

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 1:
Introduction
and Notions of Quality

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Organisatorisches

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Generelles

Einführungsvorlesung zum Masterprofil S & Q

6 ETCS-Punkte

Vorlesung:

 Montag 12 – 14 Uhr (MZH 1110)

Übung:

 Dienstag 12 – 14 Uhr (MZH 1110)

Material (Folien, Artikel, Übungsblätter) auf der Homepage:

http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws17

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Vorlesung

Foliensätze als Kernmaterial

 Sind auf Englisch (Notationen!)

 Nach der Vorlesung auf der Homepage verfügbar

Ausgewählte Fachartikel als Zusatzmaterial

 Auf der Homepage verlinkt (ggf. in StudIP)

Bücher nur für einzelne Teile der Vorlesung verfügbar:
 Nancy Leveson: Engineering a Safer World

 Ericson: Hazard Analysis Techniques for System Safety

 Nilson, Nilson: Principles of Program Analysis

 Winskel: The Formal Semantics of Programming Languages

Zum weiteren Stöbern:

 Wird im Verlauf der Vorlesung bekannt gegeben

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Übungen

Übungsblätter:

 „Leichtgewichte“ Übungsblätter, die in der Übung
bearbeitet und schnell korrigiert werden können.

 Übungsblätter vertiefen Vorlesungsstoff.

 Bewertung gibt schnell Feedback.

Übungsbetrieb:

 Gruppen bis zu 3 StudentInnen

 Ausgabe der Übungsblätter Dienstag in der Übung

 Zeitgleich auf der Homepage

 Erstes Übungsblatt: nächste Woche (24.10.2017)

 Bearbeitung: während der Übung

 Abgabe: bis Dienstag abend

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Prüfungsform

Bewertung der Übungen:

 A (sehr gut (1.0) – nichts zu meckern, nur wenige Fehler)

 B (gut (2.0) – kleine Fehler, im großen und ganzen gut)

 C (befriedigend (3.0) – größere Fehler oder Mängel)

 Nicht bearbeitet (oder zu viele Fehler)

Prüfungsleistung:

 Teilnahme am Übungsbetrieb (20%)

 Übungen keine Voraussetzung

 Mündliche Prüfung am Ende des Semesters (80%)

 Einzelprüfung, ca. 20- 30 Minuten

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Ziel der Vorlesung

Methoden und Techniken zur Entwicklung
sicherheitskritischer Systeme

Überblick über verschiedene Mechanismen
d.h. auch Überblick über vertiefende Veranstaltungen
 Theorie reaktiver Systeme

 Grundlagen der Sicherheitsanalyse und des Designs

 Formale Methoden der Softwaretechnik

 Einführung in die Kryptographie

 Qualitätsorientierter Systementwurf

 Test von Schaltungen und Systemen

 Informationssicherheit -- Prozesse und Systeme

Verschiedene Dimensionen

 Hardware vs. Software

 Security vs. Safety

 Qualität der Garantien

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Overview

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Objectives

 This is an introductory lecture for the topics

 Quality – Safety – Security

 Bird’s eye view of everything relevant related to the development of
systems of high quality, high safety or high security.

 The lecture reflects the fundamentals of the research focus quality, safety
& security at the department of Mathematics and Computer Science (FB3)
at the University of Bremen. This is one of the three focal points of
computer science at FB3, the other two being Digital Media and Artificial
Intelligence, Robotics & Cognition.

 This lecture is read jointly (and in turns) by Dieter Hutter, Christoph Lüth,
and Jan Peleska.

 The choice of material in each semester reflects personal preferences.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Ariane 5

Stuxnet

Chip & PIN

Flight AF 447

Our car

Friday October 7,2011

By Daily Express Reporter

AN accounting error yesterday forced outsourcing

specialist Mouchel into a major profits warning and

sparked the resignation of its chief executive.

Why bother with
Quality, Safety, and Security ?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Ariane 5

11

Ariane 5 exploded on its virgin flight (Ariane Flight 501) on
4.6.1996.

How could that happen?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

What Went Wrong With Ariane Flight 501?

(1) Self-destruction due to instability;

(2) Instability due to wrong steering movements (rudder);

(3) On-board computer tried to compensate for (assumed) wrong trajectory;

(4) Trajectory was calculated wrongly because own position was wrong;

(5) Own position was wrong because positioning system had crashed;

(6) Positioning system had crashed because transmission of sensor data to
ground control failed with integer overflow;

(7) Integer overflow occurred because values were too high;

(8) Values were too high because positioning system was integrated
unchanged from predecessor model, Ariane-4;

(9) This assumption was not documented because it was satisfied tacitly with
Ariane-4.

(10)Positioning system was redundant, but both systems failed (systematic
error).

(11)Transmission of data to ground control also not necessary.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Two trains collided on a single-track line close to Bad Aibling

Human error ?

 cf. Nancy Leveson: Engineering a Safer World

Railway Accident in Bad Aibling 2016

13

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

from: c't 1/2003 (Heise Verlag)

from: Daily Mail Aug. 2014

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Frisch auf den Tisch, ein
Evergreen zum Thema
„Sicherheitslücken in
täglich genutzten
Protokollen…“

Heise Security, 17.10.2017

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

What is Safety and Security?

Safety:

 product achieves acceptable levels of risk or harm to
people, business, software, property or the environment
in a specified context of use

 Threats from “inside”

 Avoid malfunction of a system (e.g. planes, cars,
railways…)

Security:

 Product is protected against potential attacks from
people, environment etc.

 Threats from “outside”

 Analyze and counteract the abilities of an attacker

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Software Development Models

Definition of software development process and documents

Examples:

 Waterfall Model

 V-Model

 Model-Driven
Architectures

 Agile Development

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

mathematical notions

Informal
documents

program

formal specifications

requirements

proofs

Formal Software Development

Informal
Notions

refinement

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Verification and Validation

Verification: have we built the system right?

 i.e. correct with respect to a reference artefact

 specification document

 reference system

 Model

Validation: have we built the right system

 i.e. adequate for its intended operation?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

V&V Methods

 Testing

 Test case generation, black- vs. white box

 Hardware-in-the-loop testing: integrated HW/SW system is tested

 Software-in-the-loop testing: only software is tested

 Program runs using symbolic values

 Simulation

 An executable model is tested with respect to specific properties

 This is also called Model-in-the-Loop Test

 Static/dynamic program analysis

 Dependency graphs, flow analysis

 Symbolic evaluation

 Model checking

 Automatic proof by reduction to finite state problem

 Formal Verification

 Symbolic proof of program properties

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Concepts of Quality

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

What is Quality?

Quality is the collection of its characteristic properties

Quality model: decomposes the high-level definition by
associating attributes (also called characteristics, factors, or
criteria) to the quality conception

Quality indicators associate metric values with quality
criteria, expressing “how well” the criteria have been fulfilled
by the process or product.

 The idea is that to measure quality, with
the aim of continuously improving it.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

Quality Criteria: Different „Dimensions“ of Quality

For the development of artifacts quality criteria can be
measured with respect to the

 development process (process quality)

 final product (product quality)

Another dimension for structuring quality conceptions is

 Correctness: the consistency with the product and its
associated requirements specifications

 Effectiveness: the suitability of the product for its
intended purpose

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Quality Criteria (cont.)

A third dimension structures quality according to product
properties:

 Functional properties: the specified services to be
delivered to the users

 Structural properties: architecture, interfaces,
deployment, control structures

 Non-functional properties: usability, safety, reliability,
availability, security, maintainability, guaranteed worst-
case execution time (WCET), costs, absence of run-time
errors, …

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Quality (ISO/IEC 25010/12)

 “Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and
software quality models”

 Quality model framework (replaces the older ISO/IEC
9126)

Product quality model

 Categorizes system/software product quality properties

Quality in use model

 Defines characteristics related to outcomes of interaction
with a system

Quality of data model

 Categorizes data quality attributes

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Product
Quality

Functional
suitability

Completeness
Correctness

Appropriateness

Performance
efficiency

Time behavior
Resource
utilization
Capacity

Compatibility

Co-existence
Interoperability

Usability

Appropriateness
recognizability

Learnability
Operability
User error
protection

User interface
aesthetics

Accessibility

Reliability

Maturity
Availability

Fault tolerance
Recoverability

Security

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability

Analysability
Modifiability
Testability

Portability

Adaptability
Installability

Replaceability

Source: ISO/IEC FDIS 25010

Product Quality Model

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

Product
Quality

Functional
suitability

Completeness
Correctness

Appropriateness

Performance
efficiency

Time behavior
Resource
utilization
Capacity

Compatibility

Co-existence
Interoperability

Usability

Appropriateness
recognizability

Learnability
Operability
User error
protection

User interface
asthetics

Accessibility

Reliability

Maturity
Availability

Fault tolerance
Recoverability

Security

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability

Analysability
Modifiability
Testability

Portability

Adaptability
Installability

Replaceability

Source: ISO/IEC FDIS 25010

How can we „guarantee“ safety and security ?

Our Focus of Interest

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

System

Quality in Use

Computer System

Quality

Software Product

Quality

System

Quality in Use

Requirements

Computer System

Quality

Requirements

Software Product

Quality

Requirements

Implementation

Quality in Use Needs

Products Requirements

Validation

Verification

Validation

Verification

Validation

System

Quality in

Use Model

System

and

Software

Product

Quality

Model

Source: ISO/IEC FDIS 25010

System Quality Life Cycle Model

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Quality in Use Model

Quality in use

Effectiveness Efficiency Satisfaction

Usefulness Trust Pleasure Comfort

Freedom from
risk

Economic risk
mitigation

Health and
safety risk
mitigation

Environmental
risk

Context
coverage

Content
completeness

Flexibility

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Other Norms and Standards

 ISO 9001 (DIN ISO 9000-4):

 Standardizes definition and supporting principles
necessary for a quality system to ensure products meet
requirements

 “Meta-Standard”

CMM (Capability Maturity Model), Spice (ISO 15504)

 Standardizes maturity of development process

 Level 1 (initial): Ad-hoc

 Level 2 (repeatable): process dependent on individuals

 Level 3 (defined): process defined & institutionalized

 Level 4 (managed): measured process

 Level 5 (optimizing): improvement feed back into process

Systeme hoher Sicherheit und Qualität, WS 17/18 - 32 -

Summary

Quality

 collection of characteristic properties

 quality indicators measuring quality criteria

Relevant aspects of quality here

 Functional suitability

 Reliability

 Security

Next week

 Concepts of Safety, Legal Requirements, Certification

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 02:
Legal Requirements -
Norms and Standards

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Organisatorisches

Vorlesung und Übung nächste Woche (30.10.2017 und
31.10.2017) fallen aus!

 Reformationstag, Brückentag.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Why bother with norms?

 If you want (or need to) to write safety-criticial software

then you need to adhere to state-of-the-art practice
as encoded by the relevant norms & standards.

The bad news:

 As a qualified professional, you may become personally
liable if you deliberately and intentionally (grob
vorsätzlich) disregard the state of the art or do not comply
to the rules (= norms, standards) that were to be applied.

The good news:

 Pay attention here and you will be delivered from these
evils.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Because in case of failure…

Whose fault is it? Who pays for it? (“Produkthaftung”)

 European practice: extensive regulation

 American practice: judicial mitigation (lawsuits)

Standards often put a lot of emphasis on process and
traceability (auditable evidence).
Who decided to do what, why, and how?

What are norms relevant to safety and security?
Examples:

 Safety: IEC 61508 – Functional safety
• specialised norms for special domains

 Security: IEC 15408 – Common criteria
• In this context: “cybersecurity”, not “guns and gates”

What is regulated by such norms?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Functional Safety:

IEC 61508 and friends

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

What is Safety?

Absolute definition:

 „Safety is freedom from accidents or losses.“
 Nancy Leveson, „Safeware: System safety and computers“

But is there such a thing as absolute safety?

Technical definition:

 „Sicherheit: Freiheit von unvertretbaren Risiken“

 IEC 61508-4:2001, §3.1.8

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Legal Grounds

The machinery directive: The Directive 2006/42/EC of the
European Parliament and of the Council of 17 May 2006 on
machinery, and amending Directive 95/16/EC (recast)

Scope:

 Machineries (with a drive system and movable parts)

Objective:

 Market harmonization (not safety)

Structure:

 Sequence of whereas clauses (explanatory)

 followed by 29 articles (main body)

 and 12 subsequent annexes (detailed information about
particular fields, e.g. health & safety)

Some application areas have their own regulations:

 Cars and motorcycles, railways, planes, nuclear plants …

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

The Norms and Standards Landscape

The

standards

quagmire ?

First-tier standards (A-Normen)

 General, widely applicable, no specific area of application

 Example: IEC 61508

Second-tier standards (B-Normen)

 Restriction to a particular area of application

 Example: ISO 26262 (IEC 61508 for automotive)

Third-tier standards (C-Normen)

 Specific pieces of equipment

 Example: IEC 61496-3 (“Berührungslos wirkende
Schutzeinrichtungen”)

Always use most specific norm.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Norms for the Working Programmer

 IEC 61508:

 “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES)”

 Widely applicable, general, considered hard to understand

 ISO 26262

 Specialisation of 61508 to cars (automotive industry)

DIN EN 50128:2011

 Specialisation of 61508 to software for railway industry

 RTCA DO 178-B and C (new developments require C):

 “Software Considerations in Airborne Systems and Equipment
Certification“

 Airplanes, NASA/ESA

 ISO 15408:

 “Common Criteria for Information Technology Security Evaluation”

 Security, evolved from TCSEC (US), ITSEC (EU), CTCPEC (Canada)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

What is regulated by IEC 61508?

1. Risk analysis determines the safety integrity level (SIL)

2. Hazard analysis leads to safety requirement specification.

3. Safety requirements must be satisfied by product

 Need to verify that this is achieved.

 SIL determines amount of testing/proving etc.

4. Life-cycle needs to be managed and organised

 Planning: verification & validation plan

 Note: personnel needs to be qualified.

5. All of this needs to be independently assessed.

 SIL determines independence of assessment body.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

The Seven Parts of IEC 61508

1. General requirements

2. Requirements for E/E/PES safety-related systems

 Hardware rather than software

3. Software requirements

4. Definitions and abbreviations

5. Examples of methods for the determination of safety-
integrity levels

 Mostly informative

6. Guidelines on the application of Part 2 and 3

 Mostly informative

7. Overview of techniques and measures

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

The Safety Life Cycle (IEC 61508)

Planning

Realisation

Operation

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Safety Integrity Levels

What is the risk by operating a system?

 How likely is a failure ?

 What is the damage caused by a failure?

Risk not acceptable

Risk acceptable

F
re

q
u

e
n

cy

Extend of loss

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Safety Integrity Levels

Max. average probabilty of a dangerous failure (per
hour/year) depending on how often it is used

Examples:

 High demand: car brakes

 Low demand: airbag control

Note: SIL only meaningful for specific safety functions.

SIL High Demand
(more than once a year)

Low Demand
(once a year or less)

4 10-9 < P/hr < 10-8 10-5 < P/yr < 10-4

3 10-8 < P/hr < 10-7 10-4 < P/yr < 10-3

2 10-7 < P/hr < 10-6 10-3 < P/yr < 10-2

1 10-6 < P/hr < 10-5 10-2 < P/yr < 10-1

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Establishing target SIL (Quantitative)

 IEC 61508 does not describe standard procedure to establish a SIL
target, it allows for alternatives.

Quantitative approach

 Start with target risk level

 Factor in fatality and
frequency

 Example: Safety system for a chemical plant

 Max. tolerable risk exposure: A=10-6 (per annum)

 Ratio of hazardous events leading to fatality: B= 10-2

 Risk of failure of unprotected process: C= 1/5 (per annum)

 Then failure on demand : E = A/(B*C) = 5*10-4, so SIL 3

More examples: airbag, safety system for a hydraulic press

Maximum tolerable

risk of fatality

Individual risk

(per annum)

Employee 10-4

Public 10-5

Broadly acceptable

(„Negligible“)

10-6

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Establishing Target SIL (Qualitative)

Qualitative method: risk graph analysis (e.g. DIN 13849)

DIN EN ISO 13849:1 determines the performance level

PL SIL

a -

b 1

c 2

d 3

e 4

Severity of injury:
S1 - slight (reversible) injury
S2 – severe (irreversible) injury

Occurrence:
F1 – rare occurrence
F2 – frequent occurrence

Possible avoidance:
P1 – possible
P2 – impossible Relation PL to SIL

Source: Peter Wratil (Wikipedia)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

What does the SIL mean for the
development process?

 In general:

 „Competent“ personnel

 Independent assessment („four eyes“)

 SIL 1:

 Basic quality assurance (e.g. ISO 9001)

 SIL 2:

 Safety-directed quality assurance, more tests

 SIL 3:

 Exhaustive testing, possibly formal methods

 Assessment by separate department

 SIL 4:

 State-of-the-art practices, formal methods

 Assessment by separate organization

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Some Terminology

Error handling:

 Fail-safe (or fail-stop): terminate in a safe state

 Fail operational systems: continue operation, even if their
controllers fail

 Fault tolerant systems: continue with a potentially degraded
service (more general than fail operational systems)

Safety-critical, safety-relevant (sicherheitskritisch)

 General term -- failure may lead to risk

 Safety function (Sicherheitsfunktion)

 Technical term, that functionality which ensures safety

Safety-related (sicherheitsgerichtet, sicherheitsbezogen)

 Technical term, directly related to the safety function

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Increasing SIL by redudancy

One can achieve a higher SIL by combining independent
systems with lower SIL („Mehrkanalsysteme“).

 Given two systems A, B with failure probabilities 𝑃𝐴, 𝑃𝐵, the
chance for failure of both is (with 𝑃𝐶𝐶 probablity of common-
cause failures):

𝑃𝐴𝐵 = 𝑃𝐶𝐶 + 𝑃𝐴𝑃𝐵

Hence, combining two SIL 3 systems may give you a SIL 4
system.

However, be aware of systematic errors (and note that IEC
61508 considers all software errors to be systematic).

Note also that for fail-operational systems you need three
(not two) systems.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

The Software Development Process

61508 in principle allows any software lifecycle model, but:

 No specific process model is given, illustrations use a V-
model, and no other process model is mentioned.

Appx A, B give normative guidance on measures to apply:

 Error detection needs to be taken into account (e.g.
runtime assertions, error detection codes, dynamic
supervision of data/control flow)

 Use of strongly typed programming languages (see table)

 Discouraged use of certain features:

 recursion(!), dynamic memory, unrestricted pointers,
unconditional jumps

 Certified tools and compilers must be used or tools
“proven in use“.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Proven in Use: Statistical Evaluation

As an alternative to systematic development, statistics about

usage may be employed. This is particularly relevant:

 for development tools (compilers, verification tools etc),

 and for re-used software (modules, libraries).

The norm (61508-7 Appx. D) is quite brief about this subject.
It states these methods should only be applied by those
“competent in statistical analysis”.

The problem: proper statistical analysis is more than just
“plugging in numbers”.

 Previous use needs to be to the same specification as
intended use (eg. compiler: same target platform).

 Uniform distribution of test data, indendent tests.

 Perfect detection of failure.

Proper statistical analysis requires uniform distribution of
test data, indendent tests etc. (

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Proven in Use: Statistical Evaluation

Statistical statements can only be given with respect to a

confidence level (𝜆 = 1 − 𝑝), usually 𝜆 = 0.99 or 𝜆 = 0.9.

With this and all other assumptions satisfied, we get the
following numbers from the norm:

 For on-demand: observed demands without failure
(𝑃1: accept. prob. of failure to perform per demand)

 For continuously-operated: observed hours w/o failure
(𝑃2: accept. prob. of failure to perform per hour of opn.)

SIL On-Demand Continuously Operated

𝑃1 𝜆 = 99% 𝜆 = 90% 𝑃2 𝜆 = 99% 𝜆 = 90%

1 < 10−1 46 3 < 10−5 4.6 ⋅ 105 3 ⋅ 105

2 < 10−2 460 30 < 10−6 4.6 ⋅ 106 3 ⋅ 106

3 < 10−3 4600 3000 < 10−7 4.6 ⋅ 107 3 ⋅ 107

4 < 10−4 46000 30000 < 10−8 4.6 ⋅ 108 3 ⋅ 108

Source: Ladkin, Littlewood: Practical Statistical Evaluation of Critical Software.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

Table A.2 - Software Architecture

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Table A.4 - Software Design & Development

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Table A.9 – Software Verification

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Table B.1 – Coding Guidelines

 Table C.1, programming
languages, mentions:

 ADA, Modula-2,
Pascal, FORTRAN 77,
C, PL/M, Assembler, …

 Example for a guideline:

 MISRA-C: 2004,
Guidelines for the use
of the C language in
critical systems.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

Table B.5 - Modelling

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

Certification

Certification is the process of showing conformance to a
standard.

Conformance to IEC 61508 can be shown in two ways:

 either that an organization (company) has in principle the
ability to produce a product conforming to the standard,

 or that a specific product (or system design) conforms to
the standard.

Certification can be done by the developing company (self-
certification), but is typically done by an notified body.

 In Germany, e.g. the TÜVs or Berufsgenossenschaften;

 In Britain, professional role (ISA) supported by IET/BCS;

 Also sometimes (e.g. DO-178B) called `qualification‘.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Security:

IEC 15408
The Common Criteria

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Common Criteria (IEC 15408)

Established in 1996 as a harmonization of various norms to

evaluate security properties of IT products and systems

(e.g. ITSEC (Europe), TCSEC (US, “orange book”), CTCPEC

(Canada))

Basis for evaluation of security properties of IT products (or

parts of) and systems (the Target of Evaluation TOE).

The CC is useful as a guide for the development of products

or systems with IT security functions and for the procurement

of commercial products and systems with such functions.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 32 -

General Model

 Security is concerned with the
protection of assets. Assets are
entities that someone places
value upon.

 Threats give rise to risks to the
assets, based on the likelihood
of a threat being realized and its
impact on the assets

 (IT and non-IT) Counter-
measures are imposed to
reduce the risks to assets.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -

Security Goals

Protection of information from unauthorized disclosure,
modification, or loss of use:

 confidentiality, integrity, and availability

 may also be applicable to aspects

Focus on threats to that information arising from human
activities, whether malicious or otherwise, but may be
applicable to some non-human threats as well.

 In addition, the CC may be applied in other areas of IT, but
makes no claim of competence outside the strict domain of IT
security.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 34 -

Concept of Evaluation

Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -

Security Environment

• Laws, organizational security policies, customs, expertise and
knowledge relevant for TOE

• Context in which the TOE is intended to be used.

• Threats to security that are, or are held to be, present in the
environment.

A statement of applicable organizational security policies would
identify relevant policies and rules.

• Assumptions about the environment
of the TOE are considered as axiomatic
for the TOE evaluation.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 36 -

Security Objectives

 Identification of all of the security concerns

 Aspects addressed directly by the TOE or by its environment.

 Incorporating engineering judgment, security policy, economic
factors and risk acceptance decisions.

Analysis of the security environment results in security objectives
that counter the identified threats and address identified
organizational security policies and assumptions.

 The security objectives for the environment would be implemented
within the IT domain, and by non-technical or procedural means.

Only the security objectives for the TOE and its IT environment are
addressed by IT security requirements

Systeme hoher Sicherheit und Qualität, WS 17/18 - 37 -

Threats and Their Risks

Threats to security of the assets relevant to the TOE.

 in terms of a threat agent,

 a presumed attack method,

 any vulnerabilities that are the foundation for the
attack, and

 identification of the asset under attack.

Risks to security. Assess each threat

 by its likelihood developing into an actual attack,

 its likelihood proving successful, and

 the consequences of any damage that may result.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 38 -

Security Requirements

Refinement of security objectives into

 Requirements for TOE and

 Requirements for the environment

Functional requirements

 Functions in support for security of IT-system

 E.g. identification & authentication, cryptography,…

Assurance Requirements

 Establishing confidence in security functions

 Correctness of implementation

 E.g. development, life cycle support, testing, …

Systeme hoher Sicherheit und Qualität, WS 17/18 - 39 -

Security Functions

The statement of TOE security functions shall cover the IT
security functions and shall specify how these functions satisfy
the TOE security functional requirements. This statement shall
include a bi-directional mapping between functions and
requirements that clearly shows which functions satisfy which
requirements and that all requirements are met.

Starting point for design process.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 40 -

Security Functional Components

Class FAU: Security audit

Class FCO: Communication

Class FCS: Cryptographic support

Class FDP: User data protection

Class FIA: Identification and authentication

Class FMT: Security management

Class FPR: Privacy

Class FPT: Protection of the TSF

Class FRU: Resource utilisation

Class FTA: TOE access

Class FTP: Trusted path/channels

Systeme hoher Sicherheit und Qualität, WS 17/18 - 41 -

Security Functional Components

Content and presentation of the functional requirements

FDP: User Data Protection

FDP_IFF: Information flow control functions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 42 -

FDP – Information Flow Control

FDP_IFC.1 Subset information flow control

Hierarchical to: No other components.

Dependencies: FDP_IFF.1 Simple security attributes

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects, information, and operations that cause controlled information
to flow to and from controlled subjects covered by the SFP].

FDP_IFC.2 Complete information flow control

Hierarchical to: FDP_IFC.1 Subset information flow control

Dependencies: FDP_IFF.1 Simple security attributes

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects and information] and all operations that cause that
information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the
TOE to flow to and from any subject in the TOE are covered by an information flow
control SFP.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 43 -

Assurance Requirements

Assurance Approach

“The CC philosophy is to provide assurance based upon an
evaluation (active investigation) of the IT product that is to be
trusted. Evaluation has been the traditional means of providing
assurance and is the basis for prior evaluation criteria
documents. “

CC, Part 3, p.15

Systeme hoher Sicherheit und Qualität, WS 17/18 - 44 -

Assurance Requirements

Concerning actions of the developer, evidence
produced and actions of the evaluator.

 Examples:

 Rigor of the development process

 Search for and analysis of the impact of
potential security vulnerabilities.

Degree of assurance

 varies for a given set of functional
requirements

 typically expressed in terms of increasing
levels of rigor built with assurance
components.

 Evaluation assurance levels (EALs)
constructed using these components.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 45 -

Assurance Components

Class APE: Protection Profile evaluation

Class ASE: Security Target evaluation

Class ADV: Development

Class AGD: Guidance documents

Class ALC: Life-cycle support

Class ATE: Tests

Class AVA: Vulnerability assessment

Class ACO: Composition

Systeme hoher Sicherheit und Qualität, WS 17/18 - 46 -

Evaluation Assurance Level

EALs define levels of
assurance (no guarantees)

1. Functionally tested

2. Structurally tested

3. Methodically tested and checked

4. Methodically designed, tested, and
reviewed

5. Semi-formally designed and tested

6. Semi-formally verified design and
tested

7. Formally verified design and tested

EAL5 – EAL7 require formal methods

Systeme hoher Sicherheit und Qualität, WS 17/18 - 47 -

Assurance Components
Example: Development

ADV_FSP.1 Basic functional specification

EAL-1: … The functional specification shall describe the purpose and method of use for
 each SFR-enforcing and SFR-supporting TSFI.

EAL-2: … The functional specification shall completely represent the TSF.

EAL-3: + … The functional specification shall summarize the SFR-supporting and
 SFR-non-interfering actions associated with each TSFI.

EAL-4: + … The functional specification shall describe all direct error messages that
 may result from an invocation of each TSFI.

EAL-5: … The functional specification shall describe the TSFI using a semi-formal style.

EAL-6: … The developer shall provide a formal presentation of the functional
 specification of the TSF. The formal presentation of the functional specification
 of the TSF shall describe the TSFI using a formal style, supported by informal,
 explanatory text where appropriate.

(TSFI : Interface of the TOE Security Functionality (TSF), SFR : Security Functional Requirement)

D
e

g
re

e
 o

f A
ssu

rra
n

ce

Systeme hoher Sicherheit und Qualität, WS 17/18 - 48 -

Summary

Norms and standards enforce the application of the state-of-
the-art when developing software which is safety-critical or
security-critical.

Wanton disregard of these norms may lead to personal
liability.

Norms typically place a lot of emphasis on process.

Key question are traceability of decisions and design, and
verification and validation.

Different application fields have different norms:

 IEC 61508 and its specializations, e.g. DO-178B.

 IEC 15408 („Common Criteria“)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 49 -

Further Reading

Terminology for dependable systems:

 J. C. Laprie et al.: Dependability: Basic Concepts and
Terminology. Springer-Verlag, Berlin Heidelberg New York
(1992).

Literature on safety-critical systems:

 Storey, Neil: Safety-Critical Computer Systems. Addison
Wesley Longman (1996).

 Nancy Levenson: Safeware – System Safety and
Computers. Addison-Wesley (1995).

A readable introduction to IEC 61508:

 David Smith and Kenneth Simpson: Functional Safety. 2nd
Edition, Elsevier (2004).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 3:

The Software Development Process

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Software Development
Models

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Software Development Process

A software development process is the structure imposed on
the development of a software product.

We classify processes according to models which specify

 the artefacts of the development, such as

 the software product itself, specifications, test
documents, reports, reviews, proofs, plans etc;

 the different stages of the development;

 and the artefacts associated to each stage.

Different models have a different focus:

 Correctness, development time, flexibility.

What does quality mean in this context?

 What is the output? Just the software product, or more?
(specifications, test runs, documents, proofs…)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Artefacts in the Development Process
Planning:
• Document plan
• V&V plan
• QM plan
• Test plan
• Project manual

Specifications:

• Requirements
• System specification
• Module specification
• User documents

Implementation:

• Source code
• Models
• Documentation

Possible formats:
• Documents:

• Word documents
• Excel sheets
• Wiki text
• Database (Doors)

• Models:
• UML/SysML

diagrams
• Formal languages: Z,

HOL, etc.
• Matlab/Simulink or

similar diagrams
• Source code

Verification & validation:

• Code review protocols
• Test cases, procedures,

and test results
• Proofs

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Waterfall Model (Royce 1970)

Classical top-down sequential workflow with strictly
separated phases.

Unpractical as actual workflow (no feedback between
phases), but even the original paper did not really suggest
this.

Requirement

Implementation

Design

Maintenance

Verification

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Spiral Model (Böhm, 1986)

 Incremental development guided by risk factors

Four phases:

 Determine objectives

 Analyse risks

 Development and test

 Review, plan next iteration

See e.g.

 Rational Unified Process (RUP)

Drawbacks:

 Risk identification is the key, and can be quite difficult

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Model-Driven Development (MDD, MDE)

Describe problems on abstract level using a modeling language
(often a domain-specific language), and derive implementation by
model transformation or run-time interpretation.

Often used with UML (or its DSLs, eg. SysML)

 Variety of tools:

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus,
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow*

 EMF (Eclipse Modelling Framework)

 Strictly sequential development

Drawbacks: high initial investment, limited flexibility

* Proprietary DSL – not related to UML

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Agile Methods

Prototype-driven development

 E.g. Rapid Application Development

 Development as a sequence of prototypes

 Ever-changing safety and security requirements

Agile programming

 E.g. Scrum, extreme programming

 Development guided by functional requirements

 Process structured by rules of conduct for developers

 Rules capture best practice

 Less support for non-functional requirements

Test-driven development

 Tests as executable specifications: write tests first

 Often used together with the other two

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

V-Model

Evolution of the waterfall model:

 Each phase is supported by a corresponding testing
phase (verification & validation)

 Feedback between next and previous phase

Standard model for public projects in Germany

 … but also a general term for models of this „shape“

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Software Development Models

Structure

F
le

x
ib

il
it

y

from S. Paulus: Sichere Software

Spiral model

Prototype-based
developments

Agile

Methods

Waterfall

model

V-model

Model-driven

developement

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Development Models for
Safety-Critical Systems

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Development Models for Critical Systems

Ensuring safety/security needs structure.

 …but too much structure makes developments
bureaucratic, which is in itself a safety risk.

 Cautionary tale: Ariane-5

Standards put emphasis on process.

 Everything needs to be planned and documented.

 Key issues: auditability, accountability, traceability.

Best suited development models are variations of the V-
model or spiral model.

A new trend?

 V-Model for initial developments of a new product

 Agile models (e.g. Scrum) for maintenance and product
extensions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Auditability and Accountability

Version control and configuration management is mandatory
in safety-critical development (auditability).

Keeping track of all artifacts contributing to a particular
instance (build) of the system (configuration), and their
versions.

Repository keeps all artifacts in all versions.

 Centralised: one repository vs. distributed (every developer
keeps own repository)

 General model: check out – modify – commit

 Concurrency: enforced lock, or merge after commit.

Well-known systems:

 Commercial: ClearCase, Perforce, Bitkeeper…

 Open Source: Subversion (centr.); Git, Mercurial (distr.)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Traceability

The idea of being able to follow requirements (in particular,
safety requirements) from requirement spec to the code (and
possibly back).

On the simplest level, an Excel sheet with (manual) links to
the program.

More sophisticated tools include DOORS.

 Decompose requirements, hierarchical requirements

 Two-way traceability: from code, test cases, test
procedures, and test results back to requirements

 E.g. DO-178B requires all code derives from requirements

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Development Model in IEC 61508

 IEC 61508 in principle allows any development model, but:

 It requires safety-directed activities in each phase of the
life cycle (safety life cycle).

 Development is one part of the life cycle.

The only development model mentioned is a V-model:

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

The Safety Life Cycle (IEC 61508)

Planning

Realisation

Operation

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Development Model in DO-178B

DO-178B defines different processes in the SW life cycle:

 Planning process

 Development process, structured in turn into

 Requirements process

 Design process

 Coding process

 Integration process

 Verification process

 Quality assurance process

 Configuration management process

 Certification liaison process

 There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.

 Implicit recommendation of the V-model.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Development Model for Hardware

Specification

System Model

RTL Model

Gate Level

Layout

Transistor Level

Silicone

always @(posedge clk)

 if (rst) out <= 0;

 else

 if (! ctrl) out <= s0 | in;

 else out <= s0 & in;

Register-Transfer-Ebene: Verilog

Gate Level

Textual description

of the electric

connections

(“Schaltplan”)

During chip design:

Description of the

connections between

different modules, such

as logic gates and

memory blocks

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Development Model for Hardware

Equivalence Check

Test

Property Check
Specification

System Model

RTL Model

Gate Level

Layout

Transistor Level

Silicone

Simulation

Emulation

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Basic Notions of Formal
Software Development

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Formal Software Development

 In a formal development, properties are stated in a rigorous way
with a precise mathematical semantics.

 Formal specification requirements can be proven.

Advantages:

 Errors can be found early in the development process.

 High degree of confidence into the system.

 Recommend use of formal methods for high SILs/EALs.

Drawbacks:

 Requires a lot of effort and is thus expensive.

 Requires qualified personnel (that would be you).

 There are tools which can help us by

 finding (simple) proofs for us (model checkers), or

 checking our (more complicated) proofs (theorem provers).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Formal Semantics

States and transitions between them:

Operational semantics describes relation between states
and transitions:

Formal proofs; e.g. proving

 x := y + 4; z := y - 2 yields the same final state as
 z := y - 2; x := y + 4

x 5

y 3

z 8

x 7

y 3

z 8

x := y + 4 z := y - 2
x 7

y 3

z 1

s0 s1 s2

s ` e n

s ` x := e s[x / n]

s0 ` y + 4 7

s0 ` x := y + 4 s1
hence:

System run

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

Semantics of Programs and Requirements

Set of all possible system runs

Requirements related to safety and security:

 Requirements on single states ?

 Requirements on system runs ?

 Requirements on sets of system runs ?

x 5

y 3

z 8

x 7

y 3

z 8

x := y + 4 z := y - 2
x 7

y 3

z 1

s0 s1 s2

…

Alpern & Schneider (1985, 1987)
Clarkson & Schneider (2008)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Some Notions

 Let b, t be two traces then

 b ≤ t iff ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′ i.e. b is a finite prefix of t

A property is a set of infinite execution traces (like a program)

 Trace t satisfies property P, written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃

A hyperproperty is a set of sets of infinite execution traces (like a

set of programs)

 A system (set of traces) S satisfies H iff S H

 An observation Obs is a finite set of finite traces

 Obs ≤ S (Obs is a prefix of S) iff Obs is an observation and

 m Obs. t S. m ≤ t

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Requirements on States: Safety Properties

Safety property S: „Nothing bad happens“

 i.e. the system will never enter a bad state

 E.g. “Lights of crossing streets do not go
green at the same time”

A bad state:

 can be immediately recognized;

 cannot be sanitized by following states.

S is a safety property iff

 ∀𝑡. 𝑡 ∉ 𝑆 → ∃ 𝑡1, 𝑡2. 𝑡 = 𝑡1⋅ 𝑡2 → ∀ 𝑡3. 𝑡1⋅ 𝑡3 ∉ 𝑆

𝑡1 𝑡2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Satisfying Safety Properties

Safety properties are typically proven by induction

 Base case: initial states are good (= not bad)

 Step case: each transition transforms a good state again
in a good state

Safety properties can be enforced by run-time monitors

 Monitor checks following state in advance
and allows execution only if it is a good state

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

Requirements on Runs: Liveness Properties

Liveness property L:

 „Good things will happen eventually“

 E.g. “my traffic light will go green
eventually * ”

A good thing is always possible and possibly infinite.

L is a liveness property iff

 ∀ 𝑡. finite(𝑡) → ∃ 𝑡1. 𝑡 ⋅ 𝑡1 ∈ 𝐿

 i.e. all finite traces t can be extended to a trace in L.

* Achtung: “eventually” bedeutet “irgendwann” oder “schlussendlich”
 aber nicht “eventuell” !

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

Satisfying Liveness Properties

Liveness properties cannot (!) be enforced by run-time
monitors.

Liveness properties are typically proven by the help of
well-founded orderings

 Measure function m on states s

 Each transition decreases m
 t 2 L if we reach a state with minimal m

E.g. measure denotes the number of transitions for the light
to go green

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Requirements on Sets of Runs:
Safety Hyperproperties

 Safety hyperproperty: „System never behaves bad“

 No bad thing happens in a finite set of finite traces

 (the prefixes of) different system runs do not exclude each other

 E.g. “the traffic light cycle is always the same”

A bad system can be recognized by a bad observation (set of finite
runs)

 A bad observation cannot be sanitized regards less how we
continue it or add additional system runs

 E.g. two system runs having different traffic light cycles

 S is a safety hyperproperty iff
 T S . (Obs ≤ T. T‘. Obs ≤ T‘) T‘ S)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Requirements on Sets of Runs:
Liveness Hyperproperties

 Liveness hyperproperty S:
„The system will eventually develop to a good system“

 Considering any finite part of a system behavior, the system
eventually develops into a “good” system (by continuing
appropriately the system runs or adding new system runs)

 E.g. “Green light for pedestrians can always be omitted”

 L is liveness hyperproperty iff T . (G. T ≤ G G L)

 T is a finite set of finite traces (observation)

 Each observation can be explained by a system G satisfying L

 Example:

 Average response time

 Closure operations in information flow control

Systeme hoher Sicherheit und Qualität, WS 17/18 - 32 -

Landscape of (Hyper)Properties

 Each (hyper-) property can be represented as a combination of
safety and liveness (hyper-) properties.

Safety

Hyperproperties
Liveness

Hyperproperties

Safety

Properties
Liveness

Properties

Invariants
Guaranteed

Service

Average

Response
Non-

Interference

Closure

 Predicates Observational

determinism

Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -

Structuring the
Formal Development

Systeme hoher Sicherheit und Qualität, WS 17/18 - 34 -

The Global Picture

Informal Specification

Safety/Security

Requirements

Composite Specification

Abstract Specification

Refined Specification

Decomposition

Refinement /
Decomposition

Safety/Security

Requirements

Satisfies

Satisfies

Satisfies

Satisfies

Test
Program analysis
Model checking
Formal proof

Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -

Structuring the Development

Horizontal structuring:

 Modularization into components

 Composition and Decomposition

 Aggregation

 Vertical structuring:

 Abstraction and refinement
from design specification to implementation

 Declarative vs. imparative specification

 Inheritance of properties

 Views:

 Addresses multiple aspects of a system

 Behavioral model, performance model, structural model,
analysis model(e.g. UML, SysML)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 36 -

Horizontal Structuring (informal)

Composition of components

 Dependent on the individual layer of abstraction

 E.g. modules, procedures, functions,…

Example:

Systeme hoher Sicherheit und Qualität, WS 17/18 - 37 -

Modular Structuring of Requirements

System Requirements

Component 1

Requirement

Component n

Requirement

Component 1

Guarantees

Component n

Guarantees

System Guarantees

…

…

Decomposition of requirements

Composition of guarantees

Verification of requirements

Systeme hoher Sicherheit und Qualität, WS 17/18 - 38 -

Mutual Dependencies: Assume/Guarantee

Safety requirement: Queue does not loose any items.

Components depend on each other!

 Initialization ?

Loop:
 if s1 = a1 {
 send(x, in); s1 = not s1 }

Loop:
 if s1 != a1 and |q| < max {
 enq(q, in); a1 = not a1; }
 if s2 = a2 and |q| > 0 {
 deq(q, out); s2 != not s2 }

Loop:
 if s2 != a2 then {
 read(y, out); a2 = not a2;
 consume(y) }

in out

s1 s2

a2 a1

q

Producer Queue Consumer

Fixed capacity

Systeme hoher Sicherheit und Qualität, WS 17/18 - 39 -

Composition of Security Guarantees

Only complete bicycles are allowed to pass the gate.

Secure ! Secure !

Systeme hoher Sicherheit und Qualität, WS 17/18 - 40 -

Composition of Security Guarantees

Insecure !

Only complete bicycles are allowed to pass the gate.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 41 -

Vertical Structuring - Refinement

 Idea: start at an abstract description and add
details step by step

 From abstract specification to an implementation

What shall be refined?

 Algorithm: algebraic refinement

 Data: data refinement

 Process: process refinement

 Events: action refinement

Systeme hoher Sicherheit und Qualität, WS 17/18 - 42 -

Algebraic Refinement

nil: list cons(int, list):list
first(list):int tail(list):int
…

first(nil) = -1 first(cons(x, y)) = x
tail(nil) = nil tail(cons(x, y)) = y

List

empty: stack; push(int, stack):stack
pop(stack):stack

pop(empty) = empty; pop(push(x, y)) = y

Stack

li_empty = nil
li_push(x, y) = cons(x, y)
li_pop(x) = tail(x)

Implementing
stacks by lists

li_pop(li_empty) = li_empty
Li_pop(li_push(x, y)) = y

To prove:

Refinement preserves
properties of stack by
transitivity of the logic !

Refinement Satisfies

Systeme hoher Sicherheit und Qualität, WS 17/18 - 43 -

Even More Refinements

Data refinement

 Abstract datatype is „implemented“ in terms of the
more concrete datatype

 Simple example: define stack with lists

Process refinement

 Process is refined by excluding certain runs

 Refinement as a reduction of underspecification by
eliminating possible behaviours

Action refinement

 Action is refined by a sequence of actions

 E.g. a stub for a procedure is refined to an executable
procedure

Systeme hoher Sicherheit und Qualität, WS 17/18 - 44 -

Conclusion & Summary

Software development models: structure vs. flexibility

Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

 Specification and implementation linked by verification
and validation.

 Variety of artefacts produced at each stage, which have to
be subjected to external review.

Safety / Security Requirements

 Properties: sets of traces

 Hyperproperties: sets of properties

Structuring of the development:

 Horizontal – e.g. composition

 Vertical – refinement (e.g. algebraic, data, process…)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 4:

Hazard Analysis

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Hazard Analysis in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

The Purpose of Hazard Analysis

System Safety

Hazard
Analysis

Safety
Requirements

Validated
Software

Hazard Analysis
systematically
determines a list of
safety requirements.

The realization of the
safety requirements by
the software product
must be verified.

The product must be
validated wrt. the
safety requirements.

Software Development
(V-Model)

V
a

li
d

a
ti

o
n

Verification

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Hazard Analysis…

provides the basic foundations for system safety.

 is performed to identify hazards, hazard effects, and hazard
causal factors.

 is used to determine system risk, to determine the
significance of hazards, and to establish design measures
that will eliminate or mitigate the identified hazards.

 is used to systematically examine systems, subsystems,
facilities, components, software, personnel, and their
interrelationships.

Clifton Ericson: Hazard Analysis Techniques for System Safety.

 Wiley-Interscience, 2005.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Form and Output of Hazard Analysis

Because the process is informal, it can only be checked by
reviewing.

 It is therefore critical that

 standard forms of analysis are used,

 documents have a standardized form, and

 all assumptions are documented.

The output of hazard analysis is a list of safety

requirements and documents detailing how these were

derived.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Classification of Requirements

Requirements to ensure:

 Safety

 Security

Requirements for:

 Hardware

 Software

Characteristics / classification of requirements:

 according to the type of a property

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Classification of Hazard Analysis

Top-down methods start with an anticipated hazard and
work backwards from the hazard event to potential causes
for the hazard.

 Good for finding causes for hazard;

 good for avoiding the investigation of “non-relevant”
errors;

 bad for detection of missing hazards.

Bottom-up methods consider “arbitrary” faults and resulting
errors of the system, and investigate whether they may finally
cause a hazard.

 Properties are complementary to top-down properties;

 Not easy with software where the structure emerges
during development.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Hazard Analysis Methods

Fault Tree Analysis (FTA) – top-down

Event Tree Analysis (ETA) – bottom-up

Failure Modes and Effects Analysis (FMEA) – bottom up

Cause Consequence Analysis – bottom up

HAZOP Analysis – bottom up

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Fault Tree Analysis

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Fault Tree Analysis (FTA)

Top-down deductive failure analysis (of undesired states)

 Define undesired top-level event (UE);

 Analyze all causes affecting an event to construct fault
(sub)tree;

 Evaluate fault tree.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

FTA: Cut Sets

A cut set is a set of events that cause the top UE to occur
(also called a fault path).

Cut sets reveal critical and weak links in a system.

Extension- probabilistic fault trees:

 Annotate events with probabilities;

 Calculate probabilities for cut sets.

 We do not pursue this further here, as it is mainly useful
for hardware faults.

Cut sets can be calculated top down or bottom up.

 MOCUS algorithm (Ericson, 2005)

 Corresponds to the DNF of underlying formula.

 What happens to priority AND, conditioning and
inhibiting events (modelled as implication?).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Fault-Tree Analysis: Process Overview

1. Understand system design

2. Define top undesired event

3. Establish boundaries (scope)

4. Construct fault tree

5. Evaluate fault tree (cut sets, probabilities)

6. Validate fault tree (check if correct and complete)

7. Modify fault tree (if required)

8. Document analysis

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Fault Tree Analysis: First Simple Example

Consider a simple fire protection system connected to
smoke/heat detectors.

Smoke detection

failed.

Heat detection

failed.

Fire was not

detected.

Pump failed. Nozzles blocked.

Deluge water was

not released

Fire protection system fails:

Fire, but no deluge water

E1

E2 E3

E4 E5 E6 E7

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Fault Tree Analysis: Another Example

Battery

Fuse

Float switch

Lamp

• A lamp warning about low
level of brake fluid.

• Top undesired event:
warning lamp off despite
low level of fluid.

Source: N. Storey, Safety-Critical Computer Systems.

E1

P1

E2

S1 E3 E4

P3 P4

P2

S2 S3

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Fault Tree Analysis: Final Example
A laser is operated from a control computer
system.
 The laser is connected via a relay and a

power driver, and protected by a cover
switch.

 Top Undesired Event:
Laser activated without explicit command
from computer system.

Source: N. Storey, Safety-Critical Computer Systems.

E1

S1

E2

E3

E4

P2

E6

E7

E8

P3

P4

P5

P7

P6

P1

S2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

FTA - Conclusions

Advantages:

 Structured, rigorous, methodical approach;

 Can be effectively performed and computerized,
commercial tool support;

 Easy to learn, do, and follow;

 Combines hardware, software, environment, human
interaction.

Disadvantages:

 Can easily become time-consuming and a goal in itself
rather than a tool if not careful;

 Modelling sequential timing and multiple phases is
difficult.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Event Tree Analysis

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Event Tree Analysis (ETA)

Bottom-up method

Applies to a chain of cooperating activities

 Investigates the effect of activities failing while the chain is
processed

Depicted as binary tree; each node has two leaving edges:

 Activity operates correctly

 Activity fails

Useful for calculating risks by assigning probabilities to edges

Complexity: 𝒪(2𝑛)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Event Tree Analysis - Overview

Input:

• Design knowledge
• Accident histories

ETA Process:

1. Identify Accident Scenarios
2. Identify IEs (Initiating Events)
3. Identify pivotal events
4. Construct event tree diagrams
5. Evaluate risk paths
6. Document process

Output:

• Mishap outcomes
• Outcome risks
• Causal sources
• Safety Requirements

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Event Tree Analysis - Example

Cooling System for a Nuclear Power Plant

 IE Pivotal Events Outcome
 Electricity Emergency Fission Product Containment Fission Release
 Core Cooling Removal

Pipe
Breaks

Fails

Available

Available

Available
Available

Fails

Available

Fails
Fails

Fails
Available

Fails

Very Small

Small

Small

Medium

Large

Very Large

Very Large

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Event Tree Analysis - Another Example

Fire Detection/Suppression System for Office Building

Fire Starts
P= 0.01

YES (P= 0.9)

NO (P= 0.1)

YES (P= 0.7)

NO (P= 0.3)

YES (P= 0.8)

NO (P= 0.2)

YES (P= 0.8)

NO (P= 0.2)

Limited damage

Extensive damage,
People escape

Limited damage,
Wet people

Death/injury,
Extensive damage

Death/injury,
Extensive damage

0.00504

0.00126

0.00216

0.00054

0.001

IE Pivotal Events Outcomes Prob.
 Fire Detection Fire Alarms Fire Sprinkler
 Working Working Working

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

ETA - Conclusions

Advantages:

 Structured, rigorous and metodical;

 Can be effectively computerized, tool support is available;

 Easy to learn, do, and follow;

 Combines hardware, software, environment and human
interaction;

 Can be effectively performed on varying levels of system
detail.

Disadvantages:

 An ETA can only have one IE;

 Can overlook subtle system dependencies;

 Partial success/failure not distinguishable.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

Failure Mode and
Effects Analysis

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Failure Modes and Effects Analysis (FMEA)

Analytic approach to review potential failure modes and their
causes.

Three approaches: functional, structural or hybrid.

Typically performed on hardware, but useful for software as
well.

 It analyzes

 the failure mode,

 the failure cause,

 the failure effect,

 its criticality,

 and the recommended action,

 and presents them in a standardized table.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Software Failure Modes

Guide word Deviation Example Interpretation

omission The system produces no output
when it should. Applies to a
single instance of a service, but
may be repeated.

No output in response to change
in input; periodic output missing.

commission The system produces an output,
when a perfect system would
have produced none. One must
consider cases with both, correct
and incorrect data.

Same value sent twice in series;
spurious output, when inputs
have not changed.

early Output produced before it
should be.

Really only applies to periodic
events; Output before input is
meaningless in most systems.

late Output produced after it should
be.

Excessive latency (end-to-end
delay) through the system; late
periodic events.

value
(detectable)

Value output is incorrect, but in a
way, which can be detected by
the recipient.

Out of range.

value
(undetectable)

Value output is incorrect, but in a
way, which cannot be detected.

Correct in range; but wrong
value

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Criticality Classes

 Risk as given by the risk mishap index (MIL-STD-882):

Names vary, principle remains:

 Catastrophic – single failure

 Critical – two failures

 Marginal – multiple failures/may contribute

Severity Probability

1. Catastrophic A. Frequent

2. Critical B. Probable

3. Marginal C. Occasional

4. Negligible D. Remote

E. Improbable

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

Source:MIL-STD-822E, www.system-safety.org/Documents/MIL-STD-882E.pdf

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

FMEA Example: Airbag Control

Consider an airbag control system, consisting of

 the airbag with gas cartridge;

 a control unit with

 Output: Release airbag

 Input: Accelerometer, impact sensors, seat sensors, …

FMEA:

 Structural: what can be broken?

 Mostly hardware faults.

 Functional: how can it fail to perform its intended
function?

 Also applicable for software.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Airbag Control (Structural FMEA)

ID Mode Cause Effect Crit. Appraisal

1 Omission Gas cartridge
empty

Airbag not released in
emergency situation

C1 SR-56.3

2 Omission Cover does not
detach

Airbag not released fully in
emergency situation

C1 SR-57.9

3 Omission Trigger signal
not present in
emergency.

Airbag not released in
emergency situation

C1 Ref. To SW-
FMEA

4 Comm. Trigger signal
present in non-
emergency

Airbag released during
normal vehicle operation

C2 Ref. To SW-
FMEA

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Airbag Control (Functional FMEA)
ID Mode Cause Effect Crit. Appraisal

5-1 Omission Software
terminates
abnormally

Airbag not
released in
emergency.

C1 See 5-1.1, 5-1.2.

5-1.1 Omission - Division by 0 See 5-1 C1 SR-47.3
Static Analysis

5-1.2 Omission - Memory fault See 5-1 C1 SR-47.4
Static Analysis

5-2 Omission Software does not
terminate

Airbag not
released in
emergency.

C1 SR-47.5
Termination Proof

5-3 Late Computation takes
too long.

Airbag not
released in
emergency.

C1 SR-47.6
WCET Analysis

5-4 Comm. Spurious signal
generated

Airbag released
in non-
emergency

C2 SR-49.3

5-5 Value (u) Software computes
wrong result

Either of 5-1 or
5-4.

C1 SR-12.1
Formal Verification

Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -

FMEA - Conclusions

Advantages:

 Easily understood and performed;

 Inexpensive to perform, yet meaningful results;

 Provides rigour to focus analysis;

 Tool support available.

Disadvantages:

 Focuses on single failure modes rather than combination;

 Not designed to identify hazard outside of failure modes;

 Limited examination of human error, external influences
or interfaces.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 34 -

Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -

The Seven Principles of Hazard Analysis

Ericson (2005)

1) Hazards, mishaps and risk are not chance events.

2) Hazards are created during design.

3) Hazards are comprised of three components.

4) Hazards and mishap risk is the core safety process.

5) Hazard analysis is the key element of hazard and mishap
risk management.

6) Hazard management involves seven key hazard analysis
types.

7) Hazard analysis primarily encompasses seven hazard
analysis techniques.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 36 -

Summary

Hazard Analysis is the start of the formal development.

 Its most important output are safety requirements.

Adherence to safety requirements has to be verified during
development, and validated at the end.

We distinguish different types of analysis:

 Top-Down analysis (Fault Trees)

 Bottom-up (FMEAs, Event Trees)

 It makes sense to combine different types of analyses, as
their results are complementary.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 37 -

Conclusions

Hazard Analysis is a creative process, as it takes an informal
input („system safety“) and produces a formal output (safety
requirements). Its results cannot be formally proven, merely
checked and reviewed.

Review plays a key role. Therefore,

 documents must be readable, understandable, auditable;

 analysis must be in well-defined and well-documented
format;

 all assumptions must be well documented.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 05:

High-Level Design with SysML

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

High-Level Design in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

What is a model?

Different notions of models
in physics, philosophy or
computer science

Here: an abstraction of a system / a software / a development

Purposes of models:

 Understanding, communicating and capturing the design

 Organizing decisions / information about a system

 Analyzing design decisions early in the development process

 Analyzing requirements

A model is a representation in a certain medium of

something in the same or another medium.

The model captures the important aspects of the

thing being modelled from a certain point of view

and simplifies or omits the rest.

 Rumbaugh, Jacobson,

Booch: UML Reference Manual.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

An Introduction to SysML

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

The Unified Modeling Language (UML)

Grew out of a wealth of modelling languages in the 1990s
(James Rumbaugh, Grady Booch and Ivar Jacobson at Rational)

Adopted by the Object Management Group (OMG) in 1997, and
approved as ISO standard in 2005.

UML 2 consists of

 the superstructure to define diagrams,

 a core meta-model,

 the object constraint language (OCL),

 an interchange format

UML 2 is not a fixed language, it can be extended and customized
using profiles.

 SysML is a modeling language for systems engineering

 Standardized in 2007 by the OMG (May 2017 at Ver 1.5)

 Standard available at: http://www.omg.org/spec/SysML/About-SysML/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

What for SysML?

Serving as a standardized notation allowing all stakeholders
to understand and communicate the salient aspects of the
system under development

 the requirements,

 the structure (static aspects), and

 the behavior (dynamic aspects)

Certain aspects (diagrams) of the SysML are formal, others
are informal

 Important distinction when developing critical systems

All diagrams are views of one underlying model

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Different Views in SysML

Structure:

 How is the system constructed?
How does it decompose?

Behaviour:

 What can we observe? Does it have a state?

Requirements:

 What are the requirements? Are they met?

Parametrization:

 What are the constraints (physical/design)?

… and possibly more.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Example: A Cleaning Robot (HooverBot)

Structure:

 Has an engine, wheels (or tracks?), a vacuum cleaner, a
control computer, a battery…

Behaviour:

 General: starts, then cleans until battery runs out, returns
to charging station

 Cleaning: moves in irregular pattern, avoids obstacle

Requirements:

 Must cover floor when possible, battery must last at least
six hours, should never run out of battery, …

Constraints:

 Can only clean up to 5 g, can not drive faster than 1m/s,
laws concerning movement and trajectory, …

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

SysML Diagrams

Structural Diagrams

Package Diagram

Internal Block Diagram Parametric Diagram

Block Definition Diagram

Behavioural Diagrams

Use Case Diagram *

State Machine Diagram Sequence Diagram

Activity Diagram

Requirement Diagram *

* Not considered further.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Structural Diagrams in SysML

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Block Definition Diagram

Blocks are the basic building elements of a model

 Models are instances of blocks

Block definition diagrams model blocks and their relations:

 Inheritance

 Association

Blocks can also model interface definitions.

Corresponds to class diagrams in the UML.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

BDD – Summary of Notation

Quelle: Holt, Perry. SysML for Systems Engineering.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Example 1: Vehicles

A vehicle can be a car, or a
bicycle.

A car has an engine

A car has 4 wheels,
a bicycle has 2 wheels

Engines and wheels have
operations and values

 In SysML, engine and wheel
are parts of car and bicycle.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Example 2: HooverBots

The hoover bots have a control computer, and a vacuum
cleaner (v/c).

 HooverBot 100 has one v/c, Hoover 1000 has two.

 Two ways to model this (i.e. two views):

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Internal Block Diagrams

 Internal block diagrams decribe instances of blocks

Here, instances for HooverBots

On this level, we can describe connections between ports
(flow specifications)

 Flow specifications have directions.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Example: HooverBot 100 and 1000

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Package Diagrams

Packages are used to group
diagrams, much like
directories in the file system.

Not considered much in the
following

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Parametric Diagrams

Parametric diagrams describe constraints between
properties and their parameters.

 It can be seen as a restricted form of an internal block
diagram, or as equational modeling as in Simulink.

fuelflow : FuelFlow

{ flowrate = press / (4*injectorDemand) }

ice.fi.FuelDemand:Real

ice.fi.FuelFlowRate:Real ice.fi.fuel.FuelPressure::Real

injectorDemand:Real

flowrate:Real press:Real

Relation of fuel flowrate to FuelDemand and FuelPressure value properties (Source: OMG SysML v1.2)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

SysML Diagrams Overview

Structural Diagrams

Package Diagram

Internal Block Diagram Parametric Diagram

Block Definition Diagram

Behavioral Diagrams

Use Case Diagram *

State Machine Diagram Sequence Diagram

Activity Diagram

Requirement Diagram *

* Not considered further.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Detailed Specification in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Why detailed Specification?

Detailed specification is the specification of single modules
making up our system.

This is the „last“ level both in abstraction and detail before we
get down to the code – in fact, some specifications at this
level can be automatically translated into code.

Why not write code straight away?

 We want to stay platform-independent.

 We may not want to get distracted by details of our target
platform.

 At this level, we have a better chance of finding errors or
proving safety properties.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

Levels of Detailed Specification

We can specify the basic modules

By their (external) behavior

 Operations defined by their pre/post-conditions and
effects (e.g. in OCL)

 Modeling the system‘s internal states by a state machine
(i.e. states and guarded transitions)

By their (internal) structure

 Modeling the control flow by flow charts
(aka. activity charts)

 By action languages (platform-independent programming
languages) for UML
(but these are not standard for SysML)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

State diagrams are a particular form of (hierarchical) FSMs:

Example: a simple coffee machine.

We will explore FSMs in detail later.

 In hierarchical state machines, a state may contain another
FSM (with initial/final states).

State Diagrams in SysML are taken unchanged from UML.

State Diagrams: Basics

Definition: Finite State Machine (FSM)

A FSM is given by ℳ = Σ, 𝐼, → where

• Σ is a finite set of states,

• 𝐼 ⊆ Σ is a set of initial states, and
• →⊆ Σ × Σ is a transition relation, s.t. → is left-total:

∀𝑠 ∈ Σ. ∃𝑠′ ∈ Σ. 𝑠 → 𝑠′

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Basic Elements of State Diagrams

States

 Initial/Final

Transitions

Events (Triggers)

Guards

Actions (Effects)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

What is an Event?

„The specification of a noteworthy occurence which has a
location in time and space.“ (UML Reference Manual)

SysML knows:

 Signal events event name/

 Call events operation name/

 Time events after(t)/

 Change event when(e)/

 Entry events Entry/

 Exit events Exit/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

SMDs – Summary of Notation

Quelle: Holt, Perry. SysML for Systems Engineering.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

State Diagram Elements (SysML Ref. §13.2)

Choice pseudo state

Composite state

Entry point

Exit point

Final state

History pseudo states

 Initial pseudo state

 Junction pseudo state

Receive signal action

Send signal action

Action

Region

Simple state

State list

State machine

Terminate node

Submachine state

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Activity Charts: Foundations

The activity charts of SysML (UML) are a variation of good old-
fashioned flow charts.

 Those were standardized as DIN 66001
 (ISO 5807).

Flow charts can describe
programs (right example)
or non-computational
activities (left example)

SysML activity charts
are extensions of
UML activity charts.

Quelle: Erik Streb, via Wikipedia

Quelle: Wikipedia

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Basics of Activity Diagrams

Activities model the work flow of low-level behaviours:
“An activity is the specification of parameterized behaviour as
the coordinated sequencing of subordinate unites whose
individual elements are actions.” (UML Ref. §12.3.4)

Diagram comprises of actions, decisions, joining and forking
activities, start/end of work flow.

Control flow allows to disable and enable (sub-) activities.

An activity execution results in the execution of a set of
actions in some specific order.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 32 -

What is an Action?

A terminating basic behaviour, such as

 Changing variable values [UML Ref. §11.3.6]

 Calling operations [UML Ref. §11.3.10]

 Calling activities [UML Ref. §12.3.4]

 Creating and destroying objects, links, associations

 Sending or receiving signals

 Raising exceptions .

Actions are part of a (potentially larger, more complex) behaviour.

 Inputs to actions are provided by ordered sets of pins:

 A pin is a typed element, associated with a multiplicity

 Input pins transport typed elements to an action

 Actions deliver outputs consisting of typed elements on output
pins

Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -

Elements of Activity Diagrams

Paths (arrows):

 Control flow

 Object flow

 Probability and rates

Activities in BDDs

Partitions

 Interruptible Regions

Structured activities

Nodes:

 Action nodes

 Activities

 Decision nodes

 Final nodes

 Fork nodes

 Initial nodes

 Local pre/post-conditions

 Merge nodes

 Object nodes

 Probabilities and rates

Systeme hoher Sicherheit und Qualität, WS 17/18 - 34 -

Activity Diagrams – Summary of Notation

Q
u

e
lle

:
H

o
lt

,
P

e
rr

y.
 S

ys
M

L
 f

o
r

S
ys

te
m

s
E

n
g

in
e

e
ri

n
g

.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -

Behavioural Semantics

Semantics is based on token flow – similar to Petri Nets, see
[UML Ref. pp. 326]

 A token can be an input signal, timing condition,
interrupt, object node (representing data), control
command (call, enable) communicated via input pin,
…

 An executable node (action or sub-activity) in the
activity diagram begins its execution, when the
required tokens are available on their input edges.

 On termination, each executable node places tokens
on certain output edges, and this may activate the
next executable nodes linked to these edges.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 36 -

Activity Diagrams – Links With BDDs

Block definition diagrams may show

 Blocks representing activities

 One activity may be composed of other activities –
composition indicates parallel execution threads of the
activities at the “part end”.

 One activity may contain several blocks representing
object nodes (which represent data flowing through the
activity diagram).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 37 -

Sequence Diagrams

Sequence Diagrams describe the flow of messages between
actors.

Extremely useful, but also extremely limited.

We may consider concurrency further later on.

Quelle:
IBM developerWorks

Systeme hoher Sicherheit und Qualität, WS 17/18 - 38 -

Summary

High-level modeling describes the structure of the system at

an abstract level

SysML is a standardized modeling language for systems
engineering, based on the UML

 We disregard certain aspects of SysML in this lecture

SysML structural diagrams describe this structure.

 Block definition diagrams

 Internal block definition diagrams

 Package diagrams

We may also need to describe formal constraints, or
invariants.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 39 -

Summary (cont.)

Detailed specification means we specify the internal structure
of the modules in our systems.

Detailed specification in SysML:

 State diagrams are hierarchical finite state machines
which specify states and transitions.

 Activity charts model the control flow of the program.

More behavioral diagrams in SysML:

 Sequence charts model the exchange of messages
between actors.

 Use case diagrams describe particular uses of the system.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 06:

Formal Modeling with OCL

mit Folien v. Bernhard Beckert (KIT)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Formal Modeling in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

What is OCL?

OCL is the Object Constraint Language.

What is OCL?

 „A formal language used to describe expressions on UML
models. These expressions typically specify invariant
conditions that must hold for the system being modeled or
queries over objects described in a model.” (OCL standard, §7)

Why OCL?

 „A UML diagram, such as a class diagram, is typically not
refined enough to provide all the relevant aspects of a
specification. There is, among other things, a need to
describe additional constraints about the objects in the
model. “ (OCL standard, §7.1)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Characteristics of the OCL

OCL is a pure specification language

 OCL expressions do not have side effects

OCL is not a programming language.

 Expressions are not executable (though some may be)

OCL is typed language

 Each expression has type; all expressions must be well-
typed

 Types are classes, defined by class diagrams

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

as a query language

to specify invariants on classes and types in the class

to specify type invariant for Stereotypes

to describe pre- and post conditions on Operations and
Methods

to describe guards

to specify target (sets) for messages and actions

to specify constraints on operations

to specify derivation rules for attributes for any expression
over a UML model.

 (OCL standard, §7.1.1)

Usage of the OCL

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

OCL by Example

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Why is SysML not enough?

What about requirements like:

The minimal age of car owners

The maximal number of cars (of a specific color) owned

The maximal number of owners of a car

Person

name: string
age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

Bdd VehicleOwners

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

OCL Basics

The language is typed: each expression has a type.

Multiple-valued logic (true, false, undefined).

Expressions always live in a context:

 Invariants on classes, interfaces, types.

 Pre/postconditions on operations or methods

context Class

 inv Name: expr

context Type :: op(a1: Type, …, an: Type) : Type

 pre Name: expr

 post Name: expr

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

OCL Types

Basic types:

 Boolean, Integer, Real, String

 OclAny, OclType, OclVoid, OclInvalid

Collection types:

 Sequences, Bag, OrderedSet, Set

Model types

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Invariants of Classes

“A vehicle owner must be at least 18 years old”

Person

name: string
age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

context Vehicle

inv: self.owner.age >= 18

Bdd VehicleOwners

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Basic types and operations

 Integer (ℤ) OCL-Std. §11.5.2

Real (ℝ) OCL-Std. §11.5.1

 Integer is a subclass of Real

 round, floor from Real to Integer

String (Zeichenketten) OCL-Std. §11.5.3

 substring, toReal, toInteger, characters, etc.

Boolean (Wahrheitswerte) OCL-Std. §11.5.4

 or, xor, and, implies

 Relationen auf Real, Integer, String

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Collection Types

Sequence, Bag, OrderedSet, Set OCL-Std. §11.6, §11.7

Operations on all collections:

 size, includes, count, isEmpty, flatten

 Collections are always „flattened“

Set

 union, intersection

Bag

 union, intersection, count

Sequence

 first, last, reverse, prepend, append

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Collections

“Nobody has more than 3 vehicles”

context Person

Inv: self.fleet->size <= 3

Person

name: string
age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

Bdd VehicleOwners

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Collection Types: Quantification

We can quantify over collections: OCL-Std. §11.9.1

Universal quantification :

 coll->forAll(elem: Type| expr[elem]) : Boolean

Existential quantification:
 coll->exists(elem: Type| expr[elem]) : Boolean

Comprehension operator:
 coll->select(elem: Type| expr[elem]) : Coll[Type]

where expr is an expression of type Boolean.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Universal Quantification

“All vehicles of a person are black”

 context Person

inv: self.fleet->forAll(v | v.color = #black)

“No person has more than three black vehicles”

 context Person

inv: self.fleet->select(v | v.color = #black)->size <= 3

Person

name: string
age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

Bdd VehicleOwners

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Universal Quantification

“A person younger than 18 owns no cars”

context Person

inv: self.age < 18 implies

 self.fleet -> forAll(v | not v.ocllsKindOf(Car))

Person

name: string
age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

Bdd VehicleOwners

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Existential Quantification

context Car

inv: Car.allInstances()->exists(c | c.color=#red)

“There is a red car”

Person

name: string
age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

Bdd VehicleOwners

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Pre/Post Conditions

“If setAge(a) is called with a non-negative argument a, then a
becomes the new value of the attribute age.”

context Person::setAge(a:int)

pre: a >= 0

post: self.age = a

Person

name: string
age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

Bdd VehicleOwners

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Pre/Post Conditions

“Calling birthday() increments the age of a person by 1.”

context Person::birthday()

post: self.age = self.age@pre + 1

Person

name: string
age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

Bdd VehicleOwners

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Modelling Dynamic Aspects

Block diagrams model the static structure of the system:
classes, attributes and the type of the operations. The pos-
sible system states are all instances of these model types.

 Invariants and pre/post conditions can be used to model the
dynamic aspects of the system. In particular, they model all
possible state transitions between the system states.

An operation can become active (there is a state transition
emanting from it) if the invariant holds, and the precondition
holds. If there are no active state transitions, the system is
deadlocked.

 Deadlocks must be avoided.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Example: The Traffic Light

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

pedLight: False
carLight: True
request: False
counter: 0

Example: The Traffic Light

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

pedLight: False
carLight: True
request: True
counter: 1

Example: The Traffic Light

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

pedLight: False
carLight: False
request: True
counter: 1

Example: The Traffic Light

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Deadlock

pedLight: True
carLight: False
request: False
counter: 1

Example: The Traffic Light

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

OCL Details

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

Model types

Model types are given by

 Attributes,

 Operations, and

 Associations of the model

Navigation along the association

 If cardinality is 1, type is of target type T

 Otherwise, it is Set(T)

User-defined operations in expressions have to be stateless
(stereotype <<query>>)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Collection Types: Iterators

Quantifiers are a special case of iterators.

 Think of all/any in Haskell defined via foldr

All iterators defined via iterate OCL-Std. §7.6.6

 coll->iterate(elem: Type, acc: T = initial_expr

 | expr[elem, acc]) : Coll[T]

where expr of type T denotes a function on elem and acc

c.iterate(e: T, acc: T = v) = {

 acc= v;

 for (Enumeration e= c.elements(); e.hasMoreElements();) {

 acc= expr[e, acc];

 e= e.nextElement();

}

 return acc;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Collection Types: Iterators

“A person owns at most 3 black vehicles”

Person

name: string
age: Integer

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>
Color

#black
#white
#red

owner

1

fleet

0 .. *

context Person

inv: self.fleet->iterate(v; acc:Integer = 0

 | if (v.color = #black)

 then acc + 1 else acc

 endif) <= 3

Systeme hoher Sicherheit und Qualität, WS 17/18 - 32 -

Undefinedness in OCL

Each domain of a basic type has two values denoting
“undefinedness”: OCL-Std §A.2.1.1

 null or 𝜀 stands for “undefined”, e.g. if an attribute value
has not been set or is not defined (Type OclVoid)

 invalid or ⊥ stands for “invalid” and signals an error in the
evaluation of an expression (e.g. division by 0, or
application of a partial function) (Type OclInvalid)

 As subtypes: OclInvalid ⊆ OclVoid ⊆ all other types

Undefinedness is propagated.

 In other words, all operations are strict: „an invalid or null
operand causes an invalid result“.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -

The OCL Logic

Exceptions to strictness:

 Boolean operators (see below)

 Case distinction

 Test on definedness: oclIsUndefined with

𝑜𝑐𝑙𝐼𝑠𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑒 =
𝑡𝑟𝑢𝑒 𝑖𝑓 𝑒 = ⊥ ∨ 𝑒 = 𝑛𝑢𝑙𝑙
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The domain type for Boolean also contains null and invalid.

 The resulting logic is four-valued.

 It is a Kleene-Logic: 𝐴 → 𝐵 ≡ ¬ 𝐴 ∨ 𝐵

 Boolean operators (and, or, implies, xor) are non-
strict on both sides.

 But equality (like all other relations) is strict: ⊥ = ⊥ is ⊥

Systeme hoher Sicherheit und Qualität, WS 17/18 - 34 -

OCL Boolean Operators: Truth Table

 Legend: ⊥ is invalid, 𝜀 is null. OCL-Std §A .2.1.3, Table A.2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -

OCL Style Guide

Avoid complex navigation („Loose coupling“).

 Otherwise changes in models break OCL constraints.

Always choose adequate context.

„Use of allInstances()is discouraged“

Split up invariants if possible.

Consider defining auxiliary operations if expressions
become too complex.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 36 -

Summary

OCL is a typed, state-free specification language which allows
us to denote constraints on models.

We can define or models much more precise.

 Ideally: no more natural language needed.

OCL is part of the more „academic“ side of UML/SysML.

 Tool support is not great, some tools ignore OCL, most
tools at least type-check OCL, hardly any do proofs.

However, in critical system development, the kind of
specification that OCL allows is essential.

Try yourself: USE – Tool http://useocl.sourceforge.net
Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-Based Specification
Environment for Validating UML and OCL. Science of Computer Programming, 69:27-
34, 2007.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 07:

Testing

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Testing in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

What is Testing?

 In our sense, testing is selected, controlled program execution

 The aim of testing is to detect bugs, such as

 derivation of occurring characteristics of quality properties
compared to the specified ones

 inconsistency between specification and implementation

 structural features of a program that cause a faulty behavior of
a program

Testing is the process of executing a program or system with the
intent of finding errors.

G.J. Myers, 1979

Program testing can be used to show the presence of bugs, but
never to show their absence.

E.W. Dijkstra, 1972

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

The Testing Process

Test cases, test plan, etc.

System-under-test (s.u.t.) (cf. TOE in CC)

Warning -- test literature is quite expansive

Testing is any activity aimed at evaluating an attribute or
capability of a program or system and determining that it meets
its required results.

Hetzel, 1983

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Test Levels

Component and unit tests

 test at the interface level of single components (modules,
classes)

Integration test

 testing interfaces of components fit together

System test

 functional and non-functional test of the complete
system from the user’s perspective

Acceptance test

 testing if system implements contract details

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Test Methods

Static vs. dynamic

 With static tests, the code is analyzed without being run.
We cover these methods as static program analysis later

 With dynamic tests, we run the code under controlled
conditions, and check the results against a given
specification

Central question: where do the test cases come from?

 Black-box: the inner structure of the s.u.t. is opaque, test
cases are derived from specification only.

 Grey-box: some inner structure of the s.u.t. is known, e.g.
module architecture.

 White-box: the inner structure of the s.u.t. is known, and
tests cases are derived from the source code.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Black-Box Tests

Limit analysis:

 If the specification limits input parameters, then values
close to these limits should be chosen

 Idea is that programs behave continuously, and errors
occur at these limits

Equivalence classes:

 If the input parameter values can be decomposed into
classes which are treated equivalently, test cases have to
cover all classes

Smoke test:

 “Run it, and check it does not go up in smoke.”

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Example: Black-Box Testing

Equivalence classes or limits?

Equivalence classes or limits?

Example: A Company Bonus System

The loyalty bonus shall be computed depending on the time of
employment. For employees of more than three years, it shall be
50% of the monthly salary, for employees of more than five
years, 75%, and for employees of more than eight years, it shall
be 100%.

Example: Air Bag

The air bag shall be released if the vertical acceleration 𝑎𝑣 equals
or exceeds 15 𝑚 𝑠2 . The vertical acceleration will never be less

than zero, or more than 40 𝑚 𝑠2 .

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Black-Box Tests

Quite typical for GUI tests, or functional testing

Testing invalid input: depends on programming language
the stronger the typing, the less testing for invalid input is
required

 Example: consider lists in C, Java, Haskell

 Example: consider object-relational mappings1 (ORM) in
Python, Java

1) Translating e.g. SQL-entries to objects

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Property- based Testing

 In property-based testing (or random testing), we generate
random input values, and check the results against a given
executable specification.

Attention needs to be paid to the distribution values.

Works better with high-level languages, where the datatypes
represent more information on an abstract level and where
the language is powerful enough to write comprehensive
executable specifications (i.e. Boolean expressions).

 Implementations for e.g. Haskell, Scala, Java

Example: consider list reversal in C, Java, Haskell

 Executable spec: reversal is idempotent and distributes
over concatenation.

 Question: how to generate random lists?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

White-Box Tests

 In white-box tests, we derive test cases based on the
structure of the program (structural testing)

 To abstract from the source code (which is a purely
syntactic artefact), we consider the control flow graph of
the program.

Hence, paths in the CFG correspond to runs of the program.

Def: Control Flow Graph (CFG)

• nodes as elementary statements (e.g. assignments, return,

break, . . .), as well as control expressions (e.g. in conditionals

and loops), and

• vertices from n to m if the control flow can reach a node m

coming from a node n.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Example: Control-Flow Graph

if (x < 0) /*1*/ {

 x:= – x /*2*/

}

z = 1; /*3*/

while (x > 0) /*4*/ {

 z = z * y; /*5*/

 x = x – 1 /*6*/

}

return z /*7*/

1

2

3

4

5

6

7

An execution path is
a path though the
cfg.

Examples:
• [1,3,4,7, E]

• [1,2,3,4,7, E]

• [1,2,3,4,5,6,4,7, E]

• [1,3,4,5,6,4,5,6,4,7, E]

• …

E

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Coverage

Statement coverage:
Each node in the CFG is visited at least once.

Branch coverage:
Each vertex in the CFG is traversed at least once.

Decision coverage:
Like branch coverage, but specifies how often conditions
(branching points) must be evaluated.

Path coverage:
Each path in the CFG is executed at least once.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Example: Statement Coverage

Which (minimal) path
covers all statements?

 p = [1,2,3,4,5,6,4,7,E]

Which state generates p?

 x = -1
 y any
 z any

1

2

3

4

5

6

7

E

if (x < 0) /*1*/ {

 x:= – x /*2*/

}

z = 1; /*3*/

while (x > 0) /*4*/ {

 z = z * y; /*5*/

 x = x – 1 /*6*/

}

return z /*7*/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Example: Branch Coverage

Which (minimal) path covers
all vertices?
 𝑝1= 1,2,3, 4,5,6, 4,7, 𝐸

𝑝2 = [1,3, 4, 7, 𝐸]

Which states generate 𝑝1, 𝑝2?

 𝑝1 𝑝2
 x -1 0
 y any any
 z any any

Note 𝑝3 (x= 1) does not add
coverage.

1

2

3

4

5

6

7

E

if (x < 0) /*1*/ {

 x:= – x /*2*/

}

z = 1; /*3*/

while (x > 0) /*4*/ {

 z = z * y; /*5*/

 x = x – 1 /*6*/

}

return z /*7*/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Example: Path Coverage

How many paths are there?

Let 𝑞1 = 1,2,3
 𝑞2 = 1,3

 𝑝 = 4,5,6

 𝑟 = [4,7, 𝐸]

 then all paths are
𝑃 = 𝑞1 𝑞2) 𝑝

∗ 𝑟

Number of possible paths:

 𝑃 = 2 ⋅ 𝑀𝑎𝑥𝐼𝑛𝑡 − 1

1

2

3

4

5

6

7

E

if (x < 0) /*1*/ {

 x:= – x /*2*/

}

z = 1; /*3*/

while (x > 0) /*4*/ {

 z = z * y; /*5*/

 x = x – 1 /*6*/

}

return z /*7*/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Statement, Branch and Path Coverage

 Statement Coverage:

 Necessary but not sufficient, not suitable as only test approach.

 Detects dead code (code which is never executed).

 About 18% of all defects are identified.

Branch coverage:

 Least possible single approach.

 Detects dead code, but also frequently executed program
parts.

 About 34% of all defects are identified.

Path Coverage:

 Most powerful structural approach;

 Highest defect identification rate (100%);

 But no practical relevance.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Decision Coverage

Decision coverage is more then branch coverage, but less
then full path coverage.

Decision coverage requires that for all decisions in the
program, each possible outcome is considered once.

Problem: cannot sufficiently distinguish Boolean expressions.

 For A || B, the following are sufficient:
 A B Result

 false false false

 true false true

 But this does not distinguish A || B from A;
B is effectively not tested.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Decomposing Boolean Expressions

The binary Boolean operators include conjunction 𝑥 ∧ 𝑦,
disjunction 𝑥 ∨ 𝑦, or anything expressible by these (e.g.
exclusive disjunction, implication)

An elementary term is a variable, a Boolean-valued function, a
relation (equality =, orders <,≤,>,≥, etc.), or a negation of
these.

This is a fairly syntactic view, e.g. 𝑥 ≤ 𝑦 is elementary, but
𝑥 < 𝑦 ∨ 𝑥 = 𝑦 is not, even though they are equivalent.

 In formal logic, these are called literals.

Elementary Boolean Terms

An elementary Boolean term does not contain binary

Boolean operators, and cannot be further decomposed.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Simple Condition Coverage

For each condition in the program, each elementary Boolean
term evaluates to True and False at least once

Note that this does not say much about the possible value of
the condition

Examples and possible solutions:

if (temperature > 90 && pressure > 120) {… }

 C1 C2 Result
 True True True
 True False False
 False True False
 False False False

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Modified Condition Coverage

 It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3 <= x && x < 5.

 In modified (or minimal) condition coverage, all possible
combinations of those elementary terms the value of which
determines the value of the whole condition need to be
considered.

Example:

Another example: (x > 1 && ! p) || p

3 <= x && x < 5

False False False ← not needed
False True False
True False False
True True True

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Modified Condition/Decision Coverage

Modified Condition/Decision Coverage (MC/DC) is required by
DO-178B for Level A software.

 It is a combination of the previous coverage criteria defined
as follows:

 Every point of entry and exit in the program has been
invoked at least once;

 Every decision in the program has taken all possible
outcomes at least once;

 Every condition in a decision in the program has taken all
possible outcomes at least once;

 Every condition in a decision has been shown to
independently affect that decision’s outcome.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

How to achieve MC/DC

Not: Here is the source code, what is the minimal set of test
cases?

Rather: From requirements we get test cases, do they
achieve MC/DC?

Example:

 Test cases: Source Code:
 Z := (A || B) && (C || D)

Test case 1 2 3 4 5

Input A F F T F T

Input B F T F T F

Input C T F F T T

Input D F T F F F

Result Z F T F T T

Question: do test cases
achieve MC/DC?

Source: Hayhurst et al, A Practical Tutorial
on MC/DC. NASA/TM2001-210876

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Summary

 (Dynamic) Testing is the controlled execution of code, and
comparing the result against an expected outcome

Testing is (traditionally) the main way for verification.

Depending on how the test cases are derived, we distinguish
white-box and black-box tests

 In black-box tests, we can consider limits and equivalence
classes for input values to obtain test cases

 In white-box tests, we have different notions of coverage:
statement coverage, path coverage, condition coverage, etc.

Next week: Static testing aka. static program analysis

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 08:

Static Program Analysis

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Program Analysis in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Static Program Analysis

Analysis of run-time behaviour of programs without
executing them (sometimes called static testing).

Analysis is done for all possible runs of a program
(i.e. considering all possible inputs).

Typical questions answered:

 Does the variable x have a constant value ?

 Is the value of the variable x always positive ?

 Are all pointer dereferences valid (or NULL)?

 Are all arithmetic operations well-defined?

These tasks can be used for verification or for optimization
when compiling.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Usage of Program Analysis

Optimizing compilers

Detection of sub-expressions that are evaluated multiple times

Detection of unused local variables

 Pipeline optimizations

Program verification

Search for runtime errors in programs (program safety):

Null pointer or other illegal pointer dereferences

Array access out of bounds

 Exceptions which are thrown and not caught

Division by zero

Over/underflow of integers, rounding errors with floating point
numbers

 Runtime estimation (worst-caste executing time, wcet)

In other words, specific verification aspects.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Program Analysis: The Basic Problem

Given a property P and a program p: 𝑝 ⊨ 𝑃 iff P holds for p

Wanted: a terminating algorithm 𝜙(𝑝, 𝑃) which computes 𝑝 ⊨ 𝑃

 𝜙 is sound if 𝜙(𝑝, 𝑃)implies 𝑝 ⊨ 𝑃

 𝜙 is complete if ¬𝜙(𝑝, 𝑃) implies ¬ 𝑝 ⊨ 𝑃

 If 𝜙 is sound and complete then 𝜙 is a decision procedure

 From the basic problem it follows that there are no sound and
complete tools for interesting properties.

 Tools for interesting properties are either

 sound (under-approximating) or

 complete (over-approximating).

The basic problem of static program analysis: virtually all interesting

program properties are undecidable! (cf. Gödel, Turing)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Program Analysis: Approximation

Correct Errors

Overapproximation

Underapproximation

Not
computable

Computable

All programs

Under-approximation is sound but not
complete. It only finds correct programs
but may miss out some.

 Useful in optimizing compilers;

 Optimization must preserve
semantics of program, but is
optional.

Over-approximation is complete but
not sound. It finds all errors but may find
non-errors (false positives).

 Useful in verification;

 Safety analysis must find all errors,
but may report some more.

 Too high rate of false positives may
hinder acceptance of tool.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Program Analysis Approach

Provides approximate answers

 yes / no / don’t know or

 superset or subset of values

 Uses an abstraction of program’s behavior

 Abstract data values (e.g. sign abstraction)

 Summarization of information from
execution paths e.g. branches of the if-else statement

Worst-case assumptions about environment’s behavior

 e.g. any value of a method parameter is possible.

Sufficient precision with good performance.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Analysis Properties: Flow Sensitivity

Flow-insensitive analysis

Program is seen as an unordered collection of statements

Results are valid for any order of statements
e.g. S1 ; S2 vs. S2 ; S1

Example: type analysis (inference)

Flow-sensitive analysis

Considers program's flow of control

Uses control-flow graph as a representation of the source

Example: available expressions analysis

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Analysis Properties: Context Sensitivity

Context-sensitive analysis

Stack of procedure invocations and return values of method
parameters

Results of analysis of the method M depend on the caller of M

Context-insensitive analysis

Produces the same results for all possible invocations of M
independent of possible callers and parameter values.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Intra- vs. Inter-procedural Analysis

Intra-procedural analysis

Single function is analyzed in isolation.

Maximally pessimistic assumptions about parameter values
and results of procedure calls.

Inter-procedural analysis

Procedure calls are considered.

Whole program is analyzed at once.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Data-Flow Analysis

Focus on questions related to values of variables and their lifetime

Selected analyses:

Available expressions (forward analysis)

 Which expressions have been computed already without
change of the occurring variables (optimization) ?

Reaching definitions (forward analysis)

 Which assignments contribute to a state in a program point?
(verification)

Very busy expressions (backward analysis)

 Which expressions are executed in a block regardless which
path the program takes (verification) ?

 Live variables (backward analysis)

 Is the value of a variable in a program point used in a later part
of the program (optimization) ?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

A Simple Programming Language

Arithmetic expressions:

𝑎 ∷= 𝑥 𝑛 𝑎1 𝑜𝑝𝑎 𝑎2

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/}

Boolean expressions:

𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

Statements:

 S ::= [x := a]l | [skip]l | S1; S2 | if [b]l S1 else S2 | while [b]l S

Note this abstract syntax, operator precedence and grouping
statements is not covered. We can use { and } to group
statements, and (and) to group expressions.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Computing the Control Flow Graph

 To calculate the CFG, we define some functions on the abstract
syntax 𝑆 :

 The initial label (entry point)
init: 𝑆 → 𝐿𝑎𝑏

 The final labels (exit points)

 final: 𝑆 → ℙ 𝐿𝑎𝑏

 The elementary blocks
𝑏𝑙𝑜𝑐𝑘𝑠: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠 where
an elementary block is an
assignment [x:= a], or
[skip], or a test [b]

𝑏𝑙𝑜𝑐𝑘𝑠 𝑥 ≔ 𝑎 𝑙 = 𝑥 ≔ 𝑎 𝑙

𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑘𝑖𝑝 𝑙 = 𝑠𝑘𝑖𝑝 𝑙
𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1; 𝑆2 = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2
𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2

= 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2
𝑏𝑙𝑜𝑐𝑘𝑠 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

𝑖𝑛𝑖𝑡 𝑥 ≔ 𝑎 𝑙 = 𝑙

𝑖𝑛𝑖𝑡 𝑠𝑘𝑖𝑝 𝑙 = 𝑙
𝑖𝑛𝑖𝑡 𝑆1; 𝑆2 = 𝑖𝑛𝑖𝑡 𝑆1
𝑖𝑛𝑖𝑡 (𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 = 𝑙
𝑖𝑛𝑖𝑡 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑙

𝑓𝑖𝑛𝑎𝑙 𝑥 ≔ 𝑎 𝑙 = 𝑙

𝑓𝑖𝑛𝑎𝑙 𝑠𝑘𝑖𝑝 𝑙 = 𝑙
𝑓𝑖𝑛𝑎𝑙 𝑆1; 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆2
𝑓𝑖𝑛𝑎𝑙 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 {𝑆2}
 = 𝑓𝑖𝑛𝑎𝑙 𝑆1 ∪ 𝑓𝑖𝑛𝑎𝑙 𝑆2
𝑓𝑖𝑛𝑎𝑙 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = {𝑙}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Computing the Control Flow Graph

 The control flow flow: 𝑆 → ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏
and reverse control flowR: 𝑆 → ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏

 The control flow graph of a program S is given by

 elementary blocks 𝑏𝑙𝑜𝑐𝑘 𝑆 as nodes, and

 flow(S) as vertices.

Additional useful definitions

𝑓𝑙𝑜𝑤 𝑥 ≔ 𝑎 𝑙 = ∅

𝑓𝑙𝑜𝑤 𝑠𝑘𝑖𝑝 𝑙 = ∅
𝑓𝑙𝑜𝑤 𝑆1; 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆2) 𝑙 ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆1
𝑓𝑙𝑜𝑤 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 {𝑆2 } = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ {(𝑙, 𝑖𝑛𝑖𝑡 𝑆1), 𝑙, 𝑖𝑛𝑖𝑡 𝑆2)

𝑓𝑙𝑜𝑤 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑓𝑙𝑜𝑤 𝑆 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆 ∪ { 𝑙′, 𝑙 |𝑙′ ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆 }

𝑓𝑙𝑜𝑤𝑅 𝑆 = 𝑙′, 𝑙 𝑙, 𝑙′ ∈ 𝑓𝑙𝑜𝑤(𝑆)}

𝑙𝑎𝑏𝑒𝑙𝑠 𝑆 = 𝑙 𝐵 𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)}
𝐹𝑉 𝑎 = free variables in 𝑎
𝐴𝑒𝑥𝑝 𝑆 = non-trival subexpressions in 𝑆 (variables and constants are trivial)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

An Example Program

init(P) = 1

final(P) = {3}

blocks(P) =

 { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b]5}

flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}

flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)}

labels(P) = {1, 2, 3, 4, 5)

FV(a+b) = {a, b}

FV(P) = {a, b, x, y}

Aexp(P) = {a+b, a*b, a+1}

x := a + b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

P = [x := a+b]1; [y := a*b]2; while [y > a+b]3 { [a:=a+1]4; [x:= a+b]5 }

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Program Analysis CFG : General Idea

Statement F

Pout

Pin

Locally for each statement:

Relationship between Pin and Pout :

• kill : part of Pin that is invalidated by F
• gen : additional part that is generated by F

Pout = (Pin \ kill) [gen

We obtain constrains for the Pout and Pin for all statements and links!
Solve CSP by a constraint solver.

kill

gen

P’in

Statement F’

Globally for each link:

P ’in = [Pout (or \ Pout)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Available Expression Analysis

The available expression analysis will
determine for each program point:

which non-trivial expressions have been
already computed in prior statements
(and are still valid)

„Caching of expressions“

x := a +b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

S :

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Available Expression Analysis

kill([x :=a]l) = { exp 2 Aexp(S) | x 2 FV(exp) }
kill([skip]l) = ∅
kill([b]l) = ∅

gen([x :=a]l) = { exp 2 Aexp(a) | x FV(exp) }
gen([skip]l) = ∅
gen([b]l) = Aexp(b)

AEin(l) =

 ∅, if l ∈ init(S)

 𝐴𝐸𝑜𝑢𝑡 𝑙
′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤(𝑆) , otherwise

AEout (l) = 𝐴𝐸𝑖𝑛 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 , where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := a +b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

S :

l kill(Bl) gen(Bl)

1 ∅ {a+b}

2 ∅ {a*b}

3 ∅ {a+b}

4 {a+b, a*b, a+1} ∅

5 ∅ {a+b}

l AEin AEout

1 ∅ {a+b}

2 {a+b} {a+b, a*b}

3 {a+b} {a+b}

4 {a+b} ∅

5 ∅ {a+b}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Reaching Definitions Analysis

Reaching definitions (assignment)
analysis determines if:

 An assignment of the form [x := a]l

reaches a program point k

if there is an execution path where
x was last assigned at l when the
program reaches k

x := 5

x > 1

y := x * y

x := x - 1

1

5

4

3

y := 1
2

S :

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Reaching Definitions Analysis

kill([skip]l) = ∅
kill([b]l) = ∅
kill([x :=a]l) =

𝑥, ? ∪ 𝑥, 𝑘 𝐵𝑘 𝑖𝑠 𝑎𝑛 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆}

gen([x :=a]l) = { 𝑥, 𝑙 }
gen([skip]l) = ∅
gen([b]l) = ∅

RDin(l) =

 𝑥, ? 𝑥 ∈ 𝐹𝑉 𝑆 } if l ∈ init(S)

 𝑅𝐷𝑜𝑢𝑡 𝑙
′ 𝑙′, 𝑙 } ∈ 𝑓𝑙𝑜𝑤 𝑆 otherwise

RDout (l) = 𝑅𝐷𝑖𝑛 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := 5

x > 1

y := x * y

x := x - 1

1

5

4

3

y := 1
2

l kill(Bl) gen(Bl)

1

{(x,?), (x,1),(x,5)}

{(x, 1)}

2 {(y,?), (y,2),(y,4)} {(y, 2)}

3 ∅ ∅

4 {(y,?), (y,2),(y,4)} {(y, 4)}

5 {(x,?), (x,1),(x,5)} {(x, 5)}

S :

l RDin RDout

1 {(x,?), (y,?)} {(x,1), (y,?)}

2 {(x,1), (y,?)} {(x,1), (y,2)}

3 {(x,1), (x,5),

(y,2), (y,4)}

{(x,1), (x,5),

(y,2), (y,4)}

4 {(x,1), (x,5),

(y,2), (y,4)}

{(x,1),

(x,5),(y,4)}

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Live Variables Analysis

A variable x is live at some program point
(label l) if there exists if there exists a path
from l to an exit point that does not
change the variable

Live Variables Analysis determines:

 for each program point, which
variables may be still live at the
exit from that point.

Application: dead code elemination.

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

S :

z := y*y
6

x := z

7

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Live Variables Analysis

kill([x :=a] l) = {𝑥}
kill([skip] l) = ∅
kill([b] l) = ∅

gen([x :=a] l) = 𝐹𝑉(𝑎)
gen([skip] l) = ∅
gen([b] l) = 𝐹𝑉(𝑏)

LVout(l) =

∅ if l ∈ final(S)

 𝐿𝑉𝑖𝑛 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅 𝑆 otherwise

LVin (l) = 𝐿𝑉𝑜𝑢𝑡 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵
𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

l kill(Bl) gen(Bl)

1 {x} ∅

2 {y} ∅

3 {x} ∅

4 ∅ {x, y}

5 {z} {y}

6 {z} {y}

7 {x} {z}

l LVin LVout

1 ∅ ∅

2 ∅ {y}

3 {y} {x, y}

4 {x, y} {y}

5 {y} {z}

6 {y} {z}

7 {z} ∅

S :

z := y*y
6

x := z

7

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

First Generalized Schema

Analysis (l) =
 𝐄𝐕 if 𝑙 ∈ 𝐄

□ Analysis (l‘) 𝑙′, 𝑙 ∈ 𝐅𝐥𝐨𝐰 𝑆 } otherwise

Analysis (l) = 𝑓l (Analysis (l))

With:

 𝐄𝐕 is the initial / final analysis information

 𝐄 is either {init(S)} or final(S)

□ is either or

 𝐅𝐥𝐨𝐰 is either flow or flowR

 𝑓𝑙 is the transfer function associated with 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

Forward analysis: 𝐅𝐥𝐨𝐰 = flow, = OUT, = IN

Backward analysis: 𝐅𝐥𝐨𝐰 = flowR, = IN, = OUT

fl

Analysis (l)

Analysis (l)

Analysis (l‘)

fl

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Partial Order

 𝐿 = 𝑀,⊑ is a partial order iff

 Reflexivity: ∀𝑥 ∈ 𝑀. 𝑥 ⊑ 𝑥

 Transitivity: ∀𝑥, 𝑦, 𝑧 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧

 Anti-symmetry: ∀𝑥, 𝑦 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦

 Let 𝐿 = 𝑀,⊑ be a partial order, 𝑆 ⊆ 𝑀

 𝑦 ∈ 𝑀 is upper bound for 𝑆 𝑆 ⊑ 𝑦 iff ∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑦

 𝑦 ∈ 𝑀 is lower bound for S (𝑦 ⊑ 𝑆) iff ∀𝑥 ∈ 𝑆. 𝑦 ⊑ 𝑥

 Least upper bound ⨆𝑋 ∈ 𝑀 of 𝑋 ⊆ 𝑀:

 𝑋 ⊑ ⨆𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑋 ⊑ 𝑦 ⇒ ⨆𝑋 ⊑ 𝑦

 Greatest lower bound ⊓ 𝑋 of 𝑋 ⊆ 𝑀:

 ⊓ 𝑋 ⊑ 𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑦 ⊑ 𝑋 ⇒ 𝑦 ⊑ ⊓ 𝑋

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Lattice

A lattice (“Verband”) is a partial order L = (M, ⊑) such that

(1) ⊔X and ⊓X exist for all 𝑋 ⊆ 𝐿

(2) Unique greatest element ⊤ = ⨆𝐿

(3) Unique least element ⊥ = ⊓ 𝐿

(1) Alternatively (for finite M), binary operators ⊔ and ⊓ (“meet”
and “join”) such that

 𝑥, 𝑦 ⊑ 𝑥 ⊔ 𝑦 and 𝑥 ⊓ 𝑦 ⊑ 𝑥, 𝑦

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Transfer Functions

 Transfer functions to propagate information along the execution
path (i.e. from input to output, or vice versa)

 Let 𝐿 = 𝑀, ⊑ be a lattice. Let 𝐹 be the set of transfer functions of
the form
 fl : M M with l being a label

 Knowledge transfer is monotone

 ∀ 𝑥, 𝑦. 𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦

 Space F of transfer functions

 F contains all transfer functions fl

 F contains the identity function id ∀𝑥 ∈ 𝑀. 𝑖𝑑 𝑥 = 𝑥

 F is closed under composition ∀ 𝑓, 𝑔 ∈ F. 𝑔 ∘ 𝑓 ∈ F

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

The Generalized Analysis

Analysis (l) = ⊔ Analysis (l‘) | (l′, l) ∈ F ⊔ { 𝜄𝐸
′ }

 with 𝜄𝐸
′ =

𝜄 if 𝑙 ∈ 𝐸
⊥ otherwise

Analysis (l) = 𝑓𝑙(Analysis (l))

With:

M property space representing data flow information
with 𝑀,⊑ being a lattice

A space 𝐹 of transfer functions 𝑓𝑙
and a mapping f from labels to transfer functions in 𝐹

 F is a finite flow (i.e. 𝑓𝑙𝑜𝑤 or 𝑓𝑙𝑜𝑤𝑅)

 𝜄 is an extremal value
for the extremal labels 𝐸 (i.e. 𝑖𝑛𝑖𝑡 𝑆 or 𝑓𝑖𝑛𝑎𝑙(𝑆))

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

Instances of Framework

Available Expr. Reaching Def. Live Vars.

M P (AExpr) P (Var x L) P (Var)

⊑ ¶ µ µ

⊔ Å [[

⊥ AExpr ; ;

𝜄 ; {(x, ?) | x 2 FV(S)} ;

E { init(S) } { init(S) } final(S)

F flow(S) flow(S) flowR(S)

F { f : M M | 9 mk, mg. f(m) = (m \ mk) [mg }

fl fl (m) = (m \ kill(Bl)) [gen(Bl) where Bl 2 blocks(S)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Limitations of Data Flow Analysis

The general framework of data flow analysis treats all
outgoing edges uniformly. This can be a problem if
conditions influence the property we want to analyse.

Example: show no division by 0 can occur.

Property space:

 𝑀0 = ⊥, 0 , 1 , 0,1 (ordered by inclusion)

 𝑀 = 𝐿𝑜𝑐 → 𝑀0 (ordered pointwise)

 𝑎𝑝𝑝𝜎 𝑡 ∈ 𝑀0 „approximate evaluation“ of t under 𝜎 ∈ 𝑀

 𝑐𝑜𝑛𝑑𝜎(𝑏) ∈ 𝑀 strengthening of 𝜎 ∈ 𝑀 under condition b

 𝑔𝑒𝑛 𝑥 = 𝑎 = 𝜎 𝑥 ↦ 𝑎𝑝𝑝𝜎 𝑎

 Kill needs to distinguish wether cond‘n holds:

𝑘𝑖𝑙𝑙 𝑏 𝜎
𝑖𝑓
= 𝑐𝑜𝑛𝑑𝜎(𝑏) 𝑘𝑖𝑙𝑙 𝑏 𝜎

𝑡ℎ𝑒𝑛 = 𝑐𝑜𝑛𝑑𝜎(! 𝑏)

This leads us to abstract interpretation.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Program Analysis for Information Flow
Control
Confidentiality as a

property of dependencies:

 The GPS data 53:06:23 N 8:51:08 O is confidential.

 The information on the GPS data must not leave Bob‘s mobile phone

 First idea: 53:06:23 N 8:51:08 O does not appear (explicitly) on the output
line.

 too strong, too weak

 Instead: The output of Bob‘s smart phone does not depend on the GPS
setting

 Changing the location (e.g. to 53:06:29 N 8:51:04 O) will not change the
observed output of Bob‘s smart phone

Note: Confidentiality is formalized as a notion of dependability.

... 53:06:23...

Systeme hoher Sicherheit und Qualität, WS 17/18 - 32 -

Confidentiality as Dependability

Confidential action:

change location (from 53:06:23 N 8:51:08 O) to 53:06:29 N 8:51:04 O

Insecure system:
output 53:06:29 depends

on GPS data

Secure System:
output 53:06:23 does not depend

on GPS data

... 53:06:23...

... 53:06:29...

Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -

Program Slicing

Which parts of the program compute the message ?

Do these parts contain GPS data ?

 If yes: GPS data influence message (data leak)

 If no: message is independent of GPS data

Program Dependence Graph

 Nodes are statements and conditions of a program

 Links are either

 Control dependences (similar to CFG)

 Data flow dependences
(connecting assignment with usage of variables)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 34 -

Control dependences
Data flow dependences

Example

 sum := 0;
 i := 1;
 while i · 10 {
 sum := sum + i;
 i := i + 1
 }

entry

exit(sum)

sum := 0 i := 1 while i · 10

sum := sum + i i := i + 1

Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -

Backward Slice

Let G be a program dependency graph and

S be subset of nodes in G

Let n) m := n m Ç n m

Then, the backward slice BS(G, S) is a graph G’ with

 N(G’) = { n | n 2 N(G) Æ 9 m 2 S. n)* m }

 E(G’) = {n m | n m 2 E(G) Æ n, m 2 N(G’) } [
 {n m | n m 2 E(G) Æ n, m 2 N(G’) }

Backward slice BS(G, S) computes same values for variables
occurring in S as G itself

Systeme hoher Sicherheit und Qualität, WS 17/18 - 36 -

Control dependences
Data flow dependences

Example

 sum := 0;
 i := 1;
 while i · 10 {
 sum := sum + i;
 i := i + 1
 }

entry

exit(i)

sum := 0 i := 1 while i · 10

sum := sum + i i := i + 1

BS:

i := 1;
 while i · 10 {
 i := i + 1
 }

Systeme hoher Sicherheit und Qualität, WS 17/18 - 37 -

Summary

 Static Program Analysis is the analysis of run-time behavior of

programs without executing them (sometimes called static testing)

Approximations of program behaviors by analyzing the program‘s
CFG

Analysis include

 available expressions analysis

 reaching definitions

 live variables analysis

 program slicing

 These are instances of a more general framework

 These techniques are used commercially, e.g.

 AbsInt aiT (WCET)

 Astrée Static Analyzer (C program safety)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 09:
Software Verification
with Floyd-Hoare Logic

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Correctness and Verification Condition Generation

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Software Verification in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Software Verification

Software Verification proves properties of programs. That is,
given the basic problem of program 𝑃 satisyfing a property 𝑝
we want to show that for all possible inputs and runs of 𝑃 ,
the property 𝑝 holds.

Software verification is far more powerful than static
analysis. For the same reasons, it cannot be fully automatic
and thus requires user interaction. Hence, it is complex to
use.

Software verification does not have false negatives, only
failed proof attempts. If we can prove a property, it holds.

Software verification is used in highly critical systems.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

The Basic Idea

What does this program compute?

 The index of the maximal element
of the array 𝑎 if it is non-empty.

How to prove it?

(1) We need a language in which to
formalise such assertions.

(2) We need a notion of meaning
(semantics) for the program.

(3) We need to way to deduce valid
assertions.

Floyd-Hoare logic provides us with (1)
and (3).

i: = 0;
x:= 0;
while (i < n) {
 if a i ≥ a x {
 x ≔ i;
 }
 i ≔ i + 1;
 }

Formalizing correctness:

array a, n ∧ n > 0 ⟹
 a x = max a, n

∀i. 0 ≤ i < n ⟹
 a[i] ≤ max (a, n)
∃j. 0 ≤ j < n ⟹
 a[j] = max (a, n)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Recall our simple programming language

Arithmetic expressions:

𝑎 ∷= 𝑥 𝑛 𝑎1 𝑎2 | 𝑎1 𝑜𝑝𝑎 𝑎2

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/}

Boolean expressions:

𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

Statements:

 S ::= x := a | skip | S1; S2 | if (b) S1 else S2 | while (b) S

 Labels from basic blocks omitted, only used in static
analysis to derive cfg.

 Note this abstract syntax, operator precedence and
grouping statements is not covered.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Semantics of our simple language

The semantics of an imperative language is state transition:
the program has an ambient state, which is changed by
assigning values to certain locations.

Example:

Semantics in a nutshell:

x ?

y 12

z ?

x 5

y 12

z ?

x 5

y 12

z 17

x 6

y 12

z 17

z := x + y x := 5 x := x + 1

𝜎 𝜎1 = 𝜎[x/5] 𝜎2 = 𝜎1[z/17]
 = 𝜎[x/5, z/17]

𝜎3 = 𝜎2[x/6]
 = 𝜎[x/6, z/17]

Expressions evaluate to values 𝑉𝑎𝑙 (for our language integers).

Locations 𝐿𝑜𝑐 are variable names.

A program state maps locations to values: Σ = 𝐿𝑜𝑐 ⇀ 𝑉𝑎𝑙
A program maps an initial state to a final state, if it terminates.

Assertions are predicates over program states.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Semantics in a nutshell

There are three major ways to denote semantics.

(1) As a relation between program states, described by an
abstract machine (operational semantics).

(2) As a function between program states, defined for each
statement of the programming langauge (denotational
semantics).

(3) As the set of all assertions which hold for a program
(axiomatic semantics).

Floyd-Hoare logic covers the third aspect, but it is important
that all three semantics agree.

 We will not cover semantics in detail here, but will
concentrate on how to use Floyd-Hoare logic to prove
correctness.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Extending our simple language
We introduce a set 𝑉𝑎𝑟 of logical variables.

Assertions are boolean expressions, which may not be
executable, and arithmetic expressions containing logical
variables.

 Arithmetic assertions
𝑎𝑒 ∷= 𝑥 𝑋 𝑛 𝑎𝑒1 𝑎𝑒2 | 𝑎𝑒1 𝑜𝑝𝑎 𝑎𝑒2 𝑓(𝑎𝑒1, … , 𝑎𝑒𝑛)

 where 𝑥 ∈ 𝐿𝑜𝑐, 𝑋 ∈ 𝑉𝑎𝑟, 𝑜𝑝𝑎 ∈ {+,−,∗,/}

Boolean assertions:
𝑏𝑒 ≔ true false not 𝑏𝑒 𝑏𝑒1𝑜𝑝𝑏 𝑏𝑒2 𝑎𝑒1𝑜𝑝𝑟 𝑎𝑒2

 𝑝 𝑎𝑒1, … , 𝑎𝑒𝑛 | ∀𝑋. 𝑏𝑒 ∃𝑋. 𝑏𝑒

 Boolean operators: 𝑜𝑝𝑏 ∈ ∧,∨,⟹

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Floyd-Hoare Triples

The basic build blocks of Floyd-Hoare logic are
Hoare triples of the form 𝑃 𝑐 𝑄 .

P, Q are assertions using variables in 𝐿𝑜𝑐 and 𝑉𝑎𝑟

 e.g. x < 5 + y, Odd(x), …

A state 𝜎 satisfies P (written 𝜎 ⊨ 𝑃) iff 𝑃[𝜎 𝑥 𝑥] is true for all
𝑥 ∈ 𝐿𝑜𝑐 and all possible values for X ∈ 𝑉𝑎𝑟:

 e.g. let

A formula P describes a set of states, i.e. all states that satisfy
the formula P.

x 5

y 12

z 17

𝜎 = then 𝜎 satisfies x < 5 + y, Odd(x)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Partial and Total Correctness

 Partial correctness: ⊨ 𝑃 𝑐{𝑄}

 𝑐 is partial correct with precondition 𝑃 and postcondition
𝑄 iff, for all states 𝜎 which satisfy P and for which the
execution of 𝑐 terminates in some state 𝜎′ then it holds
that 𝜎′ satisfies 𝑄.
∀𝜎. 𝜎 ⊨ 𝑃 ∧ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ⟹ 𝜎′ ⊨ 𝑄

 Total correctness: ⊨ 𝑃 𝑐[𝑄]

 𝑐 is total correct with precondition 𝑃 and postcondition 𝑄
iff, for all states 𝜎 which satisfy 𝑃 the execution of c
terminates in some state 𝜎′ which satisfies 𝑄.
i.e ∀𝜎. 𝜎 ⊨ 𝑃 ⟹ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ∧ 𝜎′ ⊨ 𝑄

Examples: ⊨ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝 𝑡𝑟𝑢𝑒 ,
 ⊭ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝 [𝑡𝑟𝑢𝑒]

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Reasoning with Floyd-Hoare Triples

How do we know that ⊨ 𝑃 𝑐 𝑄 in practice ?

Calculus to derive triples, written as ⊢ 𝑃 𝑐{𝑄}

 Rules operate along the constructs of the programming
language (cf. operational semantics)

 Only one rule is applicable for each construct (!)

 Rules are of the form

⊢ 𝑃1 𝑐1 𝑄1 , … , ⊢ 𝑃𝑛 𝑐𝑛{𝑄𝑛}

⊢ 𝑃 𝑐 {𝑄}

meaning we can derive ⊢ 𝑃 𝑐 𝑄 if all ⊢ 𝑃𝑖 𝑐𝑖 𝑄𝑖 are
derivable.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Floyd-Hoare Rules: Assignment

Assignment rule:

⊢ {𝑃[𝑒 𝑥]} 𝑥 ∶= 𝑒 {𝑃}

𝑃[𝑒 𝑥] replaces all occurrences of the program variable 𝑥 by
the arithmetic expression 𝑒.

Examples:

 ⊢ {0 < 10} 𝑥 ∶= 0 {𝑥 < 10}

 ⊢ 𝑥 – 1 < 10 𝑥 ∶= 𝑥 − 1 𝑥 < 10

 ⊢ {𝑥 + 1 + 𝑥 + 1 < 10} 𝑥 ∶= 𝑥 + 1 {𝑥 + 𝑥 < 10}

x < 11

x + x < 8

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Rules: Sequencing and Conditional

Sequence:
⊢ 𝑃 𝑐1 𝑄 ⊢ 𝑄 𝑐2 {𝑅}

⊢ 𝑃 𝑐1; 𝑐2 {𝑅}

 Needs an intermediate state predicate 𝑄.

Conditional:
⊢ 𝑃 ∧ 𝑏 𝑐1 𝑄 ⊢ 𝑃 ∧ ¬𝑏 𝑐2 {𝑄}

⊢ 𝑃 if b 𝑐1else 𝑐2 {𝑄}

 Two preconditions capture both cases of 𝑏 and ¬ 𝑏.

 Both branches end in the same postcondition Q.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Rules: Iteration and Skip

⊢ 𝑃 ∧ 𝑏 𝑐 {𝑃}

⊢ 𝑃 while (𝑏) 𝑐 {𝑃 ∧ ¬ 𝑏}

𝑃 is called the loop invariant. It has to hold both before and
after the loop (but not necessarily in the whole body).

Before the loop, we can assume the loop condition 𝑏 holds.

After the loop, we know the loop condition 𝑏 does not hold.

 In practice, the loop invariant has to be given– this is the
creative and difficult part of working with the Floyd-Hoare
calculus.

⊢ 𝑃 𝐬𝐤𝐢𝐩 {𝑃}

skip has no effect: pre- and postcondition are the same.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

𝑃1

Final Rule: Weakening

Weakening is crucial, because it allows us to change pre- or
postconditions by applying rules of logic.

𝑃2⟹ 𝑃1 ⊢ 𝑃1 𝑐 𝑄1 𝑄1⟹ 𝑄2
⊢ 𝑃2 𝑐 𝑄2

We can weaken the precondition and strengthen the
postcondition:

 ⊨ 𝑃 𝑐 𝑄 means whenever 𝑐 starts in a state in which 𝑃
holds, it ends in a state in which 𝑄 holds. So, we can
reduce the starting set, and enlarge the target set.

𝑄2 𝑃2 𝑄1
c

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

How to derive and denote proofs

 The example shows ⊢ 𝑃 𝑐 𝑄

We annotate the program with valid
assertions: the precondition in the
preceding line, the postcondition in
the following line.

 The sequencing rule is applied
implicitly.

Consecutive assertions imply
weaking, which has to be proven
separately.

 In the example:
𝑃 ⟹ 𝑃1,
𝑃2⟹ 𝑃3,
𝑃3 ∧ 𝑥 < 𝑛 ⟹ 𝑃4,
𝑃3 ∧ ¬ 𝑥 < 𝑛 ⟹ 𝑄

// {P}

// {𝑃1}

x:= e;

// {𝑃2}

// {𝑃3}

while (x< n) {

 // {𝑃3 ∧ 𝑥 < 𝑛}

 // {𝑃4}

 z := a

 // {𝑃3}

 }

// {𝑃3 ∧ ¬(𝑥 < 𝑛)}

// {𝑄}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

More Examples

P ==

p ≔ 1;
c ≔ 1;
while c ≤ n {
 p ≔ p ∗ c;
 c ≔ c + 1
 }

R ==
r ≔ a;
q ≔ 0;
while b ≤ r {
 r ≔ r − b;
 q ≔ q + 1
 }

Specification:
⊢ 1 ≤ n
 P

 { p = n! }

Specification:
⊢ a ≥ 0 ∧ b ≥ 0
 R

 { a = b ∗ q + r ∧
 0 ≤ r ∧ r < b}

Q ==

p ≔ 1;
while 0 ≤ n {
 p ≔ p ∗ n;
 n ≔ n − 1
 }

Specification:
⊢ 1 ≤ n ∧ 𝑛 = 𝑁
 Q
 { p = N! }

Invariant:
p = c − 1 !

Invariant:

p = i

N

i=n+1

Invariant:
a = b ∗ q + r ∧ 0 ≤ r

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

How to find invariants

Going backwards: try to split/weaken postcondition 𝑄 into
negated loop-condition and „something else“ which becomes
the invariant.

Many while-loops are in fact for-loops, i.e. they count
uniformly:

i ≔ 0;
𝐰𝐡𝐢𝐥𝐞 𝑖 < 𝑛 {
 … ;
 𝑖 ≔ 𝑖 + 1
 }

 In this case:

 If post-condition is 𝑃(𝑛), invariant is 𝑃 𝑖 ∧ 𝑖 ≤ 𝑛.

 If post-condition is ∀𝑗. 0 ≤ 𝑗 < 𝑛. 𝑃(𝑗) (uses indexing,
typically with arrays), invariant is ∀𝑗. 𝑗 ≤ 0 < 𝑖. 𝑖 ≤ 𝑛 ∧ 𝑃 𝑗 .

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Summary

Floyd-Hoare-Logic allows us to prove properties of programs.

The proofs cover all possible inputs, all possible runs.

There is partial and total correctness:

 Total correctness = partial correctness + termination.

There is one rule for each construct of the programming
language.

Proofs can in part be constructed automatically, but iteration
needs an invariant (which cannot be derived mechanically).

Next lecture: correctness and completeness of the rules.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 10:

Verification Condition Generation

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Frohes Neues Jahr!

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Correctness and Verification Condition Generation

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

VCG in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Introduction

 In the last lecture, we introduced Hoare triples. They allow us
to state and prove correctness assertions about programs,
written as 𝑃 𝑝 {𝑄}

We introduced two notions, namely:

 Syntactic derivability, ⊢ 𝑃 𝑝 {𝑄} (the actual Floyd-Hoare
calculus)

 Semantic satisfaction, ⊨ 𝑃 𝑝 {𝑄}

Question: how are the two related?

The answer to that question also offers help with a practical
problem: proofs with the Floyd-Hoare calculus are
exceedingly long and tedious. Can we automate them, and
how?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Correctness and Completeness

 In general, given a syntactic calculus with a semantic
meaning, correctness means the syntactic calculus implies
the semantic meaning, and completeness means all
semantic statements can be derived syntactically.

 Cf. also Static Program Analysis

Correctness should be a basic property of verification calculi.

Completeness is elusive due to Gödel‘s first incompleteness
theorem:

 Any logics which is strong enough to encode the natural
numbers and primitive recursion* is incomplete.**

* Or any other notion of computation.

** Or inconsistent, which is even worse.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Correctness of the Floyd-Hoare calculus

Proof: by induction on the derivation of ⊢ 𝑃 𝑝 𝑄 .

More precisely, for each rule we show that:

 If the conclusion is ⊢ 𝑃 𝑝 𝑄 , we can show ⊨ 𝑃 𝑝 𝑄

 For the premisses, this can be assumed.

 Example: for the assignment rule, we show that

Theorem (Correctness of the Floyd-Hoare calculus)
If ⊢ 𝑃 𝑝 {𝑄}, then ⊨ 𝑃 𝑝 {𝑄}.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Completeness of the Floyd-Hoare calculus

Predicate calculus is incomplete, so we cannot hope F/H is
complete. But we get the following:

To show this, we construct the weakest precondition.

Theorem (Relative completeness)
If ⊨ 𝑃 𝑝 {𝑄}, then ⊢ 𝑃 𝑝 𝑄 except for the proofs
occuring in the weakenings.

Weakest precondition
Given a program c and an assertion P, the weakest
precondition 𝑤𝑝(𝑐, 𝑃) is an assertion W such that
1. 𝑊 is a valid precondition ⊨ 𝑊 𝑐 𝑃
2. And it is the weakest such: for any other 𝑄 such

that ⊨ 𝑄 𝑐 𝑃 ,𝑊 → 𝑄

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Constructing the weakest precondition

Consider a simple program and its verification:

Note how proof is constructed backwards systematically.

The idea is to construct the weakest precondition inductively.

This also gives us a methodology to automate proofs in the
calculus.

 𝑥 = 𝑋 ∧ 𝑦 = 𝑌
↔
 𝑦 = 𝑌 ∧ 𝑥 = 𝑋
z := y;

 𝑧 = 𝑌 ∧ 𝑥 = 𝑋
y := x;

 𝑧 = 𝑌 ∧ 𝑦 = 𝑋
x := z;

 𝑥 = 𝑌 ∧ 𝑦 = 𝑋

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Constructing the weakest precondition

There are four straightforward cases:

(1) 𝑤𝑝 𝐬𝐤𝐢𝐩, 𝑃 = 𝑃

(2) 𝑤𝑝 𝑋 ≔ 𝑒, 𝑃 = 𝑃 [𝑒 / 𝑋]

(3) 𝑤𝑝 𝑐0; 𝑐1, 𝑃 = 𝑤𝑝(𝑐0, 𝑤𝑝 𝑐1, 𝑃)

(4) 𝑤𝑝 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1 , 𝑃 = (𝑏 ∧ 𝑤𝑝 𝑐0, 𝑝) ∨ (¬ 𝑏 ∧ 𝑤𝑝 𝑐1, 𝑃)

The complicated one is iteration (unsurprisingly, since it is the
source of the computational power and Turing-completeness
of the language). It can be given recursively:

(5) 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃 = ¬ 𝑏 ∧ 𝑃 ∨ 𝑤𝑝 𝑐, 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃

A closed formula can be given, but it can be infinite and is not
practical. It shows the relative completeness, but does not give
us an effective way to automate proofs.

Hence, 𝑤𝑝(𝑐, 𝑃) is not effective for proof automation, but it
shows the right way: we just need something for iterations.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Verification Conditions: Annotations

The idea is that we have to give the invariants manually by
annotating them.

We need a language for this:

 Arithmetic expressions and boolean expressions stays as
they are.

 Statements are augmented to annotated statements:

 S ::= x := a | skip | S1; S2 | if (b) S1 else S2
 | assert P | while (b) inv P S

 Each while loop needs to its invariant annotated.

 This is for partial correctness, total correctness also
needs a variant: an expression which is strictly
decreasing in a well-founded order such as (<,ℕ)
after the loop body.

 The assert statement allows us to force a weakening.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Preconditions and Verification Conditions

We are given an annotated statement 𝑐, a precondition P and
a postcondition Q.

 We want to know: when does ⊨ 𝑃 𝑐 {𝑄} hold?

For this, we calculate a precondition 𝑝𝑟𝑒(𝑐, 𝑄) and a set of
verification conditions 𝑣𝑐 𝑐, 𝑄 .

 The idea is that if all the verification conditions hold, then
the precondition holds:

 𝑅

𝑅∈𝑣𝑐(𝑐, 𝑄)

⇒ ⊨ 𝑝𝑟𝑒 𝑐, 𝑄 𝑐 𝑄

 For the precondition 𝑃, we get the additional weaking
𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 .

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Calculation Verification Conditions

 Intuitively, we calculate the verification conditions by stepping
through the program backwards, starting with the
postcondition 𝑄.

For each of the four simple cases (assignment, sequencing,
case distinction and 𝒔𝒌𝒊𝒑), we calculate new current
postcondition 𝑄

At each iteration, we calculate the precondition 𝑅 of the loop
body working backwards from the invariant 𝐼, and get two
verification conditions:

 The invariant 𝐼 and negated loop condition implies 𝑄.

 The invariant 𝐼 and loop condition implies 𝑅.

Asserting 𝑅 generates the verification condition 𝑅 ⇒ 𝑄.

Let‘s try this.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Example: deriving VCs for the factorial.

{ 0 <= n }
{ 1 == (1-1)! && (1- 1) <= n }
p := 1;
{ p == (1-1)! && (1- 1) <= n }
c := 1;
{ p == (c-1)! && (c- 1) <= n }
while (c <= n)
 inv (p == (c-1)! && c-1 <= n) {
 { p*c == ((c+1)-1)! && ((c+1)- 1) <= n }
 p := p* c;
 { p == ((c+1)-1)! && ((c+1)- 1) <= n }
 c := c+1;
 { p == (c-1)! && (c- 1) <= n }
 }
{ p == (c-1)! && (c- 1) <= n && ! (c <= n) }
{ p = n! }

VCs (unedited):
1. p == (c-1)! && (c- 1) <= n && ! (c <= n)

==> p= n!

2. p == (c-1)! && c-1 <= n && c<= n
==> p* c= ((c+1)-1)! && ((c+1)-1) <= n

3. 0 <= n ==> 1= (1-1)! && 1-1 <= n

VCs (simplified):
1. p == (c-1)! && (c- 1) <= n && c> n

==> p= n!

2. p == (c-1)! && c-1 <= n && c<= n
==> p* c= c!

2. p == (c-1)! && c-1 <= n && c<= n
==> c <= n

3. 0 <= n ==> 1= 0! && 0 <= n

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Formal Definition

Calculating the precondition:
𝑝𝑟𝑒 𝐬𝐤𝐢𝐩, 𝑄 = 𝑄
𝑝𝑟𝑒 𝑋 ≔ 𝑒, 𝑄 = 𝑄 𝑒 / 𝑋
𝑝𝑟𝑒(𝑐0; 𝑐1, 𝑄 = 𝑝𝑟𝑒(𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄)
𝑝𝑟𝑒 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑏 ∧ 𝑝𝑟𝑒 𝑐0, 𝑄 ∨ ¬ 𝑏 ∧ 𝑝𝑟𝑒 𝑐1, 𝑄
𝑝𝑟𝑒 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅
𝑝𝑟𝑒 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝐼

Calculating the verification conditions:
𝑣𝑐 𝑠𝑘𝑖𝑝, 𝑄 = ∅
𝑣𝑐 𝑋 ≔ 𝑒, 𝑄 = ∅
𝑣𝑐 𝑐0; 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄
𝑣𝑐 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄
𝑣𝑐 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝑣𝑐 𝑐, 𝐼 ∪ {𝐼 ∧ 𝑏 ⇒ 𝑝𝑟𝑒 𝑐, 𝐼 , 𝐼 ∧ ¬𝑏 ⇒ 𝑄}
𝑣𝑐 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 ⇒ 𝑄

The main definition:
𝑣𝑐𝑔 𝑃 𝑐 𝑄 = 𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 ∪ 𝑣𝑐(𝑐, 𝑄)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Correctness of VC

The correctness calculus is correct: if we can prove all the
verifcation conditons, the program is correct w.r.t to given
pre- and postconditions.

Formally:

Proof: by induction on 𝑐.

Theorem (Correctness of the VCG calculus)
Given assertions 𝑃 and 𝑄 (with 𝑃 the precondition and
𝑄 the postcondition), and an annotated program, then

 𝑅

𝑅∈𝑣𝑐𝑔(𝑐, 𝑄)

⇒ ⊨ 𝑃 𝑐 𝑄

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Using VCG in Real Life

We have just a toy language, but VCG can be used in real life.
What features are missing?

Modularity: the language must have modularity concepts,
e.g. functions (as in C), or classes (as in Java), and we must be
able to verify them separately.

Framing: in our simple calculus, we need to specify which
variables stay the same (e.g. when entering a loop). This
becomes tedious when there are a lot of variables involved; it
is more practical to specify which variables may change.

References: languages such as C and Java use references,
which allow aliasing. This has to be modelled semantically;
specifically, the assignment rule has to be adapted.

Machine arithmetic: programs work with machine words
and floating point representations, not integers and real
numbers. This can be the cause of insidious errors.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

VCG Tools

Often use an intermediate language for VCG and front-ends
for concrete programming languages.

The Why3 toolset (http://why3.lri.fr)

 A verification condition generator

 Front-ends for different languages:
C (Frama-C), Java (defunct?)

Boogie (Microsoft Research)

 Frontends for programming languages such C, C#, Java.

VCC – a verifying C compiler built on top of Boogie

 Interactive demo:
https://www.rise4fun.com/Vcc/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

VCC Example: Binary Search

A correct (?) binary search implementation:

#include <limits.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo <= hi)

 {

 mid= (lo+ hi)/2;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

VCC: Correctness Conditions?

We need to annotate the program.

Precondition:

 a is an array of length a_len;

 The array a is sorted.

Postcondition:

 Let r be the result, then:

 if r is UINT_MAX, all elements of a are unequal to key;

 if r is not UINT_MAX, then a[r] == key.

Loop invariants:

 hi is less-equal to a_len;

 everything „left“ of lo is less then key;

 everything „right“ of hi is larger-equal to key.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

VCC Example: Binary Search

Source code as annotated for VCC:

#include <limits.h>

#include <vcc.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

 _(requires \thread_local_array(a, a_len))

 _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])

 _(ensures \result != UINT_MAX ==> a[\result] == key)

 _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] != key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo <= hi)

 _(invariant hi <= a_len)

 _(invariant \forall unsigned int i; i < lo ==> a[i] < key)

 _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)

 {

 mid= (lo+ hi)/2;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Binary Search: the Corrected Program

Corrected source code:

#include <limits.h>

#include <vcc.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

 _(requires \thread_local_array(a, a_len))

 _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])

 _(ensures \result != UINT_MAX ==> a[\result] == key)

 _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] != key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo < hi)

 _(invariant hi <= a_len)

 _(invariant \forall unsigned int i; i < lo ==> a[i] < key)

 _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)

 {

 mid= (hi-lo)/2+ lo;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Summary

Starting from the relative completeness of the Floyd-Hoare
calculus, we devised a verification condition generation (vcg)
calculus which makes program verification viable.

Verification condition generation reduces the question
whether the given pre/postconditions hold for a program to
the validity of a set of logical properties.

 We do need to annotate the while loops with invariants.

 Most of these logical properties can be discharged with
automated theorem provers.

To scale to real-world programs, we need to deal with
framing, modularity (each function/method needs to be
verified independently), and machine arithmetic (integer
word arithmetic and floating-points).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 11:

Model Checking

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Correctness and Verification Condition Generation

 11: Model Checking

 12: Tools for Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Introduction

 In the last lectures, we were verifying program properties with the
Floyd-Hoare calculus (or verification condition generation). Program
verification translates the question of program correctness into a
proof in program logic (the Floyd-Hoare logic), turning it into a
deductive problem.

Model-checking takes a different approach: instead of directly
working with the (source code) of the program, we work with an
abstraction of the system (the system model). Because we build an
abstraction, this approach is also applicable at higher verification
levels. (It is also complimentary to deductive verification.)

 The key questions are: how do these models look like? What
properties do we want to express, and how do we express and
prove them?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Model Checking in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Introduction

Model checking operates on (abstract) state machines

 Does an abstract system satisfy some behavioral property
e.g. liveness (deadlock) or safety properties

 consider traffic lights in Requirement Engineering

 Example: “green must always follow red”

Automatic analysis if state machine is finite

 Push-button technology

 User does not need to know logic (at least not for the
proof)

Basis is satisfiability of boolean formula in a finite domain (SAT).
However, finiteness does not imply efficiency – all interesting
problems are at least NP-complete, and SAT is no exception (Cook’s
theorem).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

The Model-Checking Problem

What is ℳ? A finite-state machine or Kripke structure.

What is 𝜙? Temporal logic

How to prove it?

 By enumerating the states and thus construct a model

(hence model checking)

 The basic problem: state explosion

The Basic Question:
Given a model ℳ and property 𝜙, we want to know if

 ℳ ⊨ 𝜙

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Finite State Machine (FSM)

Variations of this definition exists, e.g. no initial states.

Note there is no final state, and no input or output (this is the
key difference to automata).

 If is a function, the FSM is deterministic, otherwise it is non-
deterministic.

Definition: Finite State Machine (FSM)

A FSM is given by ℳ = Σ, 𝐼, → where

• Σ is a finite set of states,

• 𝐼 ⊆ Σ is a set of initial states, and
• →⊆ Σ × Σ is a transition relation, s.t. → is left-total:

∀𝑠 ∈ Σ. ∃𝑠′ ∈ Σ. 𝑠 → 𝑠′

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Example: A Simple Oven

The oven has states and operations:
open and close door, turn oven on
and off, warm up, cook, …

 Operation names are for
decoration purposes only.

FSM:

cook

start
oven

open
door

open
door

close
door

start
oven

close
door

open
door

warmup

done

s1

s6 s5

s4 s3 s2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Questions to ask

We want to answer questions about the system behaviour like

 If the cooker heats, then is the door closed?

When the start button is pushed, will the cooker eventually
heat up?

When the cooker is correctly started, will the cooker
eventually heat up?

When an error occurs, will it be still possible to cook?

We are interested in questions on the development of the
system over time, i.e. possible traces of the system given by a
succession of states.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Temporal Logic

Expresses properties of possible succession of states

Linear Time

 Every moment in time has a

unique successor
 Infinite sequences of moments
 Linear Temporal Logic LTL

Branching Time

 Every moment in time has several

successors
 Infinite tree
 Computational Tree Logic CTL

s1

s3 s2

s1

s1 s6

s3

s1

s5

s1

s3 s2

s6 s1 s5

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Kripke Structures

 In order to talk about propositions, we label the states of a FSM with
propositions which hold there. This is called a Kripke structure.

 Equivalent formulation: for each state, set of propositions which
hold in this state, i.e. 𝑉′: Σ → 2𝑃𝑟𝑜𝑝

Definition: Kripke structure
Given a set 𝑃𝑟𝑜𝑝 of propositions, then a Kripke structure
is given by K = 〈Σ, 𝐼, →, 𝑉〉 where
• Σ is a finite set of states,
• 𝐼 ⊆ Σ is a set of initial states,
• →⊆ Σ × Σ is a left-total transition relation, and
• 𝑉: 𝑃𝑟𝑜𝑝 → 2Σ is a valuation function mapping

propositions to the set of states in which they hold

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Kripke Structure: Example

 Example: Cooker

 Propositions:

 Cooker is starting: S

 Door is closed: C

 Cooker is heated: H

 Error occurred: E

 Kripke structure:
 Σ = {𝑠1, … , 𝑠6}

 𝐼 = 𝑠1

 → = { 𝑠1, 𝑠2 , 𝑠2, 𝑠5 , 𝑠5, 𝑠2 , (𝑠1, 𝑠3)

 𝑠3, 𝑠1 , 𝑠3, 𝑠6 , 𝑠6, 𝑠4 , 𝑠4, 𝑠4 ,
 𝑠4, 𝑠3 , (𝑠4, 𝑠1)}

 V S = {𝑠2, 𝑠5, 𝑠6},
V C = {𝑠3, 𝑠4, 𝑠5, 𝑠6},
V H = {𝑠4}, V E = {𝑠2}

cook

start
oven

open
door

open
door

close
door

start
oven

close
door

open
door

warmup

done

:S, : C,
: H, : E

S, C,
: H, : E

:S, C,
: H, : E

S, C,
: H, :E

S, : C,
: H, E

:S, C,
H, : E

s1

s6 s5

s4 s3 s2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Semantics of Kripke Structures (Prop)

We now want to define a logic in which we can formalize
temporal statements, i.e. statements about the behaviour of
the system and its changes over time.

The basis is open propositional logic (PL): negation,
conjunction, disjunction, implication*.

With that, we define how a PL-formula 𝜙 holds in a Kripke
structure 𝐾 at state 𝑠 , written as 𝐾, 𝑠 ⊨ 𝑝.

Let 𝐾 = 〈Σ, 𝐼, →, 𝑉〉 be a Kripke structure, 𝑠 ∈ Σ, and
𝜙 a formula of propositional logic, then

 𝐾, 𝑠 ⊨ 𝑝 if 𝑝 ∈ 𝑃𝑟𝑜𝑝 and 𝑠 ∈ 𝑉(𝑝)

 𝐾, 𝑠 ⊨ ¬𝜙 if not 𝐾, 𝑠 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2

* Note implication is derived: 𝜙1 → 𝜙2= ¬𝜙1 ∨ 𝜙2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Linear Temporal Logic

 The formulae of LTL are given as

 𝜙 ∷= 𝑝 ¬ 𝜙 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 Propositional formulae
 𝑋 𝜙 𝐺 𝜙 𝐹 𝜙 𝜙1 𝑈 𝜙2 Temporal operators

 X p: in the next moment p holds

G p: p holds in all moments

 F p: there is a moment in the future when p will hold

 p U q: p holds in all moments until q holds

p

p

p p p p p p

p p p q

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Examples of LTL formulae

 If the cooker heats, then is the door closed?

 𝐺(𝐻 → 𝐶)

 Is it possible to cook (first starting up, then
heating)?

𝐹 (𝑆 ∧ 𝑋 𝐻)

Whenever an error occurs, will it still
be possible to cook?

𝐺 (𝐸 → 𝐹 𝑆 ∧ 𝑋 𝐻)

No, need to add
a transition.

cook

start
oven

open
door

open
door

close
door

start
oven

close
door

open
door

warmup

done

:S, : C,
: H, : E

S, C,
: H, : E

:S, C,
: H, : E

S, :C,
: H, :E

S, : C,
: H, E

:S, C,
H, : E

s1

s6 s5

s4 s3 s2

reset

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Paths in an FSM/Kripke Structure

A path in an FSM (or Kripke structure) is a sequence of states
starting in one of the initial states and connected by the
transition relation (essentially, a run of the system).

Formally: for an FSM 𝑀 = Σ, 𝐼, → or a Kripke structure
𝐾 = Σ, 𝐼, →, 𝑉 , a path is given by a sequence 𝑠1𝑠2𝑠3 … ∈ Σ∗
such that 𝑠1 ∈ 𝐼 and 𝑠𝑖 → 𝑠𝑖+1.

For a path p = 𝑠1𝑠2𝑠3 …, we write

 𝑝𝑖 for selecting the 𝑖-th element 𝑠𝑖 and

 𝑝𝑖 for the suffix starting at position i, 𝑠𝑖𝑠𝑖+1𝑠𝑖+2 …

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Semantics of LTL in Kripke Structures

Let 𝐾 = 〈Σ, 𝐼, →, 𝑉〉 be a Kripke Structure and 𝜙 an LTL formula,
then we say 𝐾 ⊨ 𝜙 (𝝓 holds in 𝑲), if 𝐾, 𝑠 ⊨ 𝜙 for all paths
𝑠 = 𝑠1𝑠2𝑠3 … in 𝐾, where:

 𝐾, 𝑠 ⊨ 𝑝 if 𝑝 ∈ 𝑃𝑟𝑜𝑝, 𝑠1 ∈ 𝑉(𝑝)

 𝐾, 𝑠 ⊨ ¬𝜙 if not 𝐾, 𝑠 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝑋 𝜙 if 𝐾, 𝑠2 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐺 𝜙 if 𝐾, 𝑠𝑛 ⊨ 𝜙 for all 𝑛 > 0

 𝐾, 𝑠 ⊨ 𝐹 𝜙 if 𝐾, 𝑠𝑛 ⊨ 𝜙 for some 𝑛 > 0

 𝐾, 𝑠 ⊨ 𝜙 𝑈 𝜓 if 𝐾, 𝑠𝑛 ⊨ 𝜓 for some 𝑛 > 0,
 and for all 𝑖, 0 < 𝑖 < 𝑛, we have 𝐾, 𝑠𝑖 ⊨ 𝜙

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

More examples in the cooker

Question: does the cooker work?

Specifically, cooking means that first the door is open, then the
oven heats up, cooks, then the door is open again, and all
without an error.

 𝑐 = ¬𝐶 ∧ 𝑋 𝑆 ∧ 𝑋(𝐻 ∧ 𝐹¬𝐶) ∧ 𝐺 ¬𝐸 – not quite.

 𝑐 = ¬𝐶 ∧ ¬𝐸 ∧ 𝑋 𝑆 ∧ ¬𝐸 ∧ 𝑋(𝐻 ∧ ¬𝐸 ∧ 𝐹(¬𝐶 ∧ ¬𝐸)) –
better

So, does the cooker work?

 There is at least one path s.t. 𝑐 holds eventually.

 This is not 𝐹 𝑐, which says that all paths must eventually
cook (which might be too strong).

 We cannot express this in LTL; this is a principal limitation.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Computational Tree Logic (CTL)

LTL does not allow us the quantify over paths, e.g. assert the
existence of a path satisfying a particular property.

To a limited degree, we can solve this problem by negation:
instead of asserting a property 𝜙, we check whether ¬𝜙 is
satisfied; if that is not the case, 𝜙 holds. But this does not
work for mixtures of universal and existential quantifiers.

Computational Tree Logic (CTL) is an extension of LTL which
allows this by adding universal and existential quantifiers to
the modal operators.

The name comes from considering paths in the computa-
tional tree obtained by unwinding the transition relation of
the FSM/Kripke structure.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Computational Tree Logic (CTL)

The formulae of CTL are given as
 𝜙 ∷= 𝑝 ¬ 𝜙 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 Propositional formulae

 𝐴𝑋 𝜙 𝐸𝑋 𝜙 𝐴𝐺 𝜙 𝐸𝐺 𝜙
 𝐴𝐹 𝜙 𝐸𝐹 𝜙 𝜙1 𝐴𝑈 𝜙2 𝜙1𝐸𝑈 𝜙2 Temporal operators

Note that CTL formulae can be considered to be a LTL
formulae with a modality (A or E) added to each temporal
operator.

 Generally speaking, the A modality says the temporal
operator holds for all paths, and the E modality says it
only holds for all least one path.

Hence, we do not define a satisfaction for a single path p,
but with respect to a specific state in an FSM.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Computational Tree Logic CTL

Specifying possible paths by combination

 Branching behavior
All paths: A, exists path: E

 Succession of states in a path
Temporal operators X, G, F, U

For example:

 AX p : in all paths the next state satisfies p

 EX p : there is an path in which the next state satisfies p

 p AU q : in all paths p holds as long as q does not hold

 EF p : there is an path in which eventually p holds

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Semantics of CTL in Kripke Structures

For a Kripke structure 𝐾 = Σ, 𝐼, →, 𝑉 and a CTL-formula 𝜙, we
say 𝐾 ⊨ 𝜙 (𝝓 holds in 𝑲) if 𝐾, 𝑠 ⊨ 𝜙 for all 𝑠 ∈ 𝐼, where 𝐾, 𝑠 ⊨ 𝜙 is
defined inductively as follows (omitting the clauses for
propositional operators 𝑝,¬, ∧, ∨):

 𝐾, 𝑠 ⊨ 𝐴𝑋 𝜙 iff for all 𝑠′ with 𝑠 → 𝑠′, we have 𝐾, 𝑠′ ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐸𝑋 𝜙 iff for some 𝑠′ with 𝑠 → 𝑠′, we have 𝐾, 𝑠′ ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐴𝐺 𝜙 iff for all paths 𝑝 with 𝑝1 = 𝑠,
 we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.

 𝐾, 𝑠 ⊨ 𝐸𝐺 𝜙 iff for some path 𝑝 with 𝑝1 = 𝑠,
 we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.

(continued on next slide)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Semantics of Kripke Structures (CTL)

Given a Kripke structure 𝐾 = 〈Σ, 𝐼, →, 𝑉〉, 𝑠 ∈ Σ, 𝜙 a CTL-formula,
then:

 𝐾, 𝑠 ⊨ 𝐴𝐹 𝜙 iff for all paths 𝑝 with 𝑝1 = 𝑠,
 we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖

 𝐾, 𝑠 ⊨ 𝐸𝐹 𝜙 iff for some path 𝑝 with 𝑝1 = 𝑠,
 we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖

 𝐾, 𝑠 ⊨ 𝜙 𝐴𝑈 𝜓 iff for all paths 𝑝 with 𝑝1 = 𝑠,
 there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙 𝐸𝑈 𝜓 iff for some path 𝑝 with 𝑝1 = 𝑠,
 there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

Examples CTL

 If the cooker heats, then is the door closed

 𝐴𝐺 (¬𝐻 ∨ 𝐶)

 It is always possible that the
cooker will eventually warmup.

 𝐴𝐺 𝐸𝐹 ¬𝐻 ∧ 𝐸𝑋 𝐻

cook

reset

start
oven

open
door

open
door

close
door

start
oven

close
door

open
door

warmup

done

:S, : C,
: H, : E

S, C,
: H, : E

:S, C,
: H, : E

S, :C,
: H, :E

S, : C,
: H, E

:S, C,
H, : E

s1

s6 s5

s4 s3 s2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

LTL, CTL and CTL*

CTL is more expressive than LTL, but (surprisingly) there are
also properties we can express in LTL but not in CTL:

 The formula 𝐹𝜙 → 𝐹𝜓 cannot be expressed in CTL

 “When 𝜙 occurs somewhere, then 𝜓 also occurs
somewhere.”

 Not: 𝐴𝐹𝜙 → 𝐴𝐹𝜓, nor 𝐴𝐺(𝜙 → 𝐴𝐹 𝜓)

 The formula 𝐴𝐺 𝐸𝐹𝜙 cannot be expressed in LTL

 “For all paths, it is always the case that there is some
path on which 𝜙 is eventually true.”

CTL* - Allow for the use of temporal operators (X, G, F, U)
without a directly preceded path quantifiers (A, E)

 e.g. AGF φ is allowed

CTL* subsumes both LTL and CTL.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Complexity and State Explosion

Even our small oven example has 6 states with 4 labels each.
If we add one integer variable with 32 bits (e.g. for the heat),
we get 232 additional states.

Theoretically, there is not much hope. The basic problem of
deciding whether a formula holds (satisfiability problem) for
the temporal logics we have seen has the following
complexity:

 LTL without 𝑈 is NP-complete;

 LTL is PSPACE-complete;

 CTL (and CTL*) are EXPTIME-complete.

This is known as state explosion.

But at least it is decidable. Practically, state abstraction is the
key technique, so e.g. for an integer variable 𝑖 we identify all
states with 𝑖 ≤ 0, and those with 0 < 𝑖.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Safety and Liveness Properties

 Safety: nothing bad ever happens

 E.g. “x is always not equal 0”

 Safety properties are falsified by a bad (reachable) state

 Safety properties can falsified by a finite prefix of an execution
trace

 Liveness: something good will eventually happen

 E.g. “system is always terminating”

 Need to keep looking for the good thing forever

 Liveness properties can be falsified by an infinite-suffix of an
execution trace: e.g. finite list of states beginning with the
initial state followed by a cycle showing you a loop that can
cause you to get stuck and never reach the “good thing”

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

Summary

Model-checking allows us to show to show properties of
systems by enumerating the system’s states, by modelling
systems as finite state machines, and expressing properties
in temporal logic.

We considered Linear Temporal Logic (LTL) and Computational
Tree Logic (CTL). LTL allows us to express properties of single
paths, CTL allows quantifications over all possible paths of an
FSM.

The basic problem: the system state can quickly get huge, and
the basic complexity of the problem is horrendous, leading to
so-called state explosion. But the use of abstraction and state
compression techniques make model-checking bearable.

Next week:

 Practical model-checking (with NuSMV and/or Spin).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 12:

Tools for Model Checking

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Organisatorisches

Wir bieten an folgenden Terminen mündliche Prüfungen an:

Mi, 07.02.2018

Do, 15.02.2018

Mi, 28.02.2018

Anmeldung per Mail beim Veranstalter.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Correctness and Verification Condition Generation

 11: Model Checking

 12: Tools for Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Introduction

 In the last lecture, we saw the basics of model-checking: how to
model systems on an abstract level with FSM or Kripke structures,
and how to specify their properties with temporal logic (LTL and
CTL).

 This was motivated by the promise of “efficient tool support”.

 So how does this tool support look like, and how does it work? We
will hopefully answer these two questions in the following…

Brief overview:

 An Example: The Railway Crossing.

 Modelchecking with NuSMV and Spin.

 Algorithms for Model Checking.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

The Railway Crossing

Quelle: Wikipedia

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

First Abstraction

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

The Model

States of the train: States of the car:

States of the gate:

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

The Finite State Machine

The states of the FSM is given by mapping variables
𝑐𝑎𝑟, 𝑡𝑟𝑎𝑖𝑛, 𝑔𝑎𝑡𝑒 to the domains

Σ𝑐𝑎𝑟 = 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑙𝑣𝑛𝑔, 𝑎𝑤𝑎𝑦
Σ𝑡𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑙𝑣𝑛𝑔, 𝑎𝑤𝑎𝑦
Σ𝑔𝑎𝑡𝑒 = 𝑜𝑝𝑒𝑛, 𝑐𝑙𝑠𝑑

 Or alternatively, states are a 3-tuples
𝑠 ∈ Σ = Σ𝑐𝑎𝑟 × Σ𝑡𝑟𝑎𝑖𝑛 × Σ𝑔𝑎𝑡𝑒

The transition relation is given by
𝑎𝑤𝑎𝑦, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛 → 𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛
𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛 → 𝑥𝑖𝑛𝑔, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛
𝑎𝑝𝑝𝑟, 𝑎𝑝𝑝𝑟, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑐𝑙𝑠𝑑
𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑙𝑣𝑛𝑔, 𝑐𝑙𝑠𝑑
𝑎𝑝𝑝𝑟, 𝑙𝑣𝑛𝑔, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛

…

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Properties of the Railway Crossing

We want to express properties such as

 Cars and trains may never cross at the same time.

 The car can always leave the crossing.

 Approaching trains may eventually cross.

 There are cars crossing the tracks.

The first two are safety properties, the last two are liveness
properties.

To formulate these in temporal logic, we first need the basic
propositions which talk about the variables of the state.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Basic Propositions

The basic propositions 𝑃𝑟𝑜𝑝 are given as equalities over the
state variables:

𝑐𝑎𝑟 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑐𝑎𝑟,
𝑡𝑟𝑎𝑖𝑛 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑡𝑟𝑎𝑖𝑛,

𝑔𝑎𝑡𝑒 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑔𝑎𝑡𝑒

The Kripke structure valuation 𝑉 maps each basic proposition
to all states where this equality holds.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

The Properties

Cars and trains never cross at the same time:
𝐺¬ 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 ∧ 𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖𝑛𝑔

A car can always leave the crossing:

𝐺 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 → 𝐹 𝑐𝑎𝑟 = 𝑙𝑣𝑛𝑔

Approaching trains may eventually cross:

𝐺 𝑡𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟 → 𝐹 𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖𝑛𝑔

There are cars which are crossing the tracks:
𝐸𝐹 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔

 Not expressible in LTL, 𝐹 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 means something stronger.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Model-Checking Tools: NuSMV2

NuSMV is a reimplementation of SMV, the first model-checker
to use BDDs. NuSMV2 also adds SAT-based model checking.

Systems are modelled as synchronous FSMs (Mealy
automata) or asynchronous processes*.

Properties can be formulated in LTL and CTL.

Written in C, open source. Latest version 2.6.0 from Oct. 2015.

Developed by Fondazione Bruno Kessler, Carnegie Mellon
University, the University of Genoa and the University of
Trento.

* This is apparently depreciated now.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Model-Checking Tools: Spin

Spin was originally developed by Gerard Holzmann at Bell
Labs in the 80s.

Systems modelled in Promela (Process Meta Language):
asynchronous communication, non-deterministic automata.

Spin translates the automata into a C program, which
performs the actual model-checking.

Supports LTL and CTL.

Latest version 6.4.7 from August 2017.

Spin won the ACM System Software Award in 2001.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

Conclusions

Tools such as NuSMV2 and Spin make model-checking
feasible for moderately sized systems.

This allows us to find errors in systems which are hard to find
by testing alone.

The key ingredient is efficient state abstraction.

 But careful: abstraction must preserve properties.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 13:

Concluding Remarks

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Correctness and Verification Condition Generation

 11: Model Checking

 12: Tools for Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

The Global Picture

Notions of Quality
Legal Requirements

Software Development Process

Hazard Analysis

Program Analysis

Testing

UML / SysML

Formal Modeling OCL

Verification / VCG

Model Checking

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Examples of Formal Methods in Practice

Hardware verification:

 Intel: formal verification of microprocessors (Pentium/i-Core)

 Infineon: equivalence checks (Aurix Tricore)

Software verification:

 Microsoft: Windows device drivers

 Microsoft: Hyper-V hypervisor (VCC, VeriSoft project)

 NICTA (Aus): L4.verified (Isabelle)

Tools used in Industry (excerpt):

 AbsInt tools: aiT, Astree, CompCert (C)

 SPARK tools (ADA)

 SCADE (MatLab/Simulink)

 UPAAL, Spin, FDR2, other model checkers

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Safe and Secure Systems – Uni Bremen

AG Betriebssysteme - Verteilte Systeme / Verified Systems (Peleska)

 Testing, abstract interpretation

AG Datenbanksysteme (Gogolla)

 UML, OCL

AG Modelling of Technical Systems (Ehlers)

 Modeling, decision procedures, synthesis

AG Rechnerarchitektur / DFKI (Drechsler, Hutter, Lüth)

 System verification, model checking, security

AG Softwaretechnik (Koschke)

 Software engineering, reuse

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Organisatorisches

Bitte nehmt an der Evaluation auf stud.ip teil!

Was war euer Eindruck vom Übungsbetrieb im Vergleich zum
herkömmlichen Übungsbetrieb?

 Man lernt mehr – weniger?

 Es ist mehr – weniger Arbeit?

 Kommentare in Freitextfeldern bei der stud.ip Evaluation.

Wir bieten an folgenden Terminen mündliche Prüfungen an:

 Mi, 07.02.2018

 Do, 15.02.2018

 Mi, 28.02.2018

 Anmeldung per Mail etc.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Questions*

* Which might be asked in an exam, hypothetically speaking.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

General Remarks

The exam lasts 20-30 minutes, and is taken solitary.

We are not so much interested in well-rehearsed details, but
rather in principles.

We have covered a lot of material – an exam may well not
cover all of it.

 We will rather go into detail then spend the exam with
well-rehearsed phrases from the slides.

 Emphasis will be on the later parts of the course
(SysML/OCL, testing, static analysis, Floyd-Hoare logic,
model-checking) rather than the first.

 If you do not know an answer, just say so – we can move
on to a different question.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Lecture 01: Concepts of Quality

What is quality? What are quality criteria?

What could be useful quality criteria?

What is the conceptual difference between ISO 9001 and the
CMM (or Spice)?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Lecture 02: Legal Requirements

What is safety?

Norms and Standards:

 Legal situation

 What is the machinery directive?

 Norm landscape: first, second, third-tier norms

 Important norms: IEC 61508, ISO 26262, DIN EN 50128,
Do-178B/C, ISO 15408,…

Risk Analysis:

 What is SIL, and what is for? What is a target SIL?

 How do we obtain a SIL?

 What does it mean for the development?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Lecture 03: SW Development Process

Which software development models did we encounter?

How do the following work, and what are their respective
advantages/disadvantages:

 Waterfall model, spiral model, agile development, MDD,
V-model

Which models are appropriate for safety-critical systems?

Formal software development:

 What is it, and how does it work?

 What kind of properties are there, how are they defined?

 Development structure: horizontal vs. vertical, layers and
views

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Lecture 04: Hazard Analysis

What is hazard analysis for, and what are its main results?

Where in development process is it used?

Basic approaches:

 bottom-up vs. top-down (what does that mean?)

Which methods did we encounter?

 How do they work, advantages/disadvantages?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Lecture 05: High-level design with SysML

What is a model (in general, in UML/SysML)?

What is UML, what is SysML, what are the differences?

Basic elements of SysML for high-level design:

 Structural diagrams

 Package diagram, block definition diagram, internal
block diagram

 Behavioural Diagrams:

 Activity diagram, state machine diagram, sequence
diagram

 How do we use this diagrams to model a particular
system, e.g. a coffee machine?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Lecture 06: Formal Modeling with OCL

What is OCL? What is used for, and why?

Characteristics of OCL (pure, not executable, typed)

What can it be used for?

OCL types:

 Basic types

 Collection types

 Model types

OCL logic: four-valued Kleene logic

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Lecture 07: Testing

What is testing, what are the aims? What can testing achieve,
what not?

What are test levels (and which do we know)?

What are test methods?

What is a black-box test? How are the test cases chosen?

What is a white-box test?

What is the control-flow graph of a program?

What kind of coverages are there, and how are they defined?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Lecture 08: Static Program Analysis

What is that? What is the difference to testing?

What is the basic problem, and how is it handled?

What does we mean when an analysis is sound/complete?

What is over/under approximation?

What analysis did we consider? How did they work?

 What are the gen/kill sets?

 What is forward/backward analysis?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Lecture 09: Floyd-Hoare-Logic

What is the basic idea, and what are the basic ingredients?

Why do we need assertions, and logical variables?

What do the following notations mean:

 ⊨ 𝑃 𝑐 𝑄

 ⊨ 𝑃 𝑐 𝑄

 ⊢ 𝑃 𝑐 𝑄

How does Floyd-Hoare logic work?

What rules does it have?

How is Tony Hoare‘s last name pronounced?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Lecture 10: Verification Cond. Generation

What do completeness and soundness of the Floyd-Hoare
logic mean? Which of these properties does it have?

What is the weakest precondition, and how do we calculate it?

What are program annotations, why do we need them, and
how are they used?

What are verification conditions, and how are they calculated?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Lecture 11/12: Model Checking

What is model-checking, and how is it used? What is the
difference to Floyd-Hoare logic?

What is a FSM/Kripke structure?

Which models of time did we consider?

For LTL, CTL:

 What are the basic operators, when does a formula hold,
and what kind of properties can we formulate?

 Which one is more powerful?

 Are they decidable (with which complexity)?

Which tools did we see? What are their
differences/communalities?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Thank you, and good bye.

