝜙       iff for some path 𝑝 with 𝑝1 = 𝑠,  
                                                 we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖 

 𝐾, 𝑠 ⊨ 𝜙 𝐴𝑈 𝜓   iff for all paths 𝑝 with 𝑝1 = 𝑠,  
                             there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙 

 𝐾, 𝑠 ⊨ 𝜙 𝐸𝑈 𝜓   iff for some path 𝑝 with 𝑝1 = 𝑠,  
                             there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙 
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Examples CTL 

 If the cooker heats, then is the door closed 

 

                 𝐴𝐺 (¬𝐻 ∨ 𝐶)   

 

 It is always possible  that  the  
cooker will eventually warmup. 

 

             𝐴𝐺 𝐸𝐹 ¬𝐻 ∧ 𝐸𝑋 𝐻   

cook 

reset 

start 
oven 

open  
door 

open  
door 

close  
door 

start 
oven 

close  
door 

open  
door 

warmup 

done 

:S, : C,  
: H, : E 

S, C,  
: H, : E 

:S, C,  
: H, : E 

S, :C,  
: H, :E 

S, : C,  
: H,  E 

:S, C,  
H, : E 

s1 

s6 s5 

s4 s3 s2 
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LTL, CTL and CTL*  

CTL is more expressive than LTL, but (surprisingly) there are 
also properties we can express in LTL but not in CTL:  

 The  formula 𝐹𝜙 → 𝐹𝜓 cannot be expressed in CTL 

 “When 𝜙 occurs somewhere, then 𝜓 also occurs 
somewhere.”  

 Not: 𝐴𝐹𝜙 → 𝐴𝐹𝜓, nor 𝐴𝐺(𝜙 → 𝐴𝐹 𝜓)  

 The  formula 𝐴𝐺 𝐸𝐹𝜙  cannot be expressed in LTL 

 “For all paths, it is always the case that there is some 
path on which 𝜙 is eventually true.” 

CTL* -  Allow for the use of temporal operators (X, G, F, U) 
without a directly preceded path quantifiers (A, E) 

 e.g.  AGF φ is allowed 

CTL* subsumes both LTL and CTL.  
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Complexity and State Explosion 

Even our small oven example has 6 states with 4 labels each. 
If we add one integer variable with 32 bits (e.g. for the heat), 
we get 232 additional states. 

Theoretically, there is not much hope. The basic problem of 
deciding whether a formula holds (satisfiability problem) for 
the temporal logics we have seen has the following 
complexity: 

 LTL without 𝑈 is NP-complete; 

 LTL is PSPACE-complete; 

 CTL (and CTL*) are EXPTIME-complete. 

This is known as state explosion. 

But at least it is decidable. Practically, state abstraction is the 
key technique, so e.g. for an integer variable 𝑖 we identify all 
states with 𝑖 ≤ 0, and those with 0 < 𝑖. 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -  

Safety and Liveness Properties 

 Safety: nothing bad ever happens 

 E.g. “x is always not equal 0” 

 Safety properties are falsified by a bad (reachable) state 

 Safety properties can falsified by a finite prefix of an execution 
trace 

 

 Liveness: something good will eventually happen 

 E.g. “system is always terminating” 

 Need to keep looking for the good thing forever 

 Liveness properties can be falsified by an infinite-suffix of an 
execution trace:  e.g. finite list of states beginning with the 
initial state followed by a cycle showing you a loop that can 
cause you to get stuck and never reach the “good thing” 
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Summary 

Model-checking allows us to show to show properties of 
systems by enumerating the system’s states, by modelling 
systems as finite state machines, and expressing properties 
in temporal logic. 

We considered Linear Temporal Logic (LTL) and Computational 
Tree Logic (CTL). LTL allows us to express properties of single 
paths, CTL allows quantifications over all possible paths of an 
FSM. 

The basic problem: the system state can quickly get huge, and 
the basic complexity of the problem is horrendous, leading to 
so-called state explosion. But the use of abstraction and state 
compression techniques make model-checking bearable. 

Next week: 

 Practical model-checking (with NuSMV and/or Spin). 
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Organisatorisches 

Wir bieten an folgenden Terminen mündliche Prüfungen an:  

 

Mi, 07.02.2018  

Do, 15.02.2018  

Mi, 28.02.2018  

 

Anmeldung per Mail beim Veranstalter. 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11: Model Checking 

 12: Tools for Model Checking 

 13: Conclusions 
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Introduction 

 In the last lecture, we saw the basics of model-checking: how to 
model systems on an abstract level with FSM or Kripke structures, 
and how to specify their properties with temporal logic (LTL and 
CTL).  

 This was motivated by the promise of “efficient tool support”. 

 So how does this tool support look like, and how does it work? We 
will hopefully answer these two questions in the following… 

 

Brief overview: 

 An Example: The Railway Crossing. 

 Modelchecking with NuSMV and Spin. 

 Algorithms for Model Checking. 
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The Railway Crossing 

Quelle: Wikipedia 
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First Abstraction 
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The Model 

States of the train: States of the car: 

States of the gate: 
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The Finite State Machine 

The states of the FSM is  given by mapping variables 
𝑐𝑎𝑟, 𝑡𝑟𝑎𝑖𝑛, 𝑔𝑎𝑡𝑒 to the domains 

Σ𝑐𝑎𝑟 = 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑙𝑣𝑛𝑔, 𝑎𝑤𝑎𝑦  
Σ𝑡𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑙𝑣𝑛𝑔, 𝑎𝑤𝑎𝑦  
Σ𝑔𝑎𝑡𝑒  = 𝑜𝑝𝑒𝑛, 𝑐𝑙𝑠𝑑  

  Or alternatively, states are a 3-tuples  
𝑠 ∈ Σ = Σ𝑐𝑎𝑟 × Σ𝑡𝑟𝑎𝑖𝑛 × Σ𝑔𝑎𝑡𝑒 

 

The transition relation is given by  
𝑎𝑤𝑎𝑦, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛 → 𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛  
𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛 → 𝑥𝑖𝑛𝑔, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛  
𝑎𝑝𝑝𝑟, 𝑎𝑝𝑝𝑟, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑐𝑙𝑠𝑑  
𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑙𝑣𝑛𝑔, 𝑐𝑙𝑠𝑑  
𝑎𝑝𝑝𝑟, 𝑙𝑣𝑛𝑔, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛  

… 
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Properties of the Railway Crossing  

We want to express properties such as  

 Cars and trains may never cross at the same time. 

 The car can always leave the crossing. 

 Approaching trains may eventually cross. 

 There are cars crossing the tracks. 

 

The first two are safety properties, the last two are liveness 
properties. 

 

To formulate these in temporal logic, we first need the basic 
propositions which talk about the variables of the state. 
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Basic Propositions 

The basic propositions 𝑃𝑟𝑜𝑝 are given as equalities over the 
state variables: 

𝑐𝑎𝑟 = 𝑣 ∈ 𝑃𝑟𝑜𝑝  mit 𝑣 ∈ Σ𝑐𝑎𝑟,  
𝑡𝑟𝑎𝑖𝑛 = 𝑣 ∈ 𝑃𝑟𝑜𝑝  mit 𝑣 ∈ Σ𝑡𝑟𝑎𝑖𝑛, 

𝑔𝑎𝑡𝑒 = 𝑣 ∈ 𝑃𝑟𝑜𝑝  mit 𝑣 ∈ Σ𝑔𝑎𝑡𝑒 

 

The Kripke structure valuation 𝑉 maps each basic proposition 
to all states where this equality holds. 
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The Properties 

Cars and trains never cross at the same time: 
𝐺¬  𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 ∧ 𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖𝑛𝑔  

 

A car can always leave the crossing: 

𝐺 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 → 𝐹 𝑐𝑎𝑟 = 𝑙𝑣𝑛𝑔  

 

Approaching trains may eventually cross: 

𝐺 𝑡𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟 → 𝐹 𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖𝑛𝑔  

 

There are cars which are crossing the tracks: 
𝐸𝐹 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔  

 

 Not expressible in LTL, 𝐹 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔  means something stronger. 
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Model-Checking Tools: NuSMV2 

NuSMV is a reimplementation of SMV, the first model-checker 
to use BDDs. NuSMV2 also adds SAT-based model checking. 

Systems are modelled as synchronous FSMs (Mealy 
automata) or asynchronous processes*. 

Properties can be formulated  in LTL and CTL. 

Written in C, open source. Latest version 2.6.0 from Oct. 2015. 

Developed by  Fondazione Bruno Kessler, Carnegie Mellon 
University, the University of Genoa and the University of 
Trento. 

 

 

* This is apparently depreciated now. 
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Model-Checking Tools: Spin 

Spin was originally developed by Gerard Holzmann at Bell 
Labs in the 80s. 

Systems modelled in Promela (Process Meta Language): 
asynchronous communication, non-deterministic automata. 

Spin translates the automata into a C program, which 
performs the actual model-checking. 

Supports LTL and CTL. 

Latest version 6.4.7 from August 2017. 

Spin won the ACM System Software Award in 2001. 
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Conclusions 

Tools such as NuSMV2 and Spin make model-checking 
feasible for moderately sized systems. 

 

This allows us to find errors in systems which are hard to find 
by testing alone. 

 

The key ingredient is efficient state abstraction. 

 But careful: abstraction must preserve properties. 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11: Model Checking 

 12: Tools for Model Checking 

 13: Conclusions 
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The Global Picture 

 
Notions of Quality 
Legal Requirements 

Software Development Process 

Hazard Analysis 

Program Analysis 

Testing 

UML / SysML 

Formal Modeling OCL 

Verification / VCG 

Model Checking 
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Examples of Formal Methods in Practice 

Hardware verification: 

 Intel: formal verification of microprocessors (Pentium/i-Core) 

 Infineon: equivalence checks (Aurix Tricore) 

Software verification: 

 Microsoft: Windows device drivers  

 Microsoft: Hyper-V hypervisor (VCC, VeriSoft project) 

 NICTA (Aus): L4.verified (Isabelle) 

Tools used in Industry (excerpt): 

 AbsInt tools: aiT, Astree, CompCert (C) 

 SPARK tools (ADA) 

 SCADE (MatLab/Simulink) 

 UPAAL, Spin, FDR2, other model checkers 
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Safe and Secure Systems – Uni Bremen 

AG Betriebssysteme - Verteilte Systeme / Verified Systems (Peleska) 

 Testing, abstract interpretation 

AG Datenbanksysteme (Gogolla) 

 UML, OCL 

AG Modelling of Technical Systems (Ehlers) 

 Modeling, decision procedures, synthesis 

AG Rechnerarchitektur / DFKI (Drechsler, Hutter, Lüth) 

 System verification, model checking, security 

AG Softwaretechnik (Koschke) 

 Software engineering, reuse 
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Organisatorisches 

Bitte nehmt an der Evaluation auf stud.ip teil! 

 

Was war euer Eindruck vom Übungsbetrieb im Vergleich zum 
herkömmlichen Übungsbetrieb? 

 Man lernt mehr – weniger? 

 Es ist mehr – weniger Arbeit? 

 Kommentare in Freitextfeldern bei der stud.ip Evaluation. 

 

Wir bieten an folgenden Terminen mündliche Prüfungen an:  

 Mi, 07.02.2018  

 Do, 15.02.2018  

 Mi, 28.02.2018  

    Anmeldung per Mail etc. 
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Questions* 

* Which might be asked in an exam, hypothetically speaking. 
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General Remarks 

The exam lasts 20-30 minutes, and is taken solitary. 

We are not so much interested in well-rehearsed details, but 
rather in principles. 

We have covered a lot of material – an exam may well not 
cover all of it.  

 We will rather go into detail then spend the exam with 
well-rehearsed phrases from the slides. 

 Emphasis will be on the later parts of the course 
(SysML/OCL, testing, static analysis, Floyd-Hoare logic, 
model-checking) rather than the first. 

 If you do not know an answer, just say so – we can move 
on to a different question. 
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Lecture 01: Concepts of Quality 

 

 

What is quality? What are quality criteria? 

 

What could be useful quality criteria? 

 

What is the conceptual difference between ISO 9001 and the 
CMM (or Spice)? 
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Lecture 02: Legal Requirements  

What is safety? 

Norms and Standards: 

 Legal situation 

 What is the machinery directive? 

 Norm landscape: first, second, third-tier norms 

 Important norms: IEC 61508, ISO 26262, DIN EN 50128, 
Do-178B/C, ISO 15408,…  

Risk Analysis: 

 What is SIL, and what is for? What is a target SIL? 

 How do we obtain a SIL?  

 What does it mean for the development? 
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Lecture 03: SW Development Process 

Which software development models did we encounter? 

How do the following work, and what are their respective 
advantages/disadvantages: 

 Waterfall model, spiral model, agile development, MDD, 
V-model 

Which models are appropriate for safety-critical systems? 

Formal software development: 

 What is it, and how does it work? 

 What kind of properties are there, how are they defined? 

 Development structure: horizontal vs. vertical, layers and 
views  
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Lecture 04: Hazard Analysis 

What is hazard analysis for, and what are its main results? 

 

Where in development process is it used? 

 

Basic approaches:  

 bottom-up vs. top-down (what does that mean?) 

 

Which methods did we encounter? 

 How do they work, advantages/disadvantages? 
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Lecture 05: High-level design with SysML 

What is a model (in general, in UML/SysML)? 

 

What is UML, what is SysML, what are the differences? 

 

Basic elements of SysML for high-level design: 

 Structural diagrams 

 Package diagram, block definition diagram, internal 
block diagram 

 Behavioural Diagrams: 

 Activity diagram, state machine diagram, sequence 
diagram 

 How do we use this diagrams to model a particular 
system, e.g. a coffee machine? 
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Lecture 06: Formal Modeling with OCL 

What is OCL? What is used for, and why? 

 

Characteristics of OCL (pure, not executable, typed) 

 

What can it be used for? 

 

OCL types: 

 Basic types 

 Collection types 

 Model types 

 

OCL logic: four-valued Kleene logic 
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Lecture 07: Testing 

What is testing, what are the aims? What can testing achieve, 
what not? 

What are test levels (and which do we know)? 

What are test methods? 

What is a black-box test? How are the test cases chosen? 

What is a white-box test? 

What is the control-flow graph of a program? 

What kind of coverages are there, and how are they defined? 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -  

Lecture 08: Static Program Analysis  

What is that? What is the difference to testing? 

What is the basic problem, and how is it handled? 

What does we mean when an analysis is sound/complete? 

What is over/under approximation? 

What analysis did we consider? How did they work? 

 What are the gen/kill sets? 

 What is forward/backward analysis? 
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Lecture 09: Floyd-Hoare-Logic 

What is the basic idea, and what are the basic ingredients? 

Why do we need assertions, and logical variables? 

What do the following notations mean: 

 ⊨ 𝑃  𝑐 𝑄  

 ⊨ 𝑃 𝑐 𝑄  

 ⊢ 𝑃  𝑐 𝑄  

How does Floyd-Hoare logic work? 

What rules does it have? 

 

 

How is Tony Hoare‘s last name pronounced? 
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Lecture 10: Verification Cond. Generation 

What do completeness and soundness of the Floyd-Hoare 
logic mean? Which of these properties does it have? 

 

What is the weakest precondition, and how do we calculate it? 

 

What are program annotations, why do we need them, and 
how are they used? 

 

What are verification conditions, and how are they calculated? 
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Lecture 11/12: Model Checking 

What is model-checking, and how is it used? What is the 
difference to Floyd-Hoare logic? 

What is a FSM/Kripke structure? 

Which models of time did we consider? 

For LTL, CTL: 

 What are the basic operators, when does a formula hold, 
and what kind of properties can we formulate? 

 Which one is more powerful? 

 Are they decidable (with which complexity)? 

Which tools did we see? What are their 
differences/communalities? 
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Thank you, and good bye. 


